
CIS 4190/5190: Applied Machine Learning Fall 2024

Homework 1

Handed Out: September 11 Due: October 2, 8 p.m.

• You are encouraged to format your solutions using LATEX. Handwritten solutions are
permitted, but remember that you bear the risk that we may not be able to read your
work and grade it properly — we will not accept post hoc explanations for illegible
work. You will submit your solution manuscript for written HW 1 as a single PDF file.

• The homework is due at 8 PM on the due date. We will be using Gradescope for
collecting the homework assignments. Please submit your solution manuscript as a
PDF file via Gradescope. Post on Ed Discussion and contact the TAs if you are having
technical difficulties in submitting the assignment.

• Make sure to assign pages to each question when submitting homework to Gradescope.
The TA may deduct 0.2 points per sub-question if a page is not assigned to a question.

1 Written Questions

Note: You do not need to show work for multiple choice questions. If formatting your answer
in LATEX, use our LaTeX template hw1 template.tex (This is a read-only link. You’ll
need to make a copy before you can edit. Make sure you make only private copies.).

1. [Bias-Variance Tradeoff] (7 pts) Suppose we have an L2-regularized linear regression
model, which has loss L(β) = 1

n

∑n
i=1(fβ(xi)− yi)

2 + λ∥β∥22. For each of the following,
indicate whether it tends to increase bias, decrease bias, or keep bias the same, and
similarly for variance:

A) Decrease the number of training examples n

B) Increase the regularization parameter λ

C) Decrease the dimension d of the features ϕ(x) ∈ Rd

D) Increase c, where we replace the features ϕ(x) with c ·ϕ(x), for some c ∈ R>0 (for
this part, assume no regularization, i.e., λ = 0)

E) Increase the gradient descent step size α (but not so much that gradient descent
diverges)

F) suppose you fit a model and find that it has low loss on the training data but high
loss on the test data; for each of the above five values n, λ, d, c, and α, indicate
whether you should increase or decrease it to reduce the test loss, or it has no
impact on the test loss.

2. [Regularization/Sparsity] (6 pts) In class, we demonstrated the intuition behind ℓ1
and ℓ2 regularization. In this problem we will try to see why ℓ1 regularization create
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sparsity (i.e. reduce β to zero) from the perspective of gradient descent. As a reminder,
here’s the ℓ1 regularized linear regression objective.

Lℓ1(β) =
1

N

N∑
i=1

(yi − βTxi)
2 + λ

p∑
j=1

|βj| (1)

(a) (2 pts) Consider the update rules for weights β in Equation 1 using gradient
descent. Write down the gradient of the ℓ1 regularization term (i.e. second term)
with respect to an individual weight βj. You can ignore the case βj = 0 where
the gradient may be undefined

(b) (2 pts) Non-important features j tend have coefficients βj close to zero. ℓ1 regular-
ization helps push these coefficients to exactly zero, leading to feature selection.
Given a sufficiently large regularization parameter λ, explain why this happens
from the perspective of gradient descent. Specifically, analyze how the gradient of
the linear regression loss term (first term in Equation 1) and the gradient of the
ℓ1 regularization term (second term in Equation 1) contribute to this behavior
w.r.t βj.

(c) (2 pts) Consider ℓ2 regularization. Does ℓ2 regularization encourage sparsity (i.e.,
push some coefficients βj to exactly zero)? Briefly justify your answer using similar
reasoning as in the previous question.

Hint: You do not need to explicitly write out the gradient of ℓ2 regularization,
but a calculation might help.

3. [Linear Regression] (5 pts) We are interested here in a particular 1-dimensional lin-
ear regression problem. The dataset corresponding to this problem has n examples
(x1, y1), . . . , (xn, yn) where xi and yi are real numbers for all i. Let w∗ = [w∗

0, w
∗
1]

T be
the least squares solution we are after. In other words, w∗ minimizes

J(w) =
1

n

n∑
i=1

(yi − w0 − w1xi)
2.

(a) Find the expression for the derivative of the objective function J(w) with respect
to w∗

0 and w∗
1.

(b) Show that 1
n

∑n
i=1(yi − w∗

0 − w∗
1xi)(xi − x̄) = 0

(c) Is linear regression guaranteed to have a unique solution for any dataset?

where x̄ and ȳ are the sample means based on the same dataset

4. [Linear Regression] (8 pts)

Suppose we have a weight vector w = [w1, w2]
T with input vectors xn ∈ R2 and

yn ∈ {0, 1} (y = wx = w1x1 + w2x2). Let us initialize all the weights to be 0. Also,
suppose we have N = 2 examples in our dataset: (x1 = [1,−1]T , y1 = 0), (x2 =
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[−1,−1]T , y2 = 1). Work out on paper the process of training an l2 regularized (λ = 1)
linear regression model with batch gradient descent (learning rate = 1) on the above
dataset for two epochs (steps).

(a) (1 pts) What is the value of the loss function at the beginning?

(b) (4 pts) What is the final state of the trained weight vector after 2 steps, and the
corresponding value of the loss function? (Hint: derive the partial derivative of
the loss function with respect to weights, and calculate their values after each
step)

L =
1

N
ΣN

i=1(yi −wxi)
2 + λ||w||2

(c) (3 pts) Derive the formula of the closed-form solution for ridge regression. (Hint:
first write out the loss function in matrix form).

2 Python Programming Questions

A IPython notebook is linked on the class website. It will tell you everything you
need to do, and provide starter code. Remember to include the plots and answer the
questions in your written homework submission!
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