Announcements

* Homework 0: Due in 1 week (Wed 9/11 7:59 pm).

e Should only take you a few hours. Primers on various topics on the class
website.

* OH time and location posted.
 Start on Thu 9/12, right after HWO is due and HW1 is released.
e 20+ hours every week from instructors and TAs.

* Waitlist

* Some movement on add/drop, some of you added. Prioritizing by date of
graduation, and when you came on the waitlist.
* Email instructors if you have an extraordinary need to take the class.

* If you have been accepted off the waitlist, please enroll by Friday

* Class recordings & Weekly Quizzes



Lecture 2: Linear Regression (Part 1)

CIS 4190/5190
Fall 2024



Recap: Types of Machine Learning

* Supervised learning
* Input: Examples of inputs and desired outputs
* Output: Model that predicts output given a new input

* Unsupervised learning
* Input: Examples of some data (no “outputs”)
e Output: Representation of structure in the data

* Reinforcement learning
* Input: Sequence of interactions with an environment
* Output: Policy that performs a desired task



Supervised Learning

New input x

¥

il l}l} o

Data Z = {(x;,v;)} Machine learning Model f

algorithm '

Predicted output y

Question: What model family (a.k.a. hypothesis class) to consider?



Linear Functions

* Consider the space of linear functions fﬁ(x) defined by

fp(x) =p"x



Linear Functions

* Consider the space of linear functions fﬁ(x) defined by

X1

fﬁ(x)=,3TX=[,31 o Bal| | = Bixg + o+ Baxg

| Xd.

» x € R% is called an input (a.k.a. features or covariates)
» 3 € R% is called the parameters (a.k.a. parameter vector)
°y = fp(x) is called the label (a.k.a. output or response)



Linear Regression Problem

e Input: Dataset Z = {(x{,v:), ..., (x,,,v,,)}, where x; € R* and y; € R
* Output: A linear function fz(x) = ' x such that y; = ' x;

* Typical notation
* Use i to index examples (x;, y;) in data Z
* Use j to index components x; of x € R¢

* x;; is component j of input example i

* Goal: Estimate f € R%



Linear Regression Problem

* Input: Dataset Z = {(x{,v,), ..., (x,,, v,)}, where x; € R* and y; € R
* Output: A linear function fz(x) = ' x such that y; = ' x;
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Linear Regression Problem |
What does this mean?

* Input: Dataset Z = {(x{,v,), ..., (x,,, v,)}, where x; € K% and y; € R
* Output: A linear function fz(x) = ' x such that y; = ' x;
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Choice of Loss Function

‘i = ,BTxi if (v, — ,BTxl-)z small
* Mean squared error (MSE):

1 n
L(p;7Z) = EE(}G — BT x;)?
i=1

* Computationally convenient and
works well in practice




Linear Regression Problem

* Input: Data Z = {(x{,v1), ..., (x,,, v,,)}, where x; € R* and y; € R
* Output: A linear function fz(x) = ' x such that y; = ' x;



Linear Regression Problem

* Input: Data Z = {(x{,v1), ..., (x,,, v,,)}, where x; € R* and y; € R
* Output: A linear function fz(x) = ' x that minimizes the MSE:

1 n
L(p;7Z) = EZ(%’ — BT x;)?
i=1



Linear Regression Algorithm

* Input: Dataset Z = {(x{, V1), ..., (x,, V) }
* Compute

B(Z) = argmin L(B; Z)
LERY

.1
= arg min 3L, (v = B 1x)®
ER

e Output: fﬁ(z)(x) = 3(2)"x
* Discuss algorithm for computing the minimal [ later




Minimizing the Mean Squared Error

Q: What is depicted here is actually the “sum” of squared errors (SSE), but it
doesn’t really matter. Why?

Youtube: 3-Minute Data Science



Intuition on Minimizing MSE Loss

* Considerx € Rand f € R
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Intuition on Minimizing MSE Loss

* Considerx € Rand f € R
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Intuition on Minimizing MSE Loss

* Considerx € Rand f € R
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Intuition on Minimizing MSE Loss

* Considerx € Rand f € R
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Intuition on Minimizing MSE Loss

e Convex (“bowl shaped”) in general

L(’B,Z) 100-
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Later, we will discuss how to find the parameters [ that minimize the MSE loss L

Slide by Andrew Ng






What Is A “Good” Mean Squared Error?

e Zero MSE is rarely achievable. How do we know that the linear regression
algorithm worked well?

 Compare to simple baselines: “Is my ML algorithm giving me more than
what | could easily have coded up?” For example,
* Constant prediction, e.g., predicting the mean of the training dataset target labels
* Handcrafted model

* A suite of performance metrics: There’s no reason to solely rely on MSE for
performance evaluation, even if you use MSE as the loss function.

* Evaluate beyond the training examples: (more on this soon)



Alternative Functions to Measure Performance

1

 Mean absolute error: - i=1 Vi — il
. 1 [yi—yil
* Mean relative error: = i1 L
n lvil
* R? score: 1= oo
Variance

e “Coefficient of determination”
e Higher is better, R?* = 1 is perfect



Alternative Functions to Measure Performance

Iyvn UGi-D@i—@)

n &it=1 Go

e Usually estimated from some sampled measurements of those variables, and
denoted as R (related to R? on the last slide!)

 Pearson correlation:

 Rank-order correlation:

* First rank the measurements of y; and y separately, then replace each value
in y by its rank, and ditto for

* Then measure the linear correlation between those ranks



Performance Metrics

 Loss functions are special performance metrics.

* Every loss function, e.g. MSE, is a performance metric, but not every performance
metric is a convenient loss function for ML. (Reasons later)

* Always think carefully about the useful performance metric(s) for your ML
problem. Use them to iterate on your ML design choices.

e E.g. For an ML model that makes car driving decisions,
 How frequently did it successfully get from A to B?
 How fast did it get there?
 How many traffic violations did it commit?

* The loss function is a single scalar function. A good choice of loss function:
* expresses all the performance metrics.
* is “convenient for machine learning.” More on this later.



Zooming Out of Linear Regression

To The Big Picture For a Bit ...




Function Approximation View of ML

300

Data Z Machine learning Model f

algorithm /

ML algorithm outputs a model f that best “approximates” the given data Z




The “True Function” f~

* Input: Dataset /
* Presume there is an unknown function f™* that generates 7

* Goal: Find an approximation fz =~ f~ in our model family fz € F
* Typically, f* not in our model family F




Function Approximation View of ML

* Framework for designing machine learning algorithms

* Two key design decisions:
* What is the family of candidate models [ ?
* How to define “approximating”?

Let us see how linear regression fits in this framework.



Machine Learning

300

Data Z Machine learning Model f
algorithm




Machine Learning as Parametric Function Approximation

306

Data Z Machine learning Model /5

algorithm /

Parametric model family (i.e., ' = {fﬁ | p € R4 })




Machine Learning as Parametric Function Approximation

300

Data Z p(Z) = argming L(B; Z) Model /5,

N\

ML algorithm minimizes loss of parameters 5 over data 7




... For Supervised Learning

300

Data Z = {(x;,y)}j~y  B(Z) = argming L(B; Z) Model /72

\ L encodes y; = f5(x;)

Goal is for function to approximate label v given input x




... Specifically, For Regression

300

Data Z = {(x;,y)}j~y  B(Z) = argming L(B; Z) Model /72

\ L encodes y; = f5(x;)

Label is a real number y; € R




... Specifically, For Linear Regression

w LYo L4 7

Data Z = {(x;,y)}j~y  B(Z) = argming L(B; Z) Model /72
L encodes y; =~ f5(x;)

/ .

MSE loss Model is a linear function f;(x) = L lx







Linear Regression With Feature
Maps



Example: Quadratic Function




Example: Quadratic Function

.//‘ fﬁ(x) = X

Can we get a better fit?



Feature Maps

General strategy Linear regression with feature map
* Model family F = {fﬁ} * Linear functions over a given feature
g map ¢: X —» R¢

* Loss function L(f; Z)
F={f(x) =p"¢p(x)}

e MSEL(B; 2) = 2 X0y (v = BT ()



Quadratic Feature Map
* Consider the feature map ¢: R - R? given by
() = | ]

* Then, the model family is

fg(x) = B1x + Brx*



Quadratic Feature Map

9 fg(x) = 0x + 1x°

In our family for [ = [(ﬂl



Feature Maps

* Effectively changes the hypothesis space! This is a powerful strategy
for encoding “prior knowledge” about the function we are looking to
approximate.

* Terminology

* x is the input and ¢(x) is the features
e Often used interchangeably



Examples of Feature Maps

* Polynomial features
* p(x) = [1,x1, X5, X7, X1 X5, X5]

_ 2 2
* fp(x) = By + Baxy + P3xy + Paxi + Psxix; + Pexy + -
e Quadratic features are very common; capture “feature interactions”
* Can use other nonlinearities (exponential, logarithm, square root, etc.

* Note the intercept term (in red)

cp(x)=[1 % - Xq]'
* Almost always used; captures constant effect

* Encoding non-real inputs

* E.g. Education level x € {“high school”, “college”, “masters”, “doctoral”’} ¢p(x) maps
to {1, 2, 3, 4}



Examples of Feature Maps

e Feature maps can also help handle very complex data like text and
Images

* E.g., x = “the food was good” and y = 4 stars
* o(x) = [1(“good” € x) 1(“bad” € x) ..]T

* More on features for text and images later in the course!



Algorithm for Non-Linear Regression

First, select an appropriate feature map:

¢1.(X) |

¢x) =|
_¢d’(x)_

Then, non-linear regression reduces to linear regression!
e Step 1: Compute ¢p; = ¢Pp(x;) for each x; in Z

* Step 2: Run linear regression with Z' = {(¢1, v1), ..., (P, V) }






Question

* Why not always throw in lots of features?
e After all, more features => more expressive hypothesis space!
e Forexample, if ¢(x) = [1, x1, Xp, X%, X1 X2, X5, ... ]
* Can fit any n points using an n-th degree polynomial f(x) = B, + B,x; +
Bsxy + Paxi + Bsx1x, + Bexs + -+
A




Prediction

* Issue: The goal in machine learning is prediction
* Given a new input x, predict the label j = f5(x)

y

The errors on new inputs is very large!



Prediction

* Issue: The goal in machine learning is prediction
* Given a new input x, predict the label j = f5(x)

e 29 ¢ +¥-- /()

X
Vanilla linear regression actually works better!




Training vs. Test Data

* Training data: Examples Z = {(x, y)} used to fit our model

* Test data: New inputs x whose labels v we want to predict



Overfitting vs. Underfitting

* Overfitting * Underfitting
* Fit the training data Z well * Fit the training data Z poorly
* Fit new test data (x, y) poorly * (Necessarily also fit new test data

(x, y) poorly)
y




Role of Capacity

e Capacity of a model family captures “complexity” of data it can fit
* Higher capacity = more likely to overfit (model family has high variance)
* Lower capacity = more likely to underfit (model family has high bias)

* For linear regression, capacity roughly corresponds to feature
dimension d

* |.e., number of featuresin ¢(x)



Bias-Variance Tradeoff

» Overfitting (high variance) * Underfitting (high bias)
* High capacity model capable of * Low capacity model that can only
fitting complex data fit simple data
* Insufficient data to constrain it  Sufficient data but poor fit
Q@
Y
s
s
|
P ”
P f,B (x)




Bias-Variance Tradeoff

 Underfitting Ideal Overfitting

Loss

/ Test loss

— » Training loss

Capacity

Warning: Very stylized plot!

Slide by Padhraic Smyth, UClrvine
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