
Announcements
• Homework 0: Due in 1 week (Wed 9/11 7:59 pm).

• Should only take you a few hours. Primers on various topics on the class 
website.

• OH time and location posted. 
• Start on Thu 9/12, right after HW0 is due and HW1 is released.

• 20+ hours every week from instructors and TAs.

• Waitlist
• Some movement on add/drop, some of you added. Prioritizing by date of 

graduation, and when you came on the waitlist. 

• Email instructors if you have an extraordinary need to take the class.

• If you have been accepted off the waitlist, please enroll by Friday

• Class recordings & Weekly Quizzes



Lecture 2: Linear Regression (Part 1)

CIS 4190/5190

Fall 2024



Recap: Types of Machine Learning

• Supervised learning
• Input: Examples of inputs and desired outputs
• Output: Model that predicts output given a new input

• Unsupervised learning
• Input: Examples of some data (no “outputs”)
• Output: Representation of structure in the data

• Reinforcement learning
• Input: Sequence of interactions with an environment
• Output: Policy that performs a desired task



Supervised Learning

Data 𝑍 = 𝑥𝑖 , 𝑦𝑖 Machine learning 
algorithm

Model 𝑓

New input 𝑥

Predicted output 𝑦

Question: What model family (a.k.a. hypothesis class) to consider?



Linear Functions

• Consider the space of linear functions 𝑓𝛽 𝑥  defined by

𝑓𝛽 𝑥 = 𝛽⊤𝑥 = 𝛽1 ⋯ 𝛽𝑑

𝑥1

⋮
𝑥𝑑

= 𝛽1𝑥1 + ⋯ + 𝛽𝑑𝑥𝑑



Linear Functions

• Consider the space of linear functions 𝑓𝛽 𝑥  defined by

𝑓𝛽 𝑥 = 𝛽⊤𝑥 = 𝛽1 ⋯ 𝛽𝑑

𝑥1

⋮
𝑥𝑑

= 𝛽1𝑥1 + ⋯ + 𝛽𝑑𝑥𝑑

• 𝑥 ∈ ℝ𝑑  is called an input (a.k.a. features or covariates)

• 𝛽 ∈ ℝ𝑑  is called the parameters (a.k.a. parameter vector)

• 𝑦 = 𝑓𝛽 𝑥  is called the label (a.k.a. output or response)



Linear Regression Problem

• Input: Dataset 𝑍 = 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 , where 𝑥𝑖 ∈ ℝ𝑑  and 𝑦𝑖 ∈ ℝ

• Output: A linear function 𝑓𝛽 𝑥 = 𝛽⊤𝑥 such that 𝑦𝑖 ≈ 𝛽⊤𝑥𝑖

• Typical notation
• Use 𝑖 to index examples 𝑥𝑖 , 𝑦𝑖  in data 𝑍

• Use 𝑗 to index components 𝑥𝑗  of 𝑥 ∈ ℝ𝑑

• 𝑥𝑖𝑗  is component 𝑗 of input example 𝑖

• Goal: Estimate 𝛽 ∈ ℝ𝑑



Linear Regression Problem

• Input: Dataset 𝑍 = 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 , where 𝑥𝑖 ∈ ℝ𝑑  and 𝑦𝑖 ∈ ℝ

• Output: A linear function 𝑓𝛽 𝑥 = 𝛽⊤𝑥 such that 𝑦𝑖 ≈ 𝛽⊤𝑥𝑖

9Image: https://www.flickr.com/photos/gsfc/5937599688/
Data from https://nsidc.org/arcticseaicenews/sea-ice-tools/

Photo by NASA Goddard

𝑥𝑖 ∈ ℝ1 is the year

𝑦𝑖  is the sea ice extent

𝑓𝛽 𝑥

https://www.flickr.com/photos/gsfc/5937599688/
https://nsidc.org/arcticseaicenews/sea-ice-tools/


Linear Regression Problem

• Input: Dataset 𝑍 = 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 , where 𝑥𝑖 ∈ ℝ𝑑  and 𝑦𝑖 ∈ ℝ

• Output: A linear function 𝑓𝛽 𝑥 = 𝛽⊤𝑥 such that 𝑦𝑖 ≈ 𝛽⊤𝑥𝑖

10Image: https://www.flickr.com/photos/gsfc/5937599688/
Data from https://nsidc.org/arcticseaicenews/sea-ice-tools/

Photo by NASA Goddard

𝑦𝑖  is the sea ice extent

𝑓𝛽 𝑥

What does this mean?

𝑥𝑖 ∈ ℝ1 is the year

https://www.flickr.com/photos/gsfc/5937599688/
https://nsidc.org/arcticseaicenews/sea-ice-tools/


Choice of Loss Function

• 𝑦𝑖 ≈ 𝛽⊤𝑥𝑖 if 𝑦𝑖 − 𝛽⊤𝑥𝑖
2 small

• Mean squared error (MSE):

𝐿 𝛽; 𝑍 =
1

𝑛


𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2

• Computationally convenient and 
works well in practice

𝐿 𝛽; 𝑍 =
𝜖2 + 𝜖2 + 𝜖2 + 𝜖2 + 𝜖2

𝑛

𝑥

𝑦 𝑓𝛽 𝑥 = 𝛽⊤𝑥



Linear Regression Problem

• Input: Data 𝑍 = 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 , where 𝑥𝑖 ∈ ℝ𝑑  and 𝑦𝑖 ∈ ℝ

• Output: A linear function 𝑓𝛽 𝑥 = 𝛽⊤𝑥 such that 𝑦𝑖 ≈ 𝛽⊤𝑥𝑖



Linear Regression Problem

• Input: Data 𝑍 = 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 , where 𝑥𝑖 ∈ ℝ𝑑  and 𝑦𝑖 ∈ ℝ

• Output: A linear function 𝑓𝛽 𝑥 = 𝛽⊤𝑥 that minimizes the MSE:

𝐿 𝛽; 𝑍 =
1

𝑛


𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2



Linear Regression Algorithm

• Input: Dataset 𝑍 = 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛

• Compute

   መ𝛽 𝑍 = arg min
𝛽∈ℝ𝑑

𝐿 𝛽; 𝑍

   መ𝛽 𝑍 = arg min
𝛽∈ℝ𝑑

1

𝑛
σ𝑖=1

𝑛 𝑦𝑖 − 𝛽⊤𝑥𝑖
2

• Output: 𝑓𝛽 𝑍 𝑥 = መ𝛽 𝑍 ⊤𝑥

• Discuss algorithm for computing the minimal 𝛽 later



Minimizing the Mean Squared Error

Youtube: 3-Minute Data Science

Q: What is depicted here is actually the “sum” of squared errors (SSE), but it 
doesn’t really matter. Why?



Intuition on Minimizing MSE Loss

• Consider 𝑥 ∈ ℝ and 𝛽 ∈ ℝ
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Intuition on Minimizing MSE Loss

• Consider 𝑥 ∈ ℝ and 𝛽 ∈ ℝ
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Intuition on Minimizing MSE Loss

• Consider 𝑥 ∈ ℝ and 𝛽 ∈ ℝ
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Intuition on Minimizing MSE Loss

• Consider 𝑥 ∈ ℝ and 𝛽 ∈ ℝ
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Intuition on Minimizing MSE Loss

• Convex (“bowl shaped”) in general

Slide by Andrew Ng

𝐿 𝛽; 𝑍

𝛽2

𝛽1

Later, we will discuss how to find the parameters 𝛽 that minimize the MSE loss 𝐿





What Is A “Good” Mean Squared Error?
• Zero MSE is rarely achievable. How do we know that the linear regression 

algorithm worked well? 

• Compare to simple baselines: “Is my ML algorithm giving me more than 
what I could easily have coded up?” For example,
• Constant prediction, e.g., predicting the mean of the training dataset target labels
• Handcrafted model
• …

• A suite of performance metrics: There’s no reason to solely rely on MSE for 
performance evaluation, even if you use MSE as the loss function.

• Evaluate beyond the training examples: (more on this soon)



Alternative Functions to Measure Performance

• Mean absolute error: 
1

𝑛
σ𝑖=1

𝑛 | ො𝑦𝑖 − 𝑦𝑖|

• Mean relative error: 
1

𝑛
σ𝑖=1

𝑛 ෞ𝑦𝑖−𝑦𝑖

|𝑦𝑖|

• 𝑹𝟐 score:    1 −
MSE

Variance
• “Coefficient of determination”

• Higher is better, 𝑅2 = 1 is perfect



• Pearson correlation: 
1

𝑛
σ𝑖=1

𝑛 ( ො𝑦𝑖−ෝ𝜇)(𝑦𝑖−𝜇)

ෝ𝜎𝜎
• Usually estimated from some sampled measurements of those variables, and 

denoted as 𝑅 (related to 𝑅2 on the last slide!)

• Rank-order correlation:
• First rank the measurements of ො𝑦𝒊 and 𝑦 separately, then replace each value 

in 𝑦 by its rank, and ditto for ො𝑦

• Then measure the linear correlation between those ranks

Alternative Functions to Measure Performance



Performance Metrics

• Loss functions are special performance metrics. 
• Every loss function, e.g. MSE, is a performance metric, but not every performance 

metric is a convenient loss function for ML. (Reasons later) 

• Always think carefully about the useful performance metric(s) for your ML 
problem. Use them to iterate on your ML design choices. 
• E.g. For an ML model that makes car driving decisions,

• How frequently did it successfully get from A to B?
• How fast did it get there?
• How many traffic violations did it commit?

• The loss function is a single scalar function. A good choice of loss function: 
• expresses all the performance metrics.
• is “convenient for machine learning.” More on this later. 



Zooming Out of Linear Regression
To The Big Picture For a Bit …



Function Approximation View of ML

Data 𝑍 Machine learning 
algorithm

Model 𝑓

ML algorithm outputs a model 𝑓 that best “approximates” the given data 𝑍



The “True Function” 𝒇∗

• Input: Dataset 𝑍
• Presume there is an unknown function 𝑓∗ that generates 𝑍 

• Goal: Find an approximation 𝑓𝛽 ≈ 𝑓∗ in our model family 𝑓𝛽 ∈ 𝐹
• Typically, 𝑓∗ not in our model family 𝐹

𝐹𝑓𝛽𝑓∗



Function Approximation View of ML

• Framework for designing machine learning algorithms

• Two key design decisions:
• What is the family of candidate models 𝑓?

• How to define “approximating”?

Let us see how linear regression fits in this framework.



Machine Learning

Data 𝑍 Machine learning 
algorithm

Model 𝑓



Machine Learning as Parametric Function Approximation

Data 𝑍 Machine learning 
algorithm

Model 𝑓𝛽

Parametric model family (i.e., 𝐹 = 𝑓𝛽 𝛽 ∈ ℝ𝑑 )



Machine Learning as Parametric Function Approximation

Data 𝑍 መ𝛽 𝑍 = arg min𝛽 𝐿(𝛽; 𝑍) Model 𝑓𝛽 𝑍

ML algorithm minimizes loss of parameters 𝛽 over data 𝑍



… For Supervised Learning

Data 𝑍 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛 መ𝛽 𝑍 = arg min𝛽 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦𝑖 ≈ 𝑓𝛽 𝑥𝑖

Model 𝑓𝛽 𝑍

Goal is for function to approximate label 𝑦 given input 𝑥 



... Specifically, For Regression

Data 𝑍 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛 መ𝛽 𝑍 = arg min𝛽 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦𝑖 ≈ 𝑓𝛽 𝑥𝑖

Model 𝑓𝛽 𝑍

Label is a real number 𝑦𝑖 ∈ ℝ



... Specifically, For Linear Regression

Data 𝑍 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛 መ𝛽 𝑍 = arg min𝛽 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦𝑖 ≈ 𝑓𝛽 𝑥𝑖

Model 𝑓𝛽 𝑍

MSE loss Model is a linear function 𝑓𝛽 𝑥 = 𝛽⊤𝑥





Linear Regression With Feature 
Maps
Linear Regression When Data is Non-Linear?



Example: Quadratic Function 

𝑥

𝑦

𝑓𝛽 𝑥 = 𝑥/2



Example: Quadratic Function 

𝑥

𝑦
𝑓𝛽 𝑥 = 𝑥

Can we get a better fit?



Feature Maps

General strategy

• Model family 𝐹 = 𝑓𝛽 𝛽

• Loss function 𝐿 𝛽; 𝑍

Linear regression with feature map

• Linear functions over a given feature 
map 𝜙: 𝑋 → ℝ𝑑

𝐹 = 𝑓𝛽 𝑥 = 𝛽⊤𝜙 𝑥

• MSE 𝐿 𝛽; 𝑍 =
1

𝑛
σ𝑖=1

𝑛 𝑦𝑖 − 𝛽⊤𝜙 𝑥𝑖
2



Quadratic Feature Map

• Consider the feature map 𝜙: ℝ → ℝ2 given by

𝜙 𝑥 =
𝑥

𝑥2

• Then, the model family is

𝑓𝛽 𝑥 = 𝛽1𝑥 + 𝛽2𝑥2



Quadratic Feature Map

𝑥

𝑦
𝑓𝛽 𝑥 = 0𝑥 + 1𝑥2

In our family for 𝛽 =
0
1

!



Feature Maps

• Effectively changes the hypothesis space! This is a powerful strategy 
for encoding “prior knowledge” about the function we are looking to 
approximate. 

• Terminology
• 𝑥 is the input and 𝜙 𝑥  is the features

• Often used interchangeably



Examples of Feature Maps

• Polynomial features
• 𝝓 𝑥 = [1, 𝑥1, 𝑥2, 𝑥1

2, 𝑥1𝑥2, 𝑥2
2]

• 𝑓𝛽 𝑥 = 𝛽1 + 𝛽2𝑥1 + 𝛽3𝑥2 + 𝛽4𝑥1
2 + 𝛽5𝑥1𝑥2 + 𝛽6𝑥2

2 + ⋯

• Quadratic features are very common; capture “feature interactions”
• Can use other nonlinearities (exponential, logarithm, square root, etc.

• Note the intercept term (in red)
• 𝜙 𝑥 = 1 𝑥1 … 𝑥𝑑

⊤

• Almost always used; captures constant effect

• Encoding non-real inputs
• E.g. Education level 𝑥 ∈ {“high school”, “college”, “masters”, “doctoral”} 𝜙 𝑥  maps 

to {1, 2, 3, 4}



Examples of Feature Maps

• Feature maps can also help handle very complex data like text and 
images
• E.g., 𝑥 = “the food was good” and 𝑦 = 4 stars

• 𝜙 𝑥 = 1 “good” ∈ 𝑥 1 “bad” ∈ 𝑥 … ⊤

• More on features for text and images later in the course!



Algorithm for Non-Linear Regression

First, select an appropriate feature map: 

𝝓 𝑥 =
𝜙1 𝑥

⋮
𝜙𝑑′ 𝑥

Then, non-linear regression reduces to linear regression!

• Step 1: Compute 𝝓𝑖 = 𝝓 𝑥𝑖  for each 𝑥𝑖 in 𝑍

• Step 2: Run linear regression with 𝑍′ = 𝝓1, 𝑦1 , … , 𝝓𝑛, 𝑦𝑛





Question
• Why not always throw in lots of features?

• After all, more features => more expressive hypothesis space!

• For example, if 𝝓 𝑥 = [1, 𝑥1, 𝑥2, 𝑥1
2, 𝑥1𝑥2, 𝑥2

2, … ]

• Can fit any 𝑛 points using an n-th degree polynomial 𝑓 𝑥 = 𝛽1 + 𝛽2𝑥1 +
𝛽3𝑥2 + 𝛽4𝑥1

2 + 𝛽5𝑥1𝑥2 + 𝛽6𝑥2
2 + ⋯

𝑥

𝑦

𝑓𝛽 𝑥



Prediction

• Issue: The goal in machine learning is prediction
• Given a new input 𝑥, predict the label ො𝑦 = 𝑓𝛽 𝑥

𝑥

𝑦

𝑓𝛽 𝑥

The errors on new inputs is very large!



Prediction

• Issue: The goal in machine learning is prediction
• Given a new input 𝑥, predict the label ො𝑦 = 𝑓𝛽 𝑥

𝑥

𝑦

𝑓𝛽 𝑥

Vanilla linear regression actually works better!



Training vs. Test Data

• Training data: Examples 𝑍 = 𝑥, 𝑦  used to fit our model

• Test data: New inputs 𝑥 whose labels 𝑦 we want to predict



Overfitting vs. Underfitting

• Overfitting
• Fit the training data 𝑍 well

• Fit new test data 𝑥, 𝑦  poorly

• Underfitting
• Fit the training data 𝑍 poorly

• (Necessarily also fit new test data
𝑥, 𝑦  poorly)

𝑥

𝑦

𝑓𝛽 𝑥

𝑥

𝑦

𝑓𝛽 𝑥



Role of Capacity

• Capacity of a model family captures “complexity” of data it can fit
• Higher capacity → more likely to overfit (model family has high variance)

• Lower capacity → more likely to underfit (model family has high bias)

• For linear regression, capacity roughly corresponds to feature 
dimension 𝑑
• I.e., number of features in 𝜙 𝑥



Bias-Variance Tradeoff

• Overfitting (high variance)
• High capacity model capable of 

fitting complex data

• Insufficient data to constrain it

• Underfitting (high bias)
• Low capacity model that can only 

fit simple data

• Sufficient data but poor fit

𝑥

𝑦

𝑓𝛽 𝑥

𝑥

𝑦

𝑓𝛽 𝑥



Bias-Variance Tradeoff

Lo
ss

Capacity

Training loss

Test loss

Ideal OverfittingUnderfitting

Slide by Padhraic Smyth, UCIrvine
Warning: Very stylized plot!


	Slide 1: Announcements
	Slide 3: Lecture 2: Linear Regression (Part 1)
	Slide 4: Recap: Types of Machine Learning
	Slide 5: Supervised Learning
	Slide 6: Linear Functions
	Slide 7: Linear Functions
	Slide 8: Linear Regression Problem
	Slide 9: Linear Regression Problem
	Slide 10: Linear Regression Problem
	Slide 11: Choice of Loss Function
	Slide 12: Linear Regression Problem
	Slide 13: Linear Regression Problem
	Slide 14: Linear Regression Algorithm
	Slide 15: Minimizing the Mean Squared Error
	Slide 16: Intuition on Minimizing MSE Loss
	Slide 17: Intuition on Minimizing MSE Loss
	Slide 18: Intuition on Minimizing MSE Loss
	Slide 19: Intuition on Minimizing MSE Loss
	Slide 20: Intuition on Minimizing MSE Loss
	Slide 21
	Slide 22: What Is A “Good” Mean Squared Error?
	Slide 23: Alternative Functions to Measure Performance
	Slide 24: Alternative Functions to Measure Performance
	Slide 25: Performance Metrics
	Slide 26
	Slide 27: Function Approximation View of ML
	Slide 28: The “True Function” f 
	Slide 29: Function Approximation View of ML
	Slide 30: Machine Learning
	Slide 31: Machine Learning as Parametric Function Approximation
	Slide 32: Machine Learning as Parametric Function Approximation
	Slide 33: … For Supervised Learning
	Slide 34: ... Specifically, For Regression
	Slide 35: ... Specifically, For Linear Regression
	Slide 36
	Slide 37: Linear Regression With Feature Maps
	Slide 38: Example: Quadratic Function 
	Slide 39: Example: Quadratic Function 
	Slide 40: Feature Maps
	Slide 41: Quadratic Feature Map
	Slide 42: Quadratic Feature Map
	Slide 43: Feature Maps
	Slide 44: Examples of Feature Maps
	Slide 45: Examples of Feature Maps
	Slide 46: Algorithm for Non-Linear Regression
	Slide 47
	Slide 48: Question
	Slide 49: Prediction
	Slide 50: Prediction
	Slide 51: Training vs. Test Data
	Slide 52: Overfitting vs. Underfitting
	Slide 54: Role of Capacity
	Slide 55: Bias-Variance Tradeoff
	Slide 56: Bias-Variance Tradeoff

