Announcements

- HW 0 due Wed 8 pm; HW 1 (on linear regression) will be released that evening.
- Class currently full (181 enrolled, 39 approvals). Limited movement expected.
- **Edstem** to contact the course team, which is likely to have a fast response. But if you want to keep your message private to Tas:
 - Always email both instructors together.
 - Start subject line with "[CIS 4190/5190 Fall 2024]".

Lecture 3: Linear Regression (Part 2)

CIS 4190/5190

Fall 2024

Recap: Linear Regression

- **Input:** Dataset $Z = \{(x_1, y_1), ..., (x_n, y_n)\}$
- Compute

$$\hat{\beta}(Z) = \arg\min_{\beta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (y_i - \beta^\top x_i)^2$$

- Output: $f_{\widehat{\beta}(Z)}(x) = \hat{\beta}(Z)^{\top}x$
- Discuss algorithms for computing the minimal β next lecture

Loss Minimization View of ML

To design an ML algorithm:

- Choose model family $F = \left\{f_{\pmb{\beta}}\right\}_{\pmb{\beta}}$ (e.g., linear functions)
- Choose loss function $L(\beta; \mathbb{Z})$ (e.g., MSE loss)

Resulting algorithm:

$$\hat{\beta}(Z) = \underset{\beta}{\operatorname{arg min}} L(\beta; Z)$$

Recap: Overfitting vs. Underfitting

Overfitting

- Fit the training data Z well
- Fit new **held out data** (x, y) poorly

$f_{\beta}(x)$

- Fit the training data Z poorly
- (Necessarily fit new held out data (x, y) poorly)

Today's Lecture

Assessing, Understanding, and Combating underfitting/overfitting:

- Bias and Variance of hypothesis classes
- Regularized linear regression
- Cross-Validation

Assessing Underfitting & Overfitting

Training/Test Split

- Issue: How to detect overfitting vs. underfitting?
- Solution: Use held-out test data to estimate loss on new data
 - Typically, randomly shuffle data first

• Step 1: Split Z into Z_{train} and Z_{test}

Training data Z_{train}

Test data Z_{test}

- Step 2: Run linear regression with Z_{train} to obtain $\hat{\beta}(Z_{\text{train}})$
- Step 3: Evaluate
 - Training loss: $L_{\text{train}} = L(\hat{\beta}(Z_{\text{train}}); Z_{\text{train}})$
 - Test (or generalization) loss: $L_{\text{test}} = L(\hat{\beta}(Z_{\text{train}}); Z_{\text{test}})$, (plus other performance metrics besides the loss function)

Overfitting

- Fit the training data Z well
- Fit new **test data** (x, y) poorly

- Fit the training data Z poorly
- (Necessarily fit new test data (x, y) poorly)

Overfitting

- L_{train} is small
- L_{test} is large

- Fit the training data Z poorly
- (Necessarily fit new test data (x, y) poorly)

Overfitting

- L_{train} is small
- L_{test} is large

- L_{train} is large
- L_{test} is large

Understanding Underfitting & Overfitting

With Bias & Variance

Underfitting/Overfitting <=> Bias/Variance

We will understand these phenomena now through two properties of a model family, "bias", and "variance".

Language for thinking about the ways in which model families can be bad.

Definitions: "Bias" and "Variance"

Imagine you draw k training datasets from the same probability distribution over data, and each time fit your model $\{f_{\beta}\}_{1 \cdot k}$ to it.

- "Variance": how much do those fitted functions $\{f_{\beta}\}_{1:k}$ differ amongst each other, on average over the data distribution?
- "Bias": how much does the average of all those fitted functions $\{f_{\beta}\}_{1:k}$ deviate from the "true" function over the data distribution?

Scott Fortmann-Roe
http://scott.fortmann-roe.com/docs/BiasVariance.html

Drawing Multiple Training Datasets

Consider a linear "true function" $f^*(x) = x + 2$ that generates labels y_i for training data with uniform measurement noise in [-1, +1].

Let us draw $k \to \infty$ training sets of n = 6 samples each, drawn from P(X,Y).

Different Constant Fits

What if the hypothesis class was the constant function class $f_{\beta}(x) = \beta_0$

Different Constant Fits

What if the hypothesis class was the constant function class $f_{\beta}(x) = \beta_0$

Almost identical fits "low variance"

Average fit far from the true function

"high bias"

Theoretical result: Generalization MSE ≈ "Bias" + "Variance"

Different 10th Degree Curve Fits

What if the hypothesis class was instead a 10^{th} degree monomial $f_{\beta}(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \cdots + \beta_{10} x^{10}$

Different 10th Degree Fits

What if the hypothesis class was instead a 10^{th} degree monomial $f_{\beta}(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \cdots + \beta_{10} x^{10}$

Very different fits "high variance"

Average fit close to the true function

"low bias"

Theoretical result: Generalization MSE ≈ ``Bias'' + ``Variance''

Different *Linear* Fits

Say, our hypothesis class is a line:

$$f_{\beta}(x) = \beta_0 + \beta_1 x_1$$

Fit by minimizing MSE with any optimizer. What would the resulting line look like?

Slightly different fits

Different *Linear* Fits

Say, our hypothesis class is a line:

$$f_{\beta}(x) = \beta_0 + \beta_1 x_1$$

Fit by minimizing MSE with any optimizer. What would the resulting line look like?

Quite similar fits "low variance"

Average fit close to the true function

"low bias"

Theoretical result: Generalization MSE ≈ ``Bias'' + ``Variance''

Bias-Variance Tradeoff

- Overfitting (high variance)
 - High capacity model capable of fitting complex data
 - Insufficient data to constrain it

Underfitting (high bias)

- Low capacity model that can only fit simple data
- Sufficient data but poor fit

Under/Over -Fitting & Model Capacity

Expanding the hypothesis class usually leads to higher variance, lower bias. (e.g. when adding new dimensions to the feature map)

Combating Underfitting & Overfitting

How to Fix Underfitting/Overfitting?

Three main options:

Choose the right model family (not too complex, not too simple)

• Improve the training dataset (i.e., collect more data)

Choose the right loss function

Bias-Variance Tradeoff For Linear Regression

- ullet For linear regression with feature maps, increasing feature dimension d'...
 - Tends to increase capacity
 - Tends to decrease bias but increase variance
- Need to construct $oldsymbol{\phi}$ to balance tradeoff between bias and variance
 - Rule of thumb: You will need $n \approx d' \log d'$ samples, if your ${\pmb \phi}$ has dimension d'

• A large fraction of data science work is data cleaning + feature engineering. We will see some common rules of thumb for feature engineering soon.

How to Fix Underfitting/Overfitting?

Three main options:

Choose the right model family (not too complex, not too simple)

• Improve the training dataset (i.e., collect more data)

Choose the right loss function

The Effect of Dataset Size

Increasing number of examples n in the data...

- Tends to keep bias fixed and decrease variance
- Tends to decrease generalization MSE

The Effect of Dataset Size

As dataset size grows:

- Generalization error (≈ ``Bias" + ``Variance") is dominated by bias.
- To reduce error, we select high capacity, low bias models.

Larger datasets have room for expanded hypothesis classes.

How to Fix Underfitting/Overfitting?

Three main options:

• Choose the right model family (not too complex, not too simple)

• Improve the training dataset (i.e., collect more data)

Choose the right loss function

Regularization: Modifying the Loss function

 Intuition: We only asked the ML algorithm to fit the training data as well as possible, so it produced overly complex fits → "Overfitting"

$$L(\beta; Z) = \text{Train MSE}$$

• **Solution:** we will ask the model to produce a "simple fit" to the training data.

$$L(\beta; Z) = \text{Train MSE} + \text{Fit complexity}$$

How to measure this?

Recall: Mean Squared Error Loss

Mean squared error loss for linear regression:

$$L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^{\top} x_i)^2$$

Linear Regression with L_2 Regularization

• Original loss + regularization:

One measure of fit complexity

$$L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^{\mathsf{T}} x_i)^2 + \lambda \cdot ||\beta||_2^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^{\mathsf{T}} x_i)^2 + \lambda \sum_{j=1}^{d} \beta_j^2$$

• λ is a **hyperparameter** that must be tuned (satisfies $\lambda \geq 0$)

Intuition on L_2 Regularization

Why does it help?

- Encourages "simple" functions
 - This is what L_2 regularization does: $\sum_{j=1}^d \beta_j^2 = \|\beta\|_2^2 = \|\beta 0\|_2^2$
 - Pulls coefficients towards 0
 - As $\lambda \to \infty$, it forces $\beta = 0$

Intuition on $oldsymbol{L_2}$ Regularization: Gaussian Priors

L2 regularized linear regression amounts to preferring smaller weights according to a Gaussian pdf.

So the larger value is only selected for the model if it is *much* better for the data fit

Q: What happens to the shape of this plot if the value of λ increases?

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^{\mathsf{T}} x_i)^2 + \lambda \cdot ||\beta||_2^2$$

Intuition on L_2 Regularization: Gaussian Priors

With L2 regularization

Intuition on L_2 Regularization

- Encourages "simple" functions
- Encouraging β_j 's to have small magnitude also induces a smaller-capacity hypothesis class.
- Use haperparameter
 \(\lambda \) to tune bias-variance tradeoff

Bias-Variance Tradeoff for Regularization

Bias-Variance Tradeoff for Regularization

General Regularization Strategy

Original loss + regularization:

$$L_{\text{new}}(\beta; Z) = L(\beta; Z) + \lambda \cdot R(\beta)$$

- Offers a way to express a preference for "simpler" functions in family
- Typically, regularization is independent of data

Q: For the new parameters $\beta_{new}^* = \min_{\beta} L_{new}$, would their corresponding value of $L(\beta; Z)$ be smaller or larger than before regularization?

Hyperparameter Tuning & Model Selection

Hyperparameter Tuning

- λ is a **hyperparameter** that must be tuned (satisfies $\lambda \geq 0$)
- Naïve strategy: Try a few different candidates λ_t and choose the one that minimizes the test loss
- Problem: We may overfit the test set!
 - Major problem if we have more hyperparameters
- Solution: A new subset of data just for selecting hyperparameters

Train/Val/Test Split for Model Selection

- Goal: Choose best hyperparameter *λ*
 - Can also compare different model families, feature maps, etc.
- Solution: Optimize
 \(\lambda \) on a held-out validation data
 - Rule of thumb: 60/20/20 split (usually shuffle before splitting)

Given data Z

Training data Z_{train}

Val data $Z_{
m val}$

Test data Z_{test}

Basic Cross Validation Algorithm

• Step 1: Split Z into Z_{train} , Z_{val} , and Z_{test}

Training data Z_{train}

Val data $Z_{\rm val}$ Test data $Z_{\rm test}$

- Step 2: For $t \in \{1, ..., h\}$ hyperparameter choices:
 - Step 2a: Run linear regression with Z_{train} and λ_t to obtain $\hat{\beta}(Z_{\text{train}}, \lambda_t)$
 - Step 2b: Evaluate validation loss $L_{\text{val}}^t = L(\hat{\beta}(Z_{\text{train}}, \lambda_t); Z_{\text{val}})$
- Step 3: Use best λ_t
 - Choose $t' = \arg\min_{t} L_{\text{val}}^{t}$ with lowest validation loss
 - Re-run linear regression with Z_{train} and $\lambda_{t'}$ to obtain $\hat{\beta}(Z_{\text{train}}, \lambda_{t'})$

Cross Validation Hygiene

- The moment that test data is used for hyperparameter selection or to iterate on ML design choices, it should be treated as "contaminated".
- Remember: Performance on contaminated test data is an overly *optimistic* estimate of the "true" test performance.

Alternative Cross-Validation Algorithms

- If Z is small, then splitting it can reduce performance
 - Can use $Z_{\text{train}} \cup Z_{\text{val}}$ in Step 3
- Alternative more thorough CV strategy: "k-fold" cross-validation
 - Split Z into Z_{train} and Z_{test}
 - Split Z_{train} into k disjoint sets Z_{val}^s , and let $Z_{\text{train}}^s = \bigcup_{s' \neq s} Z_{\text{val}}^{s'}$
 - Use λ' that works best on average across $s \in \{1, ..., k\}$ with Z_{train}^s
 - Chooses better λ' than above strategy

Example: k = 3-Fold Cross Validation

Training data $Z^3_{ m train}$		Val data $Z_{ m val}^3$	Test data $Z_{ m test}$
Train data $Z_{ m val}^2$	Val data $Z_{ m val}^2$	Train data $Z_{ m val}^2$	Test data $Z_{ m test}$
Val data $Z_{ m val}^1$	Train data $Z^1_{ m train}$		Test data $Z_{ m test}$
Train data $Z_{ m train}$			Test data $Z_{ m test}$

Compute vs. accuracy tradeoff: As $k \to N$, model selection becomes more accurate, but algorithm becomes more computationally expensive

k-Fold Cross-Validation

- Compute vs. accuracy tradeoff
 - As $k \rightarrow N$, the model becomes more accurate
 - But algorithm becomes more computationally expensive

Note: What Exactly Are "Hyperparameters"?

- Cross-Validation is a general, systematic trial-and-error procedure for selecting hyperparameters.
- Other hyperparameters too, not *just* the regularization λ .
- "Hyperparameters" are ML system properties / design choices that are not directly set in the optimization problem.

$$\hat{\beta}(Z) = \underset{\beta}{\operatorname{arg min}} L(\beta; Z)$$

- Examples of other hyperparameters you could set with cross-validation:
 - choice of feature maps in linear regression.
 - data selection and other preprocessing procedures (coming up soon).
 - linear regression versus another ML algorithm, altogether.

Today's Lecture

Assessing, Understanding, and Combating underfitting/overfitting:

- Bias and Variance of hypothesis classes
- Regularized linear regression
- Cross-Validation

Next Lecture

• How to find $\hat{\beta}(Z) = \arg\min_{\beta} L(\beta; Z)$