Announcements

* HW 0 due Wed 8 pm; HW 1 (on linear regression) will be released that evening.
 Class currently full (181 enrolled, 39 approvals). Limited movement expected.

e Edstem to contact the course team, which is likely to have a fast response. But if
you want to keep your message private to Tas:

* Always email both instructors together.
* Start subject line with “[CIS 4190/5190 Fall 2024]".



Lecture 3: Linear Regression (Part 2)

CIS 4190/5190
Fall 2024



Recap: Linear Regression

* Input: Dataset Z = {(x{, V1), ..., (x,, V) }
* Compute

A . 1
p(Z) = arg min 3L, (v = B 1x)®
ER

* Output: [, (x) = B(2)Tx
* Discuss algorithms for computing the minimal [ next lecture



Loss Minimization View of ML

* To design an ML algorithm:
* Choose model family F = {f[;}ﬁ (e.g., linear functions)

 Choose loss function L(f3; Z) (e.g., MSE loss)

* Resulting algorithm:

B(Z) = argmin L(S; Z)
B



Recap: Overfitting vs. Underfitting

* Overfitting * Underfitting
* Fit the training data Z well * Fit the training data Z poorly
* Fit new held out data (x, y) poorly  (Necessarily fit new held out data

(x, y) poorly)




Today’s Lecture

Assessing, Understanding, and Combating underfitting/overfitting:
e Bias and Variance of hypothesis classes

e Regularized linear regression

* Cross-Validation



Assessing Underfitting & Overfitting



Training/Test Split

* Issue: How to detect overfitting vs. underfitting?

e Solution: Use held-out test data to estimate loss on new data
* Typically, randomly shuffle data first
samples

Given data Z

(xn' yn) v

(x1,¥1)
(x2,¥2)

-

Training data Ziy,in Test data Ziegt




Training/Test Split Protocol in ML

* Step 1: Split Z into Z;,i, and Zaqt

Training data Zirain

Test data Zieqt

* Step 2: Run linear regression with Z,,..;,, to obtain

* Step 3: Evaluate
* Training loss: Liy,in = L([;’ (Ztrain); Ztrain)

IB (Ztrain)

» Test (or generalization) loss: Liest = L((Zi1ain); Ziest), (plus other

performance metrics besides the loss function)




Training/Test Split Protocol in ML

* Overfitting * Underfitting
* Fit the training data Z well * Fit the training data Z poorly
* Fit new test data (x, y) poorly * (Necessarily fit new test data

(x, y) poorly)




Training/Test Split Protocol in ML

* Overfitting * Underfitting
® Lirain 1S small * Fit the training data Z poorly
* Liest iS large * (Necessarily fit new test data
(x,v) poorly)
y
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Training/Test Split Protocol in ML

* Overfitting * Underfitting
® Lirain 1S small * Lirain IS large
* Liest IS large * Liest IS large
A
I f (x)
¢ / \ .
\
./




Understanding Underfitting & Overfitting

With Bias & Variance



Underfitting/Overfitting <=> Bias/Variance

y I

,I//fﬁ(x)

We will understand these phenomena now through two properties of a
model family, “bias”, and “variance”.

Language for thinking about the ways in which model families can be bad.



Definitions: “Bias” and “Variance”

Low Variance High Variance

Imagine you draw k training datasets from
the same probability distribution over data,

and each time fit your model {fﬁ}rk to it.

* “Variance”: how much do those fitted
functions {fﬁ}llkdiffer amongst each

other, on average over the data
distribution?

e “Bias” : how much does the average of all
those fitted functions {fﬁ}l_kdeviate from

the “true” function over the data
distribution?

High Bias

Low Bias

Scott Fortmann-Roe
http://scott.fortmann-roe.com/docs/BiasVariance.html



http://scott.fortmann-roe.com/docs/BiasVariance.html

Drawing Multiple Training Datasets

Consider a linear “true function” f*(x) = x + 2 that generates labels
v; for training data with uniform measurement noise in [-1, +1].

Let us draw k — oo training sets of n = 6 samples each, drawn from
P(X,Y).
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Different Constant Fits

What if the hypothesis class was the constant function class

fﬁ(x)—ﬁo
8 8 8 8
7 7 7 7
6 6 6 6
5 5 5 5
> 4 > 4 > 4 > 4
3 3 3 3
2 2 2 2
1 1 1 1
0 0 0 0
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5



Different Constant Fits

What if the hypothesis class was the constant function class
fﬁ(x) = Bo
function

lll . ”
ow variance “high bias”

Theoretical result: Generalization MSE = “Bias’’ + ““Variance”

Average fit far from the true

Almost identical fits
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Different 10t Degree Curve Fits

What if the hypothesis class was instead a 10t degree monomial

fe(x) = Bo + B1x + Box? + B3x® + Byx* + -+ Brox™°
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Different 10" Degree Fits

What if the hypothesis class was instead a 10" degree monomial
fﬂ(x) = [y + f1x + ,Bzxz + ﬁ3x3 + Bux* + ”‘,3109510

8
/ A :
. . YN
Very different fits : .-1'2"915’ Average fit clos-e to the true
“high variance” SH g function
: ’.‘.’(’*V’ “low bias”
»
1
0

l‘ o 1 2 3 4 s l‘
X

Theoretical result: Generalization MSE = “Bias’’ + “Variance”



Different Linear Fits

Say, our hypothesis class is a line:
fg(x) = By + P1x4

Fit by minimizing MSE with any optimizer. What would the resulting
line look like?

8 8 8 8
7 7 7 7
6 6 6 6
5 5 5 5
> 4 > 4 > 4 > 4
3 3 3 3
2 2 2 2
1 1 1 1
0 0 0 0
o 1 2 3 4 5 o 1 2 3 4 5 o 1 2 3 4 5 0o 1 2 3 4 5
X X X X

Slightly different fits



Different Linear Fits

Say, our hypothesis class is a line:

fg(x) = By + P1x4
Fit by minimizing MSE with any optimizer. What would the resulting
line look like?

Average fit close to the true

Quite similar fits _
function

lll 4 V4
OW Vvariance ,
“low bias”

T T
X

Theoretical result: Generalization MSE = “Bias’’ + “Variance”
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Bias-Variance Tradeoff

» Overfitting (high variance) * Underfitting (high bias)
* High capacity model capable of * Low capacity model that can only
fitting complex data fit simple data
* Insufficient data to constrain it  Sufficient data but poor fit
Q@
Y
s
s
|
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Under/Over -Fitting & Model Capacity

Expanding the hypothesis class usually leads to higher variance, lower bias.
(e.g. when adding new dimensions to the feature map)

 Underfitting Ideal Overfitting
High bias High
o variance
7
o
— ‘_—————””””””’,,, Test loss
e » Training loss

Capacity

Slide by Padhraic Smyth, UCIrvine



Combating Underfitting & Overfitting



How to Fix Underfitting/Overfitting?

Three main options:

* Choose the right model family (not too complex, not too simple)



Bias-Variance Tradeoff For Linear Regression

* For linear regression with feature maps, increasing feature dimension d’...
* Tends to increase capacity
* Tends to decrease bias but increase variance

* Need to construct ¢ to balance tradeoff between bias and variance

* Rule of thumb: You will need n =~ d'logd’ samples, if your ¢ has
dimension d’

* A large fraction of data science work is data cleaning + feature engineering.
We will see some common rules of thumb for feature engineering soon.



How to Fix Underfitting/Overfitting?

Three main options:

* Improve the training dataset (i.e., collect more data)



The Effect of Dataset Size

Increasing number of examples n in the data...
* Tends to keep bias fixed and decrease variance
* Tends to decrease generalization MSE




The Effect of Dataset Size

As dataset size grows:

e Generalization error (= “'Bias’’ + “'Variance"') is dominated by
bias.

 To reduce error, we select high capacity, low bias models.

Larger datasets have room for expanded hypothesis classes.



How to Fix Underfitting/Overfitting?

Three main options:

* Choose the right loss function



Regularization: Modifying the Loss function

* Intuition: We only asked the ML algorithm to
fit the training data as well as possible,soit ¥y |
produced overly complex fits = “Overfitting”

L(B;Z) = Train MSE

* Solution: we will ask the model to produce a
“simple fit” to the training data.

L(B;Z) = Train MSE + Fit complexity

How to measure this?



Recall: Mean Squared Error Loss

 Mean squared error loss for linear regression:

1 n
LB Z) =~ ) (i = BTx)’
=1



Linear Regression with L, Regularization

One measure of fit complexity

|

1 n
LBZ) == > (=BT + - B3

Ll d
- T, 32 >
= EZ(yi — B x)" + /12 B;
i=1 j=1

* 1 is a hyperparameter that must be tuned (satisfies 1 = 0)

* Original loss + regularization:



Intuition on L, Regularization

Why does it help?

* Encourages “simple” functions
* This is what L, regularization does: Z?zlﬁjz =1B1I5 = I8 — 0I5
* Pulls coefficients towards O
* As1 — oo, itforcesf =0



Intuition on L, Regularization: Gaussian Priors

L2 regularized linear regression amounts to preferring smaller weights
according to a Gaussian pdf.

P(f})

L2 regularization says: before looking at the data fit term, it likes
this value twice as much as this one, for f;.

0.2
So the larger value is only selected for the
model if it is *much* better for the data fit
0.1 term (MSE)

Q: What happens to the shape of this plot if
the value of A increases?

0 &
Parameter value for any f3; gz(% =B x)* + A-1IBII




Intuition on L, Regularization: Gaussian Priors

Before regularization With L2 regularization

oy

0.1 0.1

+0.08 #0.08

0.06 0.06
0.04 0.04

0.02

(uniform preference b o
for any parameters) =

0.02




Intuition on L, Regularization

* Encourages “simple” functions

* Encouraging f;’s to have small magnitude also induces a smaller-
capacity hypothesis class.

e Use haperparameter / to tune bias-variance tradeoff



Bias-Variance Tradeoff for Regularization

+ Underfitting Ideal Overfitting

Loss

/ Test loss

— » Training loss

Capacity



Bias-Variance Tradeoff for Regularization

+ Underfitting Ideal Overfitting

Loss

/ Test loss

— » Training loss




General Regularization Strategy

* Original loss + regularization:

Loew(B;Z) = L(B;Z) + A -R([)

* Offers a way to express a preference for “simpler” functions in family
* Typically, regularization is independent of data

Q: For the new parameters (,,,, = min L,,,,,, would their corresponding

value of L(3; Z) be smaller or larger than before regularization?




Hyperparameter Tuning
& Model Selection



Hyperparameter Tuning

1 is a hyperparameter that must be tuned (satisfies 1 = 0)

* Naive strategy: Try a few different candidates /4; and choose the one
that minimizes the test loss

* Problem: We may overfit the test set!
* Major problem if we have more hyperparameters

e Solution: A new subset of data just for selecting hyperparameters



Train/Val/Test Split for Model Selection

* Goal: Choose best hyperparameter A
e Can also compare different model families, feature maps, etc.

 Solution: Optimize /1 on a held-out validation data

* Rule of thumb: 60/20/20 split (usually shuffle before splitting)

Given data Z

>

Training data Zirain

Val data Z,, 4

Test data Ziegt




Basic Cross Validation Algorithm
* Step 1: Split Z into Z;4in, Zvyal, and Ziast

Training data Zirain

Val data Z, 4

Test data Ziest

e Step 2: For t € {1, ..., h} hyperparameter choices:
e Step 2a: Run linear regression with Z;.;,, and A, to obtain f(Z14in, A¢)

= L(ﬁ (ZtrainJ At); Zval)

* Step 2b: Evaluate validation loss L

* Step 3: Use best A,

t
val

e Choose t’ = arg min, L, with lowest validation loss

* Re-run linear regression with Z,,.,;,, and 1,s to obtain 5 (Z;,.ip, A,7)




Cross Validation Hygiene

Training data Zirain Val data Zy,) || Test data Zest

| |

For training parameters For selecting For evaluation
hyperparameters only

* The moment that test data is used for hyperparameter selection or to iterate
on ML design choices, it should be treated as “contaminated”.

* Remember: Performance on contaminated test data is an overly optimistic
estimate of the “true” test performance.



Alternative Cross-Validation Algorithms

* If Z is small, then splitting it can reduce performance
* Canuse Zi ,in U Z, 4 in Step 3

 Alternative more thorough CV strategy: “k-fold” cross-validation
* Split Zinto Z.,i, and Ziast
* Split Z iy into k disjoint sets Z;;, and let Z; i, = Ugr.s Zoa
« Use A’ that works best on average across s € {1, ..., k} with Z°

train
* Chooses better A’ than above strategy



Example: k = 3-Fold Cross Validation

Training data Ztraln Val data Z‘?,’al

Test data Ziegt

Train data Zval Val data Zval Train data Zval

Test data Ziegt

Val data Z; Train data Z{ 4,

Test data Ziest

Train data Zirain

Test data Ziegt

Compute vs. accuracy tradeoff: As k - N, model selection becomes more
accurate, but algorithm becomes more computationally expensive




k-Fold Cross-Validation

 Compute vs. accuracy tradeoff
e Ask > N, the model becomes more accurate
e But algorithm becomes more computationally expensive



Note: What Exactly Are “Hyperparameters”?

e Cross-Validation is a general, systematic trial-and-error procedure for
selecting hyperparameters.

* Other hyperparameters too, not just the regularization A.

* “Hyperparameters” are ML system properties / design choices that are not
directly set in the optimization problem.
B(Z) = argﬁmin L(B;Z)
* Examples of other hyperparameters you could set with cross-validation:
* choice of feature maps in linear regression.
» data selection and other preprocessing procedures (coming up soon).
* linear regression versus another ML algorithm, altogether.



Today’s Lecture

Assessing, Understanding, and Combating underfitting/overfitting:
e Bias and Variance of hypothesis classes

e Regularized linear regression

* Cross-Validation



Next Lecture

* How to find (Z) = arg ming L(f; Z)
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