Announcements

- **HW 0** due Wed 8 pm; **HW 1** (on linear regression) will be released that evening.
- Class currently full (181 enrolled, 39 approvals). Limited movement expected.
- **Edstem** to contact the course team, which is likely to have a fast response. But if you want to keep your message private to Tas:
	- **Always** email both instructors together.
	- Start subject line with **"[CIS 4190/5190 Fall 2024]".**

Lecture 3: Linear Regression (Part 2)

CIS 4190/5190 Fall 2024

Recap: Linear Regression

- **Input:** Dataset $Z = \{(x_1, y_1), ..., (x_n, y_n)\}\$
- Compute

$$
\hat{\beta}(Z) = \underset{\beta \in \mathbb{R}^d}{\arg \min} \frac{1}{n} \sum_{i=1}^n (y_i - \beta^\top x_i)^2
$$

- Output: $f_{\widehat{\beta}(Z)}(x) = \widehat{\beta}(Z)^{\top}x$
- Discuss algorithms for computing the minimal β next lecture

Loss Minimization View of ML

- **To design an ML algorithm:**
	- Choose model family $F=\left\{f_{\beta}\right\}_{\beta}$ (e.g., linear functions)
	- Choose loss function $L(\beta; Z)$ (e.g., MSE loss)
- **Resulting algorithm:**

$$
\hat{\beta}(Z) = \argmin_{\beta} L(\beta; Z)
$$

Recap: Overfitting vs. Underfitting

• **Overfitting**

- Fit the **training data** Z well
- Fit new **held out data** (x, y) poorly

• **Underfitting**

- Fit the **training data** Z poorly
- (Necessarily fit new **held out data** (x, y) poorly)

Today's Lecture

Assessing, Understanding, and Combating underfitting/overfitting:

- Bias and Variance of hypothesis classes
- Regularized linear regression
- Cross-Validation

Assessing Underfitting & Overfitting

Training/Test Split

- **Issue:** How to detect overfitting vs. underfitting?
- **Solution:** Use **held-out test data** to estimate loss on new data
	- Typically, randomly shuffle data first

• **Step 1:** Split Z into Z_{train} and Z_{test}

Training data Z_{train} Test data Z_{test}

- **Step 2:** Run linear regression with Z_{train} to obtain $\hat{\beta}(Z_{train})$
- **Step 3:** Evaluate
	- **Training loss:** $L_{\text{train}} = L(\hat{\beta}(Z_{\text{train}}); Z_{\text{train}})$
	- **Test (or generalization) loss:** $L_{\text{test}} = L(\hat{\beta}(Z_{\text{train}}); Z_{\text{test}})$, (plus other performance metrics besides the loss function)

• **Overfitting**

- Fit the **training data** Z well
- Fit new **test data** (x, y) poorly

• **Underfitting**

- Fit the **training data** Z poorly
- (Necessarily fit new **test data** (x, y) poorly)

 $\mathcal X$

• **Overfitting**

- L_{train} is small
- L_{test} is large

• **Underfitting**

- Fit the **training data** Z poorly
- (Necessarily fit new **test data** (x, y) poorly)

 χ

- **Overfitting**
	- L_{train} is small
	- L_{test} is large

- **Underfitting**
	- L_{train} is large
	- L_{test} is large

Understanding Underfitting & Overfitting

With Bias & Variance

Underfitting/Overfitting <=> Bias/Variance

We will understand these phenomena now through two properties of a model family, "bias", and "variance".

Language for thinking about the ways in which model families can be bad.

Definitions: "Bias" and "Variance"

Imagine you draw k training datasets from the same probability distribution over data, and each time fit your model $\left\{f_\beta\right\}_{1:k}$ to it.

- "Variance": how much do those fitted functions $\{f_{\beta}\}_{1:k}$ differ amongst each other, on average over the data distribution?
- "Bias" : how much does the average of all those fitted functions $\{f_\beta\}_{1:k}$ deviate from the "true" function over the data distribution?

Drawing Multiple Training Datasets

Consider a linear "true function" $f^*(x) = x + 2$ that generates labels y_i for training data with uniform measurement noise in [-1, +1].

Let us draw $k \to \infty$ training sets of $n = 6$ samples each, drawn from $P(X, Y)$.

Different *Constant* Fits

What if the hypothesis class was the constant function class $f_{\beta}(x) = \beta_0$

Different *Constant* Fits

What if the hypothesis class was the constant function class $f_{\beta}(x) = \beta_0$

Theoretical result: Generalization MSE \approx ``Bias'' + ``Variance''

Different 10th Degree Curve Fits

What if the hypothesis class was instead a 10^{th} degree monomial $f_{\beta}(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \cdots + \beta_{10} x^{10}$

Different *10th Degree* Fits

What if the hypothesis class was instead a 10^{th} degree monomial $f_{\beta}(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \cdots + \beta_{10} x^{10}$

Theoretical result: Generalization MSE \approx ``Bias'' + ``Variance''

Different *Linear* Fits

Say, our hypothesis class is a line:

$$
f_{\beta}(x) = \beta_0 + \beta_1 x_1
$$

Fit by minimizing MSE with any optimizer. What would the resulting line look like?

Slightly different fits

Different *Linear* Fits

Say, our hypothesis class is a line:

$$
f_{\beta}(x) = \beta_0 + \beta_1 x_1
$$

Fit by minimizing MSE with any optimizer. What would the resulting line look like?

Theoretical result: Generalization MSE \approx ``Bias'' + ``Variance''

Bias-Variance Tradeoff

• **Overfitting (high variance)**

- High capacity model capable of fitting complex data
- Insufficient data to constrain it

• **Underfitting (high bias)**

- Low capacity model that can only fit simple data
- Sufficient data but poor fit

Under/Over -Fitting & Model Capacity

Expanding the hypothesis class usually leads to higher variance, lower bias.

(e.g. when adding new dimensions to the feature map)

Capacity

Combating Underfitting & Overfitting

How to Fix Underfitting/Overfitting?

Three main options:

- Choose the right model family (not too complex, not too simple)
- Improve the training dataset (i.e., collect more data)
- Choose the right loss function

Bias-Variance Tradeoff For Linear Regression

- For linear regression with feature maps, increasing feature dimension $d'...$
	- Tends to **increase capacity**
	- Tends to **decrease bias** but **increase variance**
- Need to construct ϕ to balance tradeoff between bias and variance
	- **Rule of thumb:** You will need $n \approx d' \log d'$ samples, if your ϕ has dimension d'
- A large fraction of data science work is data cleaning + feature engineering. We will see some common rules of thumb for feature engineering soon.

How to Fix Underfitting/Overfitting?

Three main options:

- Choose the right model family (not too complex, not too simple)
- Improve the training dataset (i.e., collect more data)
- Choose the right loss function

The Effect of Dataset Size

Increasing number of examples n in the data...

- Tends to **keep bias fixed** and **decrease variance**
- Tends to **decrease generalization MSE**

The Effect of Dataset Size

As dataset size grows:

- Generalization error $(\approx$ "Bias" + "Variance") is dominated by bias.
- To reduce error, we select high capacity, low bias models.

Larger datasets have room for expanded hypothesis classes.

How to Fix Underfitting/Overfitting?

Three main options:

- Choose the right model family (not too complex, not too simple)
- Improve the training dataset (i.e., collect more data)
- Choose the right loss function

Regularization: Modifying the Loss function

• **Intuition:** We *only* asked the ML algorithm to fit the training data as well as possible, so it produced overly complex fits \rightarrow "Overfitting"

 $L(\beta; Z)$ = Train MSE

• **Solution:** we will ask the model to produce a "*simple fit*" to the training data.

 $L(\beta; Z)$ = Train MSE + Fit complexity

How to measure this?

Recall: Mean Squared Error Loss

• Mean squared error loss for linear regression:

$$
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^\top x_i)^2
$$

Linear Regression with L_2 Regularization

• **Original loss + regularization:**

One measure of fit complexity

$$
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^T x_i)^2 + \lambda \cdot ||\beta||_2^2
$$

=
$$
\frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^T x_i)^2 + \lambda \sum_{j=1}^{d} \beta_j^2
$$

• λ is a **hyperparameter** that must be tuned (satisfies $\lambda \geq 0$)

Intuition on L_2 Regularization

Why does it help?

- Encourages "simple" functions
	- This is what $\bm{L_2}$ regularization does: $\sum_{j=1}^d \beta_j^2 = \|\beta\|_2^2 = \|\beta 0\|_2^2$
	- Pulls coefficients towards 0
	- As $\lambda \to \infty$, it forces $\beta = 0$

Intuition on L_2 Regularization: Gaussian Priors

L2 regularized linear regression amounts to preferring smaller weights according to a Gaussian pdf.

Intuition on L_2 Regularization: Gaussian Priors

Before regularization Mith L2 regularization

Intuition on L_2 Regularization

- Encourages "simple" functions
- Encouraging β_j 's to have small magnitude also induces a smallercapacity hypothesis class.
- Use haperparameter λ to tune bias-variance tradeoff

Bias-Variance Tradeoff for Regularization

Capacity

Bias-Variance Tradeoff for Regularization

General Regularization Strategy

• **Original loss + regularization:**

$$
L_{\text{new}}(\beta; Z) = L(\beta; Z) + \lambda \cdot R(\beta)
$$

- Offers a way to express a preference for "simpler" functions in family
- Typically, regularization is independent of data

Q: For the new parameters $\beta_{new}^* = \min_{\rho}$ β L_{new} , would their corresponding value of $L(\beta; Z)$ be smaller or larger than before regularization?

Hyperparameter Tuning & Model Selection

Hyperparameter Tuning

- λ is a **hyperparameter** that must be tuned (satisfies $\lambda \geq 0$)
- **Naïve strategy:** Try a few different candidates λ_t and choose the one that minimizes the test loss
- **Problem:** We may overfit the test set!
	- Major problem if we have more hyperparameters
- **Solution:** A new subset of data just for selecting hyperparameters

Train/Val/Test Split for Model Selection

- **Goal:** Choose best hyperparameter λ
	- Can also compare different model families, feature maps, etc.
- **Solution:** Optimize λ on a **held-out validation data**
	- **Rule of thumb:** 60/20/20 split (usually shuffle before splitting)

Basic Cross Validation Algorithm

• **Step 1:** Split Z into Z_{train} , Z_{val} , and Z_{test}

- **Step 2:** For $t \in \{1, ..., h\}$ hyperparameter choices:
	- Step 2a: Run linear regression with Z_{train} and λ_t to obtain $\hat{\beta}(Z_{\text{train}}, \lambda_t)$
	- Step 2b: Evaluate validation loss $L_{\text{val}}^t = L(\hat{\beta}(Z_{\text{train}}, \lambda_t); Z_{\text{val}})$
- **Step 3:** Use best λ_t
	- Choose $t' = \arg min_t L_{val}^t$ with lowest validation loss
	- Re-run linear regression with Z_{train} and λ_t , to obtain $\hat{\beta}(Z_{\text{train}}, \lambda_t)$

Cross Validation Hygiene

- The moment that test data is used for hyperparameter selection or to iterate on ML design choices, it should be treated as "contaminated".
- Remember: Performance on contaminated test data is an overly *optimistic* estimate of the "true" test performance.

Alternative Cross-Validation Algorithms

- If Z is small, then splitting it can reduce performance
	- Can use $Z_{\text{train}} \cup Z_{\text{val}}$ in Step 3
- **Alternative more thorough CV strategy:** "k-fold" cross-validation
	- Split Z into Z_{train} and Z_{test}
	- Split Z_{train} into k disjoint sets Z_{val}^s , and let $Z_{\text{train}}^s = \bigcup_{s' \neq s} Z_{\text{val}}^{s'}$
	- Use λ' that works best on average across $s \in \{1, ..., k\}$ with Z_{train}^s
	- Chooses better λ' than above strategy

Example: $k = 3$ -Fold Cross Validation

Compute vs. accuracy tradeoff: As $k \rightarrow N$, model selection becomes more accurate, but algorithm becomes more computationally expensive

-Fold Cross-Validation

• **Compute vs. accuracy tradeoff**

- As $k \rightarrow N$, the model becomes more accurate
- But algorithm becomes more computationally expensive

Note: What Exactly Are "Hyperparameters"?

- Cross-Validation is a general, systematic trial-and-error procedure for selecting hyperparameters.
- Other hyperparameters too, not *just* the regularization λ .
- "Hyperparameters" are ML system properties / design choices that are not directly set in the optimization problem.

 $\hat{\beta}(Z) = \arg \min L(\beta, Z)$ β

- Examples of other hyperparameters you could set with cross-validation:
	- choice of feature maps in linear regression.
	- data selection and other preprocessing procedures (coming up soon).
	- linear regression versus another ML algorithm, altogether.

Today's Lecture

Assessing, Understanding, and Combating underfitting/overfitting:

- Bias and Variance of hypothesis classes
- Regularized linear regression
- Cross-Validation

Next Lecture

• How to find $\hat{\beta}(Z) = \arg \min_{\beta} L(\beta; Z)$