
Announcements
• HW 0 due today 8 pm

• HW 1 (on linear regression) will be released this afternoon.

• Weekly quizzes: first quiz will be released today. 1 week to complete.
• Quiz on Gradescope. Unlimited attempts before the deadline.

• Pass a quiz: if you score at least 50% of the points.

• Fail a quiz: no attempt or score less than 50% of the points.

• All quizzes together account for 10% of the class grade.

• You can miss/fail up to 3 quizzes over the whole semester with no penalty.

• E.g., if we have 14 quizzes in total, if you pass 11, you get all 10% towards your class grade.

• Office hour starting tomorrow.
• Time and location (in-person & remote) posted on course website & canvas.

Lecture 4: Linear Regression (Part 3)

CIS 4190/5190

Fall 2024

Last Lecture

• Train/Test Split Protocol for Measuring Underfitting / Overfitting

• Bias and variance as functions of a model class
• Tuning them by selecting hypothesis spaces / feature maps

• Tuning them by modifying the loss function

• 𝐿new 𝛽; 𝑍 = 𝐿 𝛽; 𝑍 + 𝜆 ⋅ 𝑅 𝛽

• Train/Val/Test Split Protocol for Hyperparameter tuning.
• K-fold cross validation for small datasets.

Last Lecture

• Original MSE loss + regularization:

𝐿 𝛽; 𝑍 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 + 𝜆 ⋅ 𝛽 2

2

• With intercept term (𝜙 𝑥 = 1 𝑥1 … 𝑥𝑑
⊤), no penalty on 𝛽1:

𝐿 𝛽; 𝑍 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 + 𝜆 ෍

𝑗=2

𝑑

𝛽𝑗
2

Last Lecture

Lo
ss

Capacity
1

𝜆

Training loss

Test loss

Ideal OverfittingUnderfitting

Today

• Minimizing the MSE Loss
• Closed-form solution

• Stochastic gradient descent

Minimizing the MSE Loss

• Recall that linear regression minimizes the loss

𝐿(𝛽; 𝑍) =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2

• Closed-form solution: Compute using matrix operations

• Optimization-based solution: Search over candidate 𝛽

Vectorizing Linear Regression

Vectorizing Linear Regression

𝑓𝛽 𝑥1

⋮
𝑓𝛽 𝑥𝑛

=
𝛽⊤𝑥1

⋮
𝛽⊤𝑥𝑛

=

෍

𝑗=1

𝑑

𝛽𝑗𝑥1,𝑗

⋮

෍

𝑗=1

𝑑

𝛽𝑗𝑥𝑛,𝑗

=

𝑥1,1 ⋯ 𝑥1,𝑑

⋮ ⋱ ⋮
𝑥𝑛,1 ⋯ 𝑥𝑛,𝑑

𝛽1

⋮
𝛽𝑑

= 𝑋𝛽

Vectorizing Linear Regression

𝑓𝛽 𝑥1

⋮
𝑓𝛽 𝑥𝑛

=
𝛽⊤𝑥1

⋮
𝛽⊤𝑥𝑛

=

෍

𝑗=1

𝑑

𝛽𝑗𝑥1,𝑗

⋮

෍

𝑗=1

𝑑

𝛽𝑗𝑥𝑛,𝑗

=

𝑥1,1 ⋯ 𝑥1,𝑑

⋮ ⋱ ⋮
𝑥𝑛,1 ⋯ 𝑥𝑛,𝑑

𝛽1

⋮
𝛽𝑑

= 𝑋𝛽

Vectorizing Linear Regression

𝑓𝛽 𝑥1

⋮
𝑓𝛽 𝑥𝑛

=
𝛽⊤𝑥1

⋮
𝛽⊤𝑥𝑛

=

෍

𝑗=1

𝑑

𝛽𝑗𝑥1,𝑗

⋮

෍

𝑗=1

𝑑

𝛽𝑗𝑥𝑛,𝑗

=

𝑥1,1 ⋯ 𝑥1,𝑑

⋮ ⋱ ⋮
𝑥𝑛,1 ⋯ 𝑥𝑛,𝑑

𝛽1

⋮
𝛽𝑑

= 𝑋𝛽

Vectorizing Linear Regression

𝑓𝛽 𝑥1

⋮
𝑓𝛽 𝑥𝑛

=
𝛽⊤𝑥1

⋮
𝛽⊤𝑥𝑛

=

෍

𝑗=1

𝑑

𝛽𝑗𝑥1,𝑗

⋮

෍

𝑗=1

𝑑

𝛽𝑗𝑥𝑛,𝑗

=

𝑥1,1 ⋯ 𝑥1,𝑑

⋮ ⋱ ⋮
𝑥𝑛,1 ⋯ 𝑥𝑛,𝑑

𝛽1

⋮
𝛽𝑑

= 𝑋𝛽

Vectorizing Linear Regression

𝑓𝛽 𝑥1

⋮
𝑓𝛽 𝑥𝑛

=
𝛽⊤𝑥1

⋮
𝛽⊤𝑥𝑛

=

෍

𝑗=1

𝑑

𝛽𝑗𝑥1,𝑗

⋮

෍

𝑗=1

𝑑

𝛽𝑗𝑥𝑛,𝑗

=

𝑥1,1 ⋯ 𝑥1,𝑑

⋮ ⋱ ⋮
𝑥𝑛,1 ⋯ 𝑥𝑛,𝑑

𝛽1

⋮
𝛽𝑑

= 𝑋𝛽

Vectorizing Linear Regression

𝑓𝛽 𝑥1

⋮
𝑓𝛽 𝑥𝑛

=
𝛽⊤𝑥1

⋮
𝛽⊤𝑥𝑛

=

෍

𝑗=1

𝑑

𝛽𝑗𝑥1,𝑗

⋮

෍

𝑗=1

𝑑

𝛽𝑗𝑥𝑛,𝑗

=

𝑥1,1 ⋯ 𝑥1,𝑑

⋮ ⋱ ⋮
𝑥𝑛,1 ⋯ 𝑥𝑛,𝑑

𝛽1

⋮
𝛽𝑑

= 𝑋𝛽

Vectorizing Linear Regression

𝑓𝛽 𝑥1

⋮
𝑓𝛽 𝑥𝑛

=
𝛽⊤𝑥1

⋮
𝛽⊤𝑥𝑛

=

෍

𝑗=1

𝑑

𝛽𝑗𝑥1,𝑗

⋮

෍

𝑗=1

𝑑

𝛽𝑗𝑥𝑛,𝑗

=

𝑥1,1 ⋯ 𝑥1,𝑑

⋮ ⋱ ⋮
𝑥𝑛,1 ⋯ 𝑥𝑛,𝑑

𝛽1

⋮
𝛽𝑑

= 𝑋𝛽

≈

𝑦1

⋮
𝑦𝑛

= 𝑌

Vectorizing Linear Regression

𝑓𝛽 𝑥1

⋮
𝑓𝛽 𝑥𝑛

=
𝛽⊤𝑥1

⋮
𝛽⊤𝑥𝑛

=

෍

𝑗=1

𝑑

𝛽𝑗𝑥1,𝑗

⋮

෍

𝑗=1

𝑑

𝛽𝑗𝑥𝑛,𝑗

=

𝑥1,1 ⋯ 𝑥1,𝑑

⋮ ⋱ ⋮
𝑥𝑛,1 ⋯ 𝑥𝑛,𝑑

𝛽1

⋮
𝛽𝑑

= 𝑋𝛽

≈

𝑦1

⋮
𝑦𝑛

= 𝑌
Summary: 𝑌 ≈ 𝑋𝛽

Vectorizing Linear Regression

𝑌 ≈ 𝑋𝛽

𝑌 =

𝑦1

⋮
𝑦𝑛

 𝑋 =

𝑥1,1 ⋯ 𝑥1,𝑑

⋮ ⋱ ⋮
𝑥𝑛,1 ⋯ 𝑥𝑛,𝑑

 𝛽 =
𝛽1

⋮
𝛽𝑑

Vectorizing Mean Squared Error

Vectorizing Mean Squared Error

𝐿 𝛽; 𝑍 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 =

1

𝑛
𝑌 − 𝑋𝛽 2

2

Vectorizing Mean Squared Error

𝐿 𝛽; 𝑍 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 =

1

𝑛
𝑌 − 𝑋𝛽 2

2

Vectorizing Mean Squared Error

𝐿 𝛽; 𝑍 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 =

1

𝑛
𝑌 − 𝑋𝛽 2

2

𝑓𝛽 𝑥1

⋮
𝑓𝛽 𝑥𝑛

𝑦1

⋮
𝑦𝑛

Intuition on Vectorized Linear Regression

• Rewriting the vectorized loss:

 𝑛 ⋅ 𝐿 𝛽; 𝑍 = 𝑌 − 𝑋𝛽 2
2 = 𝑌 2

2 − 2𝑌⊤𝑋𝛽 + 𝑋𝛽 2
2

 𝑛 ⋅ 𝐿 𝛽; 𝑍 = 𝑌 − 𝑋𝛽 2
2 = 𝑌 2

2 − 2𝑌⊤𝑋𝛽 + 𝛽⊤ 𝑋⊤𝑋 𝛽

• Quadratic function of 𝛽 with leading “coefficient” 𝑋⊤𝑋
• In one dimension, “width” of parabola 𝑎𝑥2 + 𝑏𝑥 + 𝑐 is 𝑎−1

• In multiple dimensions, “width” along direction 𝑣𝑖 is 𝜆𝑖
−1, where 𝑣𝑖 is an

eigenvector of 𝑋⊤𝑋 with eigenvalue 𝜆𝑖

Intuition on Vectorized Linear Regression

𝛽2

𝛽1

Minimizer መ𝛽 𝑍

Directions/magnitudes are given by eigenvectors/eigenvalues of 𝑋⊤𝑋

Strategy 1: Closed-Form Solution

• Recall that linear regression minimizes the loss

𝐿 𝛽; 𝑍 =
1

𝑛
𝑌 − 𝑋𝛽 2

2

• Minimum solution has gradient equal to zero:

∇𝛽𝐿 መ𝛽; 𝑍 = 0

Strategy 1: Closed-Form Solution

• The gradient is

 ∇𝛽𝐿 𝛽; 𝑍 = ∇𝛽
1

𝑛
𝑌 − 𝑋𝛽 2

2

Strategy 1: Closed-Form Solution

• The gradient is

 ∇𝛽𝐿 𝛽; 𝑍 = ∇𝛽
1

𝑛
𝑌 − 𝑋𝛽 2

2

Strategy 1: Closed-Form Solution

• The gradient is

 ∇𝛽𝐿 𝛽; 𝑍 = ∇𝛽
1

𝑛
𝑌 − 𝑋𝛽 2

2 = ∇𝛽
1

𝑛
𝑌 − 𝑋𝛽 ⊤ 𝑌 − 𝑋𝛽

 ∇𝛽𝐿 𝛽; 𝑍 = ∇𝛽
1

𝑛
𝑌 − 𝑋𝛽 2

2 =
2

𝑛
∇𝛽 𝑌 − 𝑋𝛽 ⊤ 𝑌 − 𝑋𝛽

 ∇𝛽𝐿 𝛽; 𝑍 = ∇𝛽
1

𝑛
𝑌 − 𝑋𝛽 2

2 = −
2

𝑛
𝑋⊤ 𝑌 − 𝑋𝛽

 ∇𝛽𝐿 𝛽; 𝑍 = ∇𝛽
1

𝑛
𝑌 − 𝑋𝛽 2

2 = −
2

𝑛
𝑋⊤𝑌 +

2

𝑛
𝑋⊤𝑋𝛽

Strategy 1: Closed-Form Solution

• The gradient is

 ∇𝛽𝐿 𝛽; 𝑍 = ∇𝛽
1

𝑛
𝑌 − 𝑋𝛽 2

2 = −
2

𝑛
𝑋⊤𝑌 +

2

𝑛
𝑋⊤𝑋𝛽

• Setting ∇𝛽𝐿 መ𝛽; 𝑍 = 0, we have 𝑋⊤𝑋 መ𝛽 = 𝑋⊤𝑌

Strategy 1: Closed-Form Solution

• Setting ∇𝛽𝐿 መ𝛽; 𝑍 = 0, we have 𝑋⊤𝑋 መ𝛽 = 𝑋⊤𝑌

• Assuming 𝑋⊤𝑋 is invertible, we have

መ𝛽 𝑍 = 𝑋⊤𝑋 −1𝑋⊤𝑌

Note on Invertibility

• Closed-form solution only unique if 𝑋⊤𝑋 is invertible
• Otherwise, multiple solutions exist to 𝑋⊤𝑋 መ𝛽 = 𝑋⊤𝑌

• Intuition: Underconstrained system of linear equations

When Can this Happen?

• Case 1
• Fewer data examples than feature dimension (i.e., 𝑛 < 𝑑)

• Solution: Remove features so 𝑑 ≤ 𝑛

• Solution: Collect more data until 𝑑 ≤ 𝑛

• Case 2: Some feature is a linear combination of the others
• Special case (duplicated feature): For some 𝑗 and 𝑗′, 𝑥𝑖,𝑗 = 𝑥𝑖,𝑗′ for all 𝑖

• Solution: Remove linearly dependent features

• Solution: Use 𝐿2 regularization

Shortcomings of Closed-Form Solution

• Computing መ𝛽 𝑍 = 𝑋⊤𝑋 −1𝑋⊤𝑌 can be challenging

• Computing (𝑿⊤𝑿)−𝟏 is 𝑶 𝒅𝟑

• 𝑑 = 104 features → 𝑂(1012)

• Even storing 𝑋⊤𝑋 requires a lot of memory

• Numerical accuracy issues due to “ill-conditioning”
• 𝑋⊤𝑋 is “barely” invertible

• Then, 𝑋⊤𝑋 −1 has large variance along some dimension

• Regularization helps (more on this later)

Today

• Minimizing the MSE Loss
• Closed-form solution

• Stochastic gradient descent

Iterative Optimization Algorithms

• Recall that linear regression minimizes the loss

𝐿(𝛽; 𝑍) =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2

• Iteratively optimize 𝛽
• Initialize 𝛽1 ← Init …

• For some number of iterations 𝑇, update 𝛽𝑡 ← Step(…)

• Return 𝛽𝑇

Iterative Optimization Algorithms

• Global search: Try random values of 𝛽 and choose the best
• I.e., 𝛽𝑡 independent of 𝛽𝑡−1

• Very unstructured, can take a long time (especially in high dimension 𝑑)!

• Local search: Start from some initial 𝛽 and make local changes
• I.e., 𝛽𝑡 is computed based on 𝛽𝑡−1

• What is a “local change”, and how do we find good one?

Strategy 2: Gradient Descent

• Gradient descent: Update 𝛽 based on gradient ∇𝛽𝐿 𝛽; 𝑍 of 𝐿 𝛽; 𝑍 :

𝛽𝑡+1 ← 𝛽𝑡 − 𝛼 ⋅ ∇𝛽𝐿 𝛽𝑡; 𝑍

• Intuition: The gradient is the direction along which 𝐿 𝛽; 𝑍 changes
most quickly as a function of 𝛽

• 𝛼 ∈ ℝ is a hyperparameter called the learning rate
• More on this later

Strategy 2: Gradient Descent

• Choose initial value for 𝛽

• Until we reach a minimum:
• Choose a new value for 𝛽 to reduce 𝐿 𝛽; 𝑍

𝐿 𝛽; 𝑍

𝛽1
𝛽2

Figure by Andrew Ng

Strategy 2: Gradient Descent

• Choose initial value for 𝛽

• Until we reach a minimum:
• Choose a new value for 𝛽 to reduce 𝐿 𝛽; 𝑍

Figure by Andrew Ng

𝐿 𝛽; 𝑍

𝛽1
𝛽2

Strategy 2: Gradient Descent

• Choose initial value for 𝛽

• Until we reach a minimum:
• Choose a new value for 𝛽 to reduce 𝐿 𝛽; 𝑍

Figure by Andrew Ng

Linear regression loss is
convex, so no local minima

0

1

2

3

0 0.5 1 1.5 2

Strategy 2: Gradient Descent

• Initialize 𝛽1 = 0

• Repeat until convergence:

𝛽𝑡+1 ← 𝛽𝑡 − 𝛼 ⋅ ∇𝛽𝐿 𝛽𝑡; 𝑍

• For linear regression, know the
gradient from strategy 1

𝐿 𝛽; 𝑍

𝛽

𝛽𝑡

𝛽𝑡+1

For in-place updates 𝛽 ← 𝛽 − 𝛼 ⋅ ∇𝛽𝐿 𝛽; 𝑍 , compute

all components of ∇𝛽𝐿 𝛽; 𝑍 before modifying 𝛽

0

1

2

3

0 0.5 1 1.5 2

Strategy 2: Gradient Descent

• Initialize 𝛽1 = 0

• Repeat until convergence:

𝛽𝑡+1 ← 𝛽𝑡 − 𝛼 ⋅ ∇𝛽𝐿 𝛽𝑡; 𝑍

• For linear regression, know the
gradient from strategy 1

𝐿 𝛽; 𝑍

𝛽

𝛽𝑡

𝛽𝑡+1

0

1

2

3

0 0.5 1 1.5 2

Strategy 2: Gradient Descent

• Initialize 𝛽1 = 0

• Repeat until 𝛽𝑡 − 𝛽𝑡+1 2 ≤ 𝜖:

𝛽𝑡+1 ← 𝛽𝑡 − 𝛼 ⋅ ∇𝛽𝐿 𝛽𝑡; 𝑍

• For linear regression, know the
gradient from strategy 1

𝐿 𝛽; 𝑍

𝛽

𝛽𝑡

𝛽𝑡+1

Hyperparameter defining
convergence

Aside: Gradient As Sum of Sample-Wise Gradients

(Equivalent to our earlier matrix expression of gradient)
• By linearity of the gradient, we have

∇𝛽𝐿 𝛽; 𝑍 = ෍

𝑖=1

𝑛

∇𝛽 𝑦𝑖 − 𝛽⊤𝑥𝑖
2 = ෍

𝑖=1

𝑛

2 𝑦𝑖 − 𝛽⊤𝑥𝑖 𝑥𝑖

• The gradient term induced by a single training data sample is:

∇𝛽 𝑦𝑖 − 𝛽⊤𝑥𝑖
2 = 2 𝑦𝑖 − 𝛽⊤𝑥𝑖 𝑥𝑖

• I.e., the current error 𝑦𝑖 − 𝛽⊤𝑥𝑖 times the feature vector 𝑥𝑖

“Large error samples induce large changes to 𝛽, proportional to their
feature values.”

Strategy 2: Gradient Descent

ℎ(𝑥) = −900 – 0.1 𝑥

Slide by Andrew Ng

𝑓𝛽 𝑥 𝐿 𝛽; 𝑍

Slide by Andrew Ng

𝑓𝛽 𝑥 𝐿 𝛽; 𝑍

Strategy 2: Gradient Descent

Strategy 2: Gradient Descent

Slide by Andrew Ng

𝑓𝛽 𝑥 𝐿 𝛽; 𝑍

Strategy 2: Gradient Descent

Slide by Andrew Ng

𝑓𝛽 𝑥 𝐿 𝛽; 𝑍

Strategy 2: Gradient Descent

𝑓𝛽 𝑥 𝐿 𝛽; 𝑍

Slide by Andrew Ng

Strategy 2: Gradient Descent

Slide by Andrew Ng

𝑓𝛽 𝑥 𝐿 𝛽; 𝑍

Strategy 2: Gradient Descent

𝑓𝛽 𝑥 𝐿 𝛽; 𝑍

Slide by Andrew Ng

Strategy 2: Gradient Descent

Slide by Andrew Ng

𝑓𝛽 𝑥 𝐿 𝛽; 𝑍

Strategy 2: Gradient Descent

Slide by Andrew Ng

𝑓𝛽 𝑥 𝐿 𝛽; 𝑍

Minimizer of loss function

Stochastic Gradient Descent

What if we just used the single-sample gradient of a randomly drawn
sample as a noisy approximation to the mean of gradients?

Batch Gradient Descent
 Initialize 𝛽
 Repeat T times till convergence {

 }

Stochastic Gradient Descent

 Initialize 𝛽

 Randomly shuffle dataset

 Repeat T’ times until convergence {

 For i = 1...N, do

 }

𝛽𝑗 ← 𝛽𝑗 − 𝛼 ෍

𝑖=1

𝑁

2 𝑦𝑖 − 𝛽⊤𝑥𝑖 𝑥𝑖

𝛽𝑗 ← 𝛽𝑗 − 𝛼2 𝑦𝑖 − 𝛽⊤𝑥𝑖 𝑥𝑖

We are descending the original
loss function 𝐿(𝛽; 𝑍).

At each step, we are descending a
different loss function specific to the
chosen sample 𝐿(𝛽; 𝑍𝑖 = { 𝑥𝑖, 𝑦𝑖 }).

Stochastic Gradient Descent

Noisy Gradients in SGD

• Learning rate α is typically held constant
• One heuristic is to decrease α over time to force 𝜃 to converge: 𝛼𝑡 =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡1

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑢𝑚𝑏𝑒𝑟 𝑡 +𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡2

Full Dataset / “Batch” GD Stochastic GD

Walking down a hill steadily
Walking down a slightly perturbed

version of the hill at each step

Choice of Learning Rate

𝐿 𝛽; 𝑍

Problem: 𝛼 too large
• 𝐿 𝛽; 𝑍 increases!

𝐿 𝛽; 𝑍

Problem: 𝛼 too small
• 𝐿 𝛽; 𝑍 decreases slowly

Plot 𝐿 𝛽𝑡; 𝑍train vs. 𝑡 to diagnose these problems

Choice of Learning Rate

• 𝛼 is a hyperparameter for gradient descent that we need to choose
• Can set just based on training data

• Rule of thumb
• 𝜶 too small: Loss decreases slowly

• 𝜶 too large: Loss increases!

• Try rates 𝛼 ∈ 1.0, 0.1, 0.01, … (can tune further once one works)

Comparison of Strategies

• Closed-form solution
• No hyperparameters
• Slow if 𝑛 or 𝑑 are large

• Gradient descent
• Need to tune 𝛼
• Scales to large 𝑛 and 𝑑

• For linear regression, there are better optimization algorithms, but
gradient descent is very general
• Accelerated gradient descent is an important tweak that improves

performance in practice (and in theory)

𝑳𝟐 Regularized Linear Regression

• Recall that linear regression with 𝐿2 regularization minimizes the loss

𝐿 𝛽; 𝑍 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 + 𝜆 ෍

𝑗=1

𝑑

𝛽𝑗
2 =

1

𝑛
𝑌 − 𝑋𝛽 2

2 + 𝜆 𝛽 2
2

𝑳𝟐 Regularized Linear Regression

• Recall that linear regression with 𝐿2 regularization minimizes the loss

𝐿 𝛽; 𝑍 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 + 𝜆 ෍

𝑗=1

𝑑

𝛽𝑗
2 =

1

𝑛
𝑌 − 𝑋𝛽 2

2 + 𝜆 𝛽 2
2

• Gradient is

∇𝛽𝐿 𝛽; 𝑍 = −
2

𝑛
𝑋⊤𝑌 +

2

𝑛
𝑋⊤𝑋𝛽 + 2𝜆𝛽

Strategy 1: Closed-Form Solution

• Gradient is

∇𝛽𝐿 𝛽; 𝑍 = −
2

𝑛
𝑋⊤𝑌 +

2

𝑛
𝑋⊤𝑋𝛽 + 2𝜆𝛽

• Setting ∇𝛽𝐿 መ𝛽; 𝑍 = 0, we have 𝑋⊤𝑋 + 𝑛𝜆𝐼 መ𝛽 = 𝑋⊤𝑌

• Always invertible if 𝜆 > 0, so we have

መ𝛽 𝑍 = 𝑋⊤𝑋 + 𝑛𝜆𝐼 −1𝑋⊤𝑌

Strategy 2: Gradient Descent

• Gradient is

∇𝛽𝐿 𝛽; 𝑍 = −
2

𝑛
𝑋⊤𝑌 +

2

𝑛
𝑋⊤𝑋𝛽 + 2𝜆𝛽

• Same algorithm as vanilla linear regression (a.k.a. OLS)

• Intuition: The extra term 𝜆𝛽 in the gradient is weight decay that
encourages 𝛽 to be small

𝛽2

𝛽1

• At this point, the
gradients are equal
(with opposite sign)

• Tradeoff depends on
choice of 𝜆

𝑳𝟐 Regularization

𝐿 𝛽; 𝑍 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 + 𝜆 ෍

𝑗=1

𝑑

𝛽𝑗
2

Minimizes
original loss
(or if 𝜆 = 0)

Minimizes
regularization term

(or if 𝜆 → ∞)

Minimizes
full loss

What About 𝑳𝟏 Regularization?

• Gradient descent still works!

• Specialized algorithms work better in practice
• Simple one: Gradient descent + soft thresholding

• Basically, if 𝛽𝑡,𝑗 ≤ 𝜆, just set it to zero

• Good theoretical properties

𝑳𝟏 Regularization

𝐿 𝛽; 𝑍 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 + 𝜆 ෍

𝑗=1

𝑑

𝛽𝑗

𝛽2

𝛽1

Minimizes
original loss
(or if 𝜆 = 0)

Minimizes
regularization term

(or if 𝜆 → ∞)

Minimizer of full loss at
corner → sparse (𝛽1 = 0)!

Loss Minimization View of ML

• Two design decisions
• Model family: What are the candidate models 𝑓? (E.g., linear functions)

• Loss function: How to define “approximating”? (E.g., MSE loss)

Loss Minimization View of ML

• Three design decisions
• Model family: What are the candidate models 𝑓? (E.g., linear functions)

• Loss function: How to define “approximating”? (E.g., MSE loss)

• Optimizer: How do we minimize the loss? (E.g., gradient descent)

This Module: Linear Regression

• Your very first supervised learning algorithm

• Regression with real value label 𝑦𝑖 ∈ ℝ

Next Module:

• Classification with discrete value 𝑦𝑖 ∈ 𝑐1, … , 𝑐𝑘

	Slide 1: Announcements
	Slide 2: Lecture 4: Linear Regression (Part 3)
	Slide 3: Last Lecture
	Slide 4: Last Lecture
	Slide 5: Last Lecture
	Slide 6: Today
	Slide 7: Minimizing the MSE Loss
	Slide 8: Vectorizing Linear Regression
	Slide 9: Vectorizing Linear Regression
	Slide 10: Vectorizing Linear Regression
	Slide 11: Vectorizing Linear Regression
	Slide 12: Vectorizing Linear Regression
	Slide 13: Vectorizing Linear Regression
	Slide 14: Vectorizing Linear Regression
	Slide 15: Vectorizing Linear Regression
	Slide 16: Vectorizing Linear Regression
	Slide 17: Vectorizing Linear Regression
	Slide 18: Vectorizing Mean Squared Error
	Slide 19: Vectorizing Mean Squared Error
	Slide 20: Vectorizing Mean Squared Error
	Slide 21: Vectorizing Mean Squared Error
	Slide 22: Intuition on Vectorized Linear Regression
	Slide 23: Intuition on Vectorized Linear Regression
	Slide 24: Strategy 1: Closed-Form Solution
	Slide 25: Strategy 1: Closed-Form Solution
	Slide 26: Strategy 1: Closed-Form Solution
	Slide 27: Strategy 1: Closed-Form Solution
	Slide 28: Strategy 1: Closed-Form Solution
	Slide 29: Strategy 1: Closed-Form Solution
	Slide 30: Note on Invertibility
	Slide 31: When Can this Happen?
	Slide 32: Shortcomings of Closed-Form Solution
	Slide 33: Today
	Slide 34: Iterative Optimization Algorithms
	Slide 35: Iterative Optimization Algorithms
	Slide 36: Strategy 2: Gradient Descent
	Slide 37: Strategy 2: Gradient Descent
	Slide 38: Strategy 2: Gradient Descent
	Slide 39: Strategy 2: Gradient Descent
	Slide 40: Strategy 2: Gradient Descent
	Slide 41: Strategy 2: Gradient Descent
	Slide 42: Strategy 2: Gradient Descent
	Slide 43: Aside: Gradient As Sum of Sample-Wise Gradients
	Slide 44: Strategy 2: Gradient Descent
	Slide 45: Strategy 2: Gradient Descent
	Slide 46: Strategy 2: Gradient Descent
	Slide 47: Strategy 2: Gradient Descent
	Slide 48: Strategy 2: Gradient Descent
	Slide 49: Strategy 2: Gradient Descent
	Slide 50: Strategy 2: Gradient Descent
	Slide 51: Strategy 2: Gradient Descent
	Slide 52: Strategy 2: Gradient Descent
	Slide 53: Stochastic Gradient Descent
	Slide 54
	Slide 55: Noisy Gradients in SGD
	Slide 56: Choice of Learning Rate
	Slide 57: Choice of Learning Rate
	Slide 58: Comparison of Strategies
	Slide 59: L 2 Regularized Linear Regression
	Slide 60: L 2 Regularized Linear Regression
	Slide 61: Strategy 1: Closed-Form Solution
	Slide 62: Strategy 2: Gradient Descent
	Slide 63: L 2 Regularization
	Slide 64: What About L 1 Regularization?
	Slide 65: L 1 Regularization
	Slide 66: Loss Minimization View of ML
	Slide 67: Loss Minimization View of ML
	Slide 71: This Module: Linear Regression

