Announcements

* HW 0 due today 8 pm

* HW 1 (on linear regression) will be released this afternoon.

* Weekly quizzes: first quiz will be released today. 1 week to complete.

* Quiz on Gradescope. Unlimited attempts before the deadline.
* Pass a quiz: if you score at least 50% of the points.

Fail a quiz: no attempt or score less than 50% of the points.
All quizzes together account for 10% of the class grade.

You can miss/fail up to 3 quizzes over the whole semester with no penalty.
E.g., if we have 14 quizzes in total, if you pass 11, you get all 10% towards your class grade.

» Office hour starting tomorrow.
* Time and location (in-person & remote) posted on course website & canvas.



Lecture 4: Linear Regression (Part 3)

CIS 4190/5190
Fall 2024



Last Lecture

* Train/Test Split Protocol for Measuring Underfitting / Overfitting

* Bias and variance as functions of a model class
* Tuning them by selecting hypothesis spaces / feature maps
* Tuning them by modifying the loss function

* Lnew(B;Z) = L(B;Z) + 1 - R(B)
* Train/Val/Test Split Protocol for Hyperparameter tuning.
* K-fold cross validation for small datasets.



Last Lecture

* Original MSE loss + regularization:
n
- T, \2 2
LB 2) =~ ) 0= BTx)? + A B3
i=1
e With intercept term (¢p(x) = [1 x; - X4]T), no penalty on f3;:

n d
1
LB;Z) = EZ(% —BTx)* + 1 Zﬁjz
i=1 =2



Last Lecture

 Underfitting Ideal Overfitting

Loss

/ Test loss

— » Training loss




Today

* Minimizing the MSE Loss
* Closed-form solution
e Stochastic gradient descent



Minimizing the MSE Loss

* Recall that linear regression minimizes the loss
n
1 T.. \2
L(B;7) = EZ(%‘ — B x;)
i=1

* Closed-form solution: Compute using matrix operations

* Optimization-based solution: Search over candidate [



Vectorizing Linear Regression
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Vectorizing Linear Regression
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Vectorizing Linear Regression
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Vectorizing Linear Regression
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Vectorizing Mean Squared Error



Vectorizing Mean Squared Error
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Vectorizing Mean Squared Error

1 n
L(p;7Z) = EZ(%' — B x;)?
i=1



Vectorizing Mean Squared Error
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Intuition on Vectorized Linear Regression

* Rewriting the vectorized loss:

n-L(B;Z) =1V —XBl5 =IVIl5 —2Y " XB + |1XBII3
=Yl =2V "X+ BT(XTX)P

e Quadratic function of 5 with leading “coefficient” X ' X
* In one dimension, “width” of parabola ax? + bx + cisa™ '

* In multiple dimensions, “width” along direction v; is 1; ', where v; is an
eigenvector of X ' X with eigenvalue 1;



Intuition on Vectorized Linear Regression

b2

Minimizer £(2)

7 b1

Directions/magnitudes are given by eigenvectors/eigenvalues of X ' X



Strategy 1: Closed-Form Solution
* Recall that linear regression minimizes the loss
1 2
LB 7) =~ I = XBII3

* Minimum solution has gradient equal to zero:

VsL(P57) =0




Strategy 1: Closed-Form Solution
* The gradient is

VeL(B;7)



Strategy 1: Closed-Form Solution
* The gradient is

1
VsL(B;2) = V- lIV = XBII3



Strategy 1: Closed-Form Solution
* The gradient is

VoL(B;7) = VIV = XBII3 = Vg (v = XB)T(V = X)
2

==V (v = XB)T](V — xp)

n

= —2XT(Y — XB)
= —2XTy +2XTXP
n n



Strategy 1: Closed-Form Solution
* The gradient is
VoL(B;2) = Vp—|lV = XBll3 = == XTY +2XTXp

» Setting V3L(f;Z) = 0, we have X "X = XY



Strategy 1: Closed-Form Solution

* Setting VzL(f;Z) =0, we have X "X = XY

» Assuming X ' X is invertible, we have

B(Z)=X"X)"1XxTY



Note on Invertibility

* Closed-form solution only unique if X ' X is invertible

* Otherwise, multiple solutions exist to X "X/ = XV
* Intuition: Underconstrained system of linear equations



When Can this Happen?

e Case 1

* Fewer data examples than feature dimension (i.e., n < d)
* Solution: Remove featuressod < n
* Solution: Collect more data untild < n

e Case 2: Some feature is a linear combination of the others
* Special case (duplicated feature): For some j and j’, Xij = X; ! forall i

* Solution: Remove linearly dependent features
* Solution: Use L, regularization



Shortcomings of Closed-Form Solution

 Computing f(Z) = (X"X)~" XY can be challenging

» Computing (X" X)"1is 0(d3)
e d = 10* features > 0(101?)
* Even storing X ' X requires a lot of memory

* Numerical accuracy issues due to “ill-conditioning”
e X' X is “barely” invertible

* Then, (X "X) ™' has large variance along some dimension
* Regularization helps (more on this later)



Today

* Minimizing the MSE Loss
* Closed-form solution
e Stochastic gradient descent




lterative Optimization Algorithms

* Recall that linear regression minimizes the loss
n
1 T.. \2
L(S;7) = EZ(% — B x;)
i=1

* [teratively optimize [
* Initialize f, < Init(...)
* For some number of iterations T, update [; < Step(...)
* Return [



lterative Optimization Algorithms

* Global search: Try random values of [/ and choose the best
* l.e., [; independent of /;_4
* Very unstructured, can take a long time (especially in high dimension d)!

* Local search: Start from some initial / and make local changes

* |l.e., [; is computed based on [;_;
 What is a “local change”, and how do we find good one?



Strategy 2: Gradient Descent

* Gradient descent: Update [ based on gradient V;L([3; Z) of L(f; Z):
Biv1 < Br —a - VgL(fs; Z)

* Intuition: The gradient is the direction along which L(f; 7Z) changes
most quickly as a function of 5

* o € R is a hyperparameter called the learning rate
* More on this later



Strategy 2: Gradient Descent

* Choose initial value for 5

* Until we reach a minimum:
* Choose a new value for f8 to reduce L(f; Z)

L(B;Z) >

Figure by Andrew Ng
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Strategy 2: Gradient Descent

* Choose initial value for 5

* Until we reach a minimum:
* Choose a new value for f8 to reduce L(f; Z)

Linear regression loss is
convex, so no local minima

Figure by Andrew Ng



Strategy 2: Gradient Descent

* Initialize f; = 0

* Repeat until convergence:

3 -
Bev1 < Pr—a- VﬁL(,Bt; Z) L(G: Z)z T bt
1 4 Bt+1
* For linear regression, know t
gradient from strategy 1 0 = : —
O 05 1 15 2

p

For in-place updates [ < [ — a - VzL(3; Z), compute
all components of VﬁL(,B; 7) before modifying /3



Strategy 2: Gradient Descent

* Initialize f; = 0

* Repeat until convergence: X

fry1 < fr—a- VﬁL(,Bt; 7) L(B; Z)2 + Bt
ﬁt+1

1 +

* For linear regression, know the

gradient from strategy 1 0 : : —
0 05 1 15 2

p




Strategy 2: Gradient Descent

Hyperparameter defining

* Initialize f; = 0 / convergence

* Repeat until ||5; — Bri1ll, < e:

3 -
Bey1 < pr—a- VBL(,BtJZ) L(,B'Z)z T Pe
B Bes1
* For linear regression, know the
gradient from strategy 1 0 = : —

0 0.5 1 1.5 2

p



Aside: Gradient As Sum of Sample-Wise Gradients

JE———
(Equivalent to our earlier matrix expression of gradient) —c XV +-X X

* By linearity of the gradient, we have
n n /
VeL(B;7) = 2 Ve(vi = B'x)* = z 2(y; — B x)x
i=1 i=1

* The gradient term induced by a single training data sample is:
Ve(yi — B x)? = 2(y; — B xp)x;

* |.e., the current error y; — B " x; times the feature vector x;

“Large error samples induce large changes to 5, proportional to their
feature values.”



Strategy 2: Gradient Descent
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Strategy 2: Gradient Descent
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Strategy 2: Gradient Descent
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Strategy 2: Gradient Descent
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Strategy 2: Gradient Descent
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Strategy 2: Gradient Descent
Minimizer of loss function
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Stochastic Gradient Descent

What if we just used the single-sample gradient of a randomly drawn
sample as a noisy approximation to the mean of gradients?




Stochastic Gradient Descent

Batch Gradient Descent Stochastic Gradient Descent

Initialize /5 Initialize /8
Repeat T times till convergence {

Randomly shuffle dataset

N
B« B — az 2(y, — ,BTX)X Repeat T’ times until convergence {
J J l L)
= Fori=1...N, do
-
} Bi < B —a2(y; — B x)x;
}
We are descending the original At each step, we are descending a
loss function L(f; 7). different loss function specific to the
chosen sample L(B; Z; = {(x;, v)}).




Noisy Gradients in SGD

Full Dataset / “Batch” GD Stochastic GD

Walking down a slightly perturbed

Walking down a hill steadily e : ol
version of the thill at each step

* Learning rate a is typically held constant
* One heuristic is to decrease a over time to force 0 to converge: a; =

constant1

iterationNumber t +constant?2



Choice of Learning Rate

L(B;7) L(S;7)

Problem: a too small Problem: a too large
* L(B;Z) decreases slowly  L(B;Z) increases!

Plot L(S¢; Zrain) VS. t to diagnose these problems



Choice of Learning Rate

* o is a hyperparameter for gradient descent that we need to choose
* Can set just based on training data

* Rule of thumb
* a too small: Loss decreases slowly
* a too large: Loss increases!

e Try rates a € {1.0,0.1,0.01, ...} (can tune further once one works)



Comparison of Strategies

* Closed-form solution
* No hyperparameters
* Slow if n or d are large

 Gradient descent

* Need to tune
* Scalesto large n and d

* For linear regression, there are better optimization algorithms, but

gradient descent is very general
* Accelerated gradient descent is an important tweak that improves
performance in practice (and in theory)



L, Regularized Linear Regression

* Recall that linear regression with L, regularization minimizes the loss

n d
1
L(B;Z) = EZ(% —[x)* + Az h
i=1 =1



L, Regularized Linear Regression

* Recall that linear regression with L, regularization minimizes the loss
1% - 1
LB =— ) (i = T2 42 ) 57 =~V = XBI3 + 25113
i=1 j=1

e Gradient is

2 2
VpL(B;Z) = ==XV + = XX} + 24P



Strategy 1: Closed-Form Solution

e Gradient is

VoL(5;7) = ZXTY+2XTX + 22
sL(f;7) = -~ -~ p p

e Setting VﬁL(,[?; 7) =0,wehave (X' X +nAf = X"y

* Always invertible if A > 0, so we have

B(Z)=X"X +nAD) XY



Strategy 2: Gradient Descent

e Gradient is

VoL(5;7) = ZXTY+2XTX + 22
pL(B;Z) = == XTY + =X TXp + 248
e Same algorithm as vanilla linear regression (a.k.a. OLS)

* Intuition: The extra term Af in the gradient is weight decay that
encourages [ to be small



L, Regularization

,32 Minimizes
original loss
(orif A = 0)
L e At this point, the
Minimizes :
gradients are equal
full loss . L
(with opposite sign)
* Tradeoff depends on
b1 choice of /1

Minimizes
regularization term
(orif 1 — o0)

n d
1
LB D) =) Gi=BTx)* +1 ) f7
=1 ]:1



What About L4 Regularization?

e Gradient descent still works!

 Specialized algorithms work better in practice
e Simple one: Gradient descent + soft thresholding
* Basically, if |,8t,j| < A, just set it to zero
* Good theoretical properties



L, Regularization

,82 Minimizes
original loss
(orif A = 0)

Minimizer of full loss at
corner = sparse ([, = 0)!

Minimizes ,31
regularization term
(orif A = o)

. d
1
LB 2 =~ = BTx)? 47 ) |5
i=1 J=1



Loss Minimization View of ML

* Two design decisions

* Model family: What are the candidate models f? (E.g., linear functions)
* Loss function: How to define “approximating”? (E.g., MSE loss)



Loss Minimization View of ML

* Three design decisions
* Model family: What are the candidate models f? (E.g., linear functions)
* Loss function: How to define “approximating”? (E.g., MSE loss)
e Optimizer: How do we minimize the loss? (E.g., gradient descent)



This Module: Linear Regression
* Your very first supervised learning algorithm
* Regression with real value label y; € R

Next Module:

* Classification with discrete value y; € {cq, ..., i}
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