Announcements

- **HW 0** due today 8 pm
- **HW 1** (on linear regression) will be released this afternoon.
- **Weekly quizzes**: first quiz will be released today. 1 week to complete.
	- Quiz on Gradescope. Unlimited attempts before the deadline.
	- Pass a quiz: if you score at least 50% of the points.
	- Fail a quiz: no attempt or score less than 50% of the points.
	- All quizzes together account for 10% of the class grade.
	- You can miss/fail up to 3 quizzes over the whole semester with no penalty.
	- E.g., if we have 14 quizzes in total, if you pass 11, you get all 10% towards your class grade.
- **Office hour** starting tomorrow.
	- Time and location (in-person & remote) posted on course website & canvas.

Lecture 4: Linear Regression (Part 3)

CIS 4190/5190 Fall 2024

Last Lecture

- Train/Test Split Protocol for Measuring Underfitting / Overfitting
- Bias and variance as functions of a model class
	- Tuning them by selecting hypothesis spaces / feature maps
	- Tuning them by modifying the loss function
		- $L_{new}(\beta; Z) = L(\beta; Z) + \lambda \cdot R(\beta)$
- Train/Val/Test Split Protocol for Hyperparameter tuning.
	- K-fold cross validation for small datasets.

Last Lecture

• **Original MSE loss + regularization:**

$$
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^{\top} x_i)^2 + \lambda \cdot ||\beta||_2^2
$$

• With intercept term $(\phi(x) = \begin{bmatrix} 1 & x_1 & \cdots & x_d \end{bmatrix}^\top)$, no penalty on β_1 :

$$
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^\top x_i)^2 + \lambda \sum_{j=2}^{d} \beta_j^2
$$

Last Lecture

Today

- **Minimizing the MSE Loss**
	- Closed-form solution
	- Stochastic gradient descent

Minimizing the MSE Loss

• Recall that linear regression minimizes the loss

$$
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^\top x_i)^2
$$

- **Closed-form solution:** Compute using matrix operations
- **Optimization-based solution:** Search over candidate

 $f_{\pmb{\beta}}(\pmb{x_1}$ $\ddot{\bullet}$ $f_{\pmb{\beta}}(\pmb{x_n}$ = $\beta^\mathsf{T} x_1$ $\ddot{\bullet}$ $\beta^\top x_n$

$$
\begin{bmatrix} f_{\beta}(x_1) \\ \vdots \\ f_{\beta}(x_n) \end{bmatrix} = \begin{bmatrix} \beta^{\top} x_1 \\ \vdots \\ \beta^{\top} x_n \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{d} \beta_j x_{1,j} \\ \vdots \\ \sum_{j=1}^{d} \beta_j x_{n,j} \end{bmatrix} = \begin{bmatrix} x_{1,1} & \cdots & x_{1,d} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,d} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_d \end{bmatrix} = X\beta
$$

$$
\begin{bmatrix} f_{\beta}(x_1) \\ \vdots \\ f_{\beta}(x_n) \end{bmatrix} = \begin{bmatrix} \beta^{\top} x_1 \\ \vdots \\ \beta^{\top} x_n \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{d} \beta_j x_{1,j} \\ \vdots \\ \sum_{j=1}^{d} \beta_j x_{n,j} \end{bmatrix} = \begin{bmatrix} x_{1,1} & \cdots & x_{1,d} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,d} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_d \end{bmatrix} = X\beta
$$

$$
\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}
$$

$$
\begin{bmatrix} f_{\beta}(x_1) \\ \vdots \\ f_{\beta}(x_n) \end{bmatrix} = \begin{bmatrix} \beta^{\top} x_1 \\ \vdots \\ \beta^{\top} x_n \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{d} \beta_j x_{1,j} \\ \vdots \\ \sum_{j=1}^{d} \beta_j x_{n,j} \end{bmatrix} = \begin{bmatrix} x_{1,1} & \cdots & x_{1,d} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,d} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_d \end{bmatrix} = X\beta
$$

 y_1 $\ddot{\cdot}$ \mathcal{Y}_n $= Y$

Summary: $Y \approx X\beta$

 $Y \approx X\beta$

 $L(\beta; Z)$

$$
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^\top x_i)^2
$$

Intuition on Vectorized Linear Regression

• Rewriting the vectorized loss:

$$
n \cdot L(\beta; Z) = ||Y - X\beta||_2^2 = ||Y||_2^2 - 2Y^{\top}X\beta + ||X\beta||_2^2
$$

=
$$
||Y||_2^2 - 2Y^{\top}X\beta + \beta^{\top}(X^{\top}X)\beta
$$

- Quadratic function of β with leading "coefficient" $X^{\top}X$
	- In one dimension, "width" of parabola $ax^2 + bx + c$ is a^{-1}
	- In multiple dimensions, "width" along direction v_i is λ_i^{-1} , where v_i is an eigenvector of $X^{\top}X$ with eigenvalue $\overline{\lambda}_i$

Intuition on Vectorized Linear Regression

Directions/magnitudes are given by eigenvectors/eigenvalues of $X^{\top}X$

• Recall that linear regression minimizes the loss

$$
L(\beta; Z) = \frac{1}{n} ||Y - X\beta||_2^2
$$

• Minimum solution has gradient equal to zero:

$$
\nabla_{\beta}L\big(\hat{\beta};Z\big)=0
$$

• The gradient is

• The gradient is

$$
\nabla_{\beta} L(\beta; Z) = \nabla_{\beta} \frac{1}{n} ||Y - X\beta||_2^2
$$

• The gradient is

$$
\nabla_{\beta} L(\beta; Z) = \nabla_{\beta} \frac{1}{n} \|Y - X\beta\|_2^2 = \nabla_{\beta} \frac{1}{n} (Y - X\beta)^{\top} (Y - X\beta)
$$

$$
= \frac{2}{n} [\nabla_{\beta} (Y - X\beta)^{\top}] (Y - X\beta)
$$

$$
= -\frac{2}{n} X^{\top} (Y - X\beta)
$$

$$
= -\frac{2}{n} X^{\top} Y + \frac{2}{n} X^{\top} X\beta
$$

• The gradient is

$$
\nabla_{\beta} L(\beta; Z) = \nabla_{\beta} \frac{1}{n} ||Y - X\beta||_2^2 = -\frac{2}{n} X^{\top} Y + \frac{2}{n} X^{\top} X\beta
$$

• Setting $\nabla_{\beta}L(\hat{\beta};Z)=0$, we have $X^{\top}X\hat{\beta}=X^{\top}Y$

- Setting $\nabla_{\beta}L(\hat{\beta};Z)=0$, we have $X^{\top}X\hat{\beta}=X^{\top}Y$
- Assuming $X^{\top}X$ is invertible, we have

 $\hat{\beta}(Z) = (X^{\top}X)^{-1}X^{\top}Y$

Note on Invertibility

- Closed-form solution only unique if $X^{\top}X$ is invertible
	- Otherwise, **multiple solutions exist** to $X^{\top}X\hat{\beta} = X^{\top}Y$
	- **Intuition:** Underconstrained system of linear equations

When Can this Happen?

• **Case 1**

- Fewer data examples than feature dimension (i.e., $n < d$)
- **Solution:** Remove features so $d \leq n$
- **Solution:** Collect more data until $d \leq n$
- **Case 2:** Some feature is a linear combination of the others
	- Special case (duplicated feature): For some j and j', $x_{i,j} = x_{i,j'}$ for all i
	- **Solution:** Remove linearly dependent features
	- **Solution:** Use L_2 regularization

Shortcomings of Closed-Form Solution

- Computing $\hat{\beta}(Z) = (X^{\top}X)^{-1}X^{\top}Y$ can be challenging
- Computing $(X^{\top}X)^{-1}$ is $O(d^3)$
	- $d = 10^4$ features $\rightarrow O(10^{12})$
	- Even storing $X^{\top}X$ requires a lot of memory
- **Numerical accuracy issues due to "ill-conditioning"**
	- $X^{\top}X$ is "barely" invertible
	- Then, $(X^{\top}X)^{-1}$ has large variance along some dimension
	- Regularization helps (more on this later)

Today

- **Minimizing the MSE Loss**
	- Closed-form solution
	- Stochastic gradient descent

Iterative Optimization Algorithms

• Recall that linear regression minimizes the loss

$$
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^\top x_i)^2
$$

- Iteratively optimize β
	- Initialize $\beta_1 \leftarrow \text{Init}(\dots)$
	- For some number of iterations T, update $\beta_t \leftarrow$ Step(...)
	- Return β_T

Iterative Optimization Algorithms

- Global search: Try random values of β and choose the best
	- I.e., β_t independent of β_{t-1}
	- Very unstructured, can take a long time (especially in high dimension d)!
- **Local search**: Start from some initial β and make local changes
	- I.e., β_t is computed based on β_{t-1}
	- What is a "local change", and how do we find good one?

• Gradient descent: Update β based on gradient $\nabla_{\beta}L(\beta;Z)$ of $L(\beta;Z)$:

$$
\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla_{\beta} L(\beta_t; Z)
$$

- **Intuition:** The gradient is the direction along which $L(\beta; Z)$ changes most quickly as a function of β
- $\alpha \in \mathbb{R}$ is a hyperparameter called the **learning rate**
	- More on this later

- Choose initial value for β
- Until we reach a minimum:
	- Choose a new value for β to reduce $L(\beta; Z)$

- Choose initial value for β
- Until we reach a minimum:
	- Choose a new value for β to reduce $L(\beta; Z)$

- Choose initial value for β
- Until we reach a minimum:
	- Choose a new value for β to reduce $L(\beta; Z)$

Linear regression loss is convex, so no local minima

- Initialize $\beta_1 = \vec{0}$
- Repeat until convergence:

 $\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla_{\beta} L(\beta_t; Z)$

• For linear regression, know the gradient from strategy 1

For in-place updates $\beta \leftarrow \beta - \alpha \cdot \nabla_{\beta} L(\beta; Z)$, compute all components of $\nabla_{\beta} L(\beta; Z)$ before modifying β

- Initialize $\beta_1 = \vec{0}$
- Repeat until convergence:

 $\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla_{\beta} L(\beta_t; Z)$

• For linear regression, know the gradient from strategy 1

 $\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla_{\beta} L(\beta_t; Z)$

• For linear regression, know the gradient from strategy 1

0 1 2 3 0 0.5 1 1.5 2 $L(\beta; Z)$ $\overline{\beta}$ $\overline{\beta}_t$ $\bm{\beta_{t+1}}$ Hyperparameter defining convergence

Aside: Gradient As Sum of Sample-Wise Gradients

(Equivalent to our earlier matrix expression of gradient)

• By linearity of the gradient, we have

$$
\boxed{-\frac{2}{n}X^{\top}Y+\frac{2}{n}X^{\top}X\beta}
$$

$$
\nabla_{\beta} L(\beta; Z) = \sum_{i=1}^{n} \nabla_{\beta} (y_i - \beta^{\top} x_i)^2 = \sum_{i=1}^{n} 2(y_i - \beta^{\top} x_i) x_i
$$

• The gradient term induced by a single training data sample is:

$$
\nabla_{\beta}(y_i - \beta^{\top} x_i)^2 = 2(y_i - \beta^{\top} x_i)x_i
$$

• I.e., the current error $y_i - \beta^\top x_i$ times the feature vector x_i "Large error samples induce large changes to β , proportional to their feature values."

Minimizer of loss function

Stochastic Gradient Descent

What if we just used the single-sample gradient of a randomly drawn sample as a noisy approximation to the mean of gradients?

Stochastic Gradient Descent

Batch Gradient Descent

Initialize β Repeat T times till convergence { } $\beta_j \leftarrow \beta_j - \alpha$ $i=1$ \boldsymbol{N} $2(y_i - \beta^\top x_i)x_i$

We are descending the original loss function $L(\beta; Z)$.

Stochastic Gradient Descent Initialize β Randomly shuffle dataset Repeat T' times until convergence { For *i* = 1...*N*, do } $\beta_j \leftarrow \beta_j - \alpha 2(y_i - \beta^\top x_i)x_i$

At each step, we are descending a different loss function specific to the chosen sample $L(\beta; Z_i = \{(x_i, y_i)\}).$

Noisy Gradients in SGD

Walking down a hill steadily Walking down a slightly perturbed version of the hill at each step

- Learning rate α is typically held constant
- One heuristic is to decrease α over time to force θ to converge: $\alpha_t = \frac{constant1}{iterationNumber t + ...}$ iterationNumber t +constant2

Choice of Learning Rate

Problem: α too small

• $L(\beta; Z)$ decreases slowly

Problem: α too large • $L(\beta; Z)$ increases!

Plot $L(\beta_t; Z_{\text{train}})$ vs. t to diagnose these problems

Choice of Learning Rate

- α is a hyperparameter for gradient descent that we need to choose
	- Can set just based on training data
- **Rule of thumb**
	- \cdot α too small: Loss decreases slowly
	- α too large: Loss increases!
- Try rates $\alpha \in \{1.0, 0.1, 0.01, ...\}$ (can tune further once one works)

Comparison of Strategies

• **Closed-form solution**

- No hyperparameters
- Slow if n or d are large

• **Gradient descent**

- Need to tune α
- Scales to large n and d
- For linear regression, there are better optimization algorithms, but gradient descent is very general
	- Accelerated gradient descent is an important tweak that improves performance in practice (and in theory)

L_2 Regularized Linear Regression

• Recall that linear regression with L_2 regularization minimizes the loss

$$
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^\top x_i)^2 + \lambda \sum_{j=1}^{d} \beta_j^2
$$

L_2 Regularized Linear Regression

• Recall that linear regression with L_2 regularization minimizes the loss

$$
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^T x_i)^2 + \lambda \sum_{j=1}^{d} \beta_j^2 = \frac{1}{n} ||Y - X\beta||_2^2 + \lambda ||\beta||_2^2
$$

• Gradient is

$$
\nabla_{\beta} L(\beta; Z) = -\frac{2}{n} X^{\top} Y + \frac{2}{n} X^{\top} X \beta + 2\lambda \beta
$$

• Gradient is

$$
\nabla_{\beta} L(\beta; Z) = -\frac{2}{n} X^{\top} Y + \frac{2}{n} X^{\top} X \beta + 2\lambda \beta
$$

- Setting $\nabla_{\beta} L(\hat{\beta}; Z) = 0$, we have $(X^{\top} X + n\lambda I)\hat{\beta} = X^{\top} Y$
- Always invertible if $\lambda > 0$, so we have

$$
\hat{\beta}(Z) = (X^{\top}X + n\lambda I)^{-1}X^{\top}Y
$$

• Gradient is

$$
\nabla_{\beta} L(\beta; Z) = -\frac{2}{n} X^{\top} Y + \frac{2}{n} X^{\top} X \beta + 2\lambda \beta
$$

- Same algorithm as vanilla linear regression (a.k.a. OLS)
- **Intuition:** The extra term $\lambda \beta$ in the gradient is weight decay that encourages β to be small

L_2 Regularization

- At this point, the gradients are **equal** (with opposite sign)
- Tradeoff depends on choice of λ

What About L_1 Regularization?

- Gradient descent still works!
- Specialized algorithms work better in practice
	- **Simple one:** Gradient descent + soft thresholding
	- Basically, if $|\beta_{t,j}| \leq \lambda$, just set it to zero
	- Good theoretical properties

Loss Minimization View of ML

• **Two design decisions**

- **Model family:** What are the candidate models f ? (E.g., linear functions)
- **Loss function:** How to define "approximating"? (E.g., MSE loss)

Loss Minimization View of ML

• **Three design decisions**

- **Model family:** What are the candidate models f ? (E.g., linear functions)
- **Loss function:** How to define "approximating"? (E.g., MSE loss)
- **Optimizer:** How do we minimize the loss? (E.g., gradient descent)

This Module: Linear Regression

- Your very first supervised learning algorithm
- Regression with **real value** label $y_i \in \mathbb{R}$

Next Module:

• Classification with **discrete value** $y_i \in \{c_1, ..., c_k\}$