
Announcements
• HW 0 due today 8 pm

• HW 1 (on linear regression) will be released this afternoon.

• Weekly quizzes: first quiz will be released today. 1 week to complete.
• Quiz on Gradescope. Unlimited attempts before the deadline.

• Pass a quiz: if you score at least 50% of the points.

• Fail a quiz: no attempt or score less than 50% of the points.

• All quizzes together account for 10% of the class grade.

• You can miss/fail up to 3 quizzes over the whole semester with no penalty.

• E.g., if we have 14 quizzes in total, if you pass 11, you get all 10% towards your class grade.

• Office hour starting tomorrow.
• Time and location (in-person & remote) posted on course website & canvas.
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Last Lecture

• Train/Test Split Protocol for Measuring Underfitting / Overfitting

• Bias and variance as functions of a model class
• Tuning them by selecting hypothesis spaces / feature maps

• Tuning them by modifying the loss function

• 𝐿new 𝛽; 𝑍 = 𝐿 𝛽; 𝑍 + 𝜆 ⋅ 𝑅 𝛽

• Train/Val/Test Split Protocol for Hyperparameter tuning.
• K-fold cross validation for small datasets.



Last Lecture

• Original MSE loss + regularization:
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• With intercept term (𝜙 𝑥 = 1 𝑥1 … 𝑥𝑑
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Today

• Minimizing the MSE Loss
• Closed-form solution

• Stochastic gradient descent



Minimizing the MSE Loss

• Recall that linear regression minimizes the loss

𝐿(𝛽; 𝑍) =
1
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• Closed-form solution: Compute using matrix operations

• Optimization-based solution: Search over candidate 𝛽



Vectorizing Linear Regression
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Vectorizing Linear Regression
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Vectorizing Mean Squared Error
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Intuition on Vectorized Linear Regression

• Rewriting the vectorized loss:

 𝑛 ⋅ 𝐿 𝛽; 𝑍 = 𝑌 − 𝑋𝛽 2
2 = 𝑌 2

2 − 2𝑌⊤𝑋𝛽 + 𝑋𝛽 2
2 

 𝑛 ⋅ 𝐿 𝛽; 𝑍 = 𝑌 − 𝑋𝛽 2
2 = 𝑌 2

2 − 2𝑌⊤𝑋𝛽 + 𝛽⊤ 𝑋⊤𝑋 𝛽

• Quadratic function of 𝛽 with leading “coefficient” 𝑋⊤𝑋
• In one dimension, “width” of parabola 𝑎𝑥2 + 𝑏𝑥 + 𝑐 is 𝑎−1

• In multiple dimensions, “width” along direction 𝑣𝑖  is 𝜆𝑖
−1, where 𝑣𝑖  is an 

eigenvector of 𝑋⊤𝑋 with eigenvalue 𝜆𝑖



Intuition on Vectorized Linear Regression

𝛽2

𝛽1

Minimizer መ𝛽 𝑍

Directions/magnitudes are given by eigenvectors/eigenvalues of 𝑋⊤𝑋



Strategy 1: Closed-Form Solution

• Recall that linear regression minimizes the loss

𝐿 𝛽; 𝑍 =
1

𝑛
𝑌 − 𝑋𝛽 2

2

• Minimum solution has gradient equal to zero:

∇𝛽𝐿 መ𝛽; 𝑍 = 0
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• The gradient is
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• The gradient is
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Strategy 1: Closed-Form Solution

• The gradient is

 ∇𝛽𝐿 𝛽; 𝑍 = ∇𝛽
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• Setting ∇𝛽𝐿 መ𝛽; 𝑍 = 0, we have 𝑋⊤𝑋 መ𝛽 = 𝑋⊤𝑌



Strategy 1: Closed-Form Solution

• Setting ∇𝛽𝐿 መ𝛽; 𝑍 = 0, we have 𝑋⊤𝑋 መ𝛽 = 𝑋⊤𝑌

• Assuming 𝑋⊤𝑋 is invertible, we have

መ𝛽 𝑍 = 𝑋⊤𝑋 −1𝑋⊤𝑌



Note on Invertibility

• Closed-form solution only unique if 𝑋⊤𝑋 is invertible
• Otherwise, multiple solutions exist to 𝑋⊤𝑋 መ𝛽 = 𝑋⊤𝑌

• Intuition: Underconstrained system of linear equations



When Can this Happen?

• Case 1
• Fewer data examples than feature dimension (i.e., 𝑛 < 𝑑)

• Solution: Remove features so 𝑑 ≤ 𝑛

• Solution: Collect more data until 𝑑 ≤ 𝑛

• Case 2: Some feature is a linear combination of the others
• Special case (duplicated feature): For some 𝑗 and 𝑗′, 𝑥𝑖,𝑗 = 𝑥𝑖,𝑗′  for all 𝑖

• Solution: Remove linearly dependent features

• Solution: Use 𝐿2 regularization



Shortcomings of Closed-Form Solution

• Computing መ𝛽 𝑍 = 𝑋⊤𝑋 −1𝑋⊤𝑌 can be challenging

• Computing (𝑿⊤𝑿)−𝟏 is 𝑶 𝒅𝟑

• 𝑑 = 104 features → 𝑂(1012)

• Even storing 𝑋⊤𝑋 requires a lot of memory

• Numerical accuracy issues due to “ill-conditioning”
• 𝑋⊤𝑋 is “barely” invertible

• Then, 𝑋⊤𝑋 −1 has large variance along some dimension

• Regularization helps (more on this later)



Today

• Minimizing the MSE Loss
• Closed-form solution

• Stochastic gradient descent



Iterative Optimization Algorithms

• Recall that linear regression minimizes the loss

𝐿(𝛽; 𝑍) =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2

• Iteratively optimize 𝛽
• Initialize 𝛽1 ← Init …

• For some number of iterations 𝑇, update 𝛽𝑡 ← Step(… )

• Return 𝛽𝑇



Iterative Optimization Algorithms

• Global search: Try random values of 𝛽 and choose the best
• I.e., 𝛽𝑡 independent of 𝛽𝑡−1

• Very unstructured, can take a long time (especially in high dimension 𝑑)!

• Local search: Start from some initial 𝛽 and make local changes
• I.e., 𝛽𝑡 is computed based on 𝛽𝑡−1

• What is a “local change”, and how do we find good one?



Strategy 2: Gradient Descent

• Gradient descent: Update 𝛽 based on gradient ∇𝛽𝐿 𝛽; 𝑍  of 𝐿 𝛽; 𝑍 :

𝛽𝑡+1 ← 𝛽𝑡 − 𝛼 ⋅ ∇𝛽𝐿 𝛽𝑡; 𝑍

• Intuition: The gradient is the direction along which 𝐿 𝛽; 𝑍  changes 
most quickly as a function of 𝛽

• 𝛼 ∈ ℝ is a hyperparameter called the learning rate
• More on this later



Strategy 2: Gradient Descent

• Choose initial value for 𝛽 

• Until we reach a minimum:
• Choose a new value for 𝛽 to reduce 𝐿 𝛽; 𝑍

𝐿 𝛽; 𝑍

𝛽1
𝛽2

Figure by Andrew Ng
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Strategy 2: Gradient Descent

• Choose initial value for 𝛽 

• Until we reach a minimum:
• Choose a new value for 𝛽 to reduce 𝐿 𝛽; 𝑍

Figure by Andrew Ng

Linear regression loss is 
convex, so no local minima
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Strategy 2: Gradient Descent

• Initialize 𝛽1 = 0

• Repeat until convergence:

𝛽𝑡+1 ← 𝛽𝑡 − 𝛼 ⋅ ∇𝛽𝐿 𝛽𝑡; 𝑍

• For linear regression, know the 
gradient from strategy 1

𝐿 𝛽; 𝑍

𝛽

𝛽𝑡

𝛽𝑡+1

For in-place updates 𝛽 ← 𝛽 − 𝛼 ⋅ ∇𝛽𝐿 𝛽; 𝑍 , compute 

all components of ∇𝛽𝐿 𝛽; 𝑍  before modifying 𝛽 
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Strategy 2: Gradient Descent

• Initialize 𝛽1 = 0

• Repeat until convergence:

𝛽𝑡+1 ← 𝛽𝑡 − 𝛼 ⋅ ∇𝛽𝐿 𝛽𝑡; 𝑍

• For linear regression, know the 
gradient from strategy 1
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Strategy 2: Gradient Descent

• Initialize 𝛽1 = 0

• Repeat until 𝛽𝑡 − 𝛽𝑡+1 2 ≤ 𝜖:

𝛽𝑡+1 ← 𝛽𝑡 − 𝛼 ⋅ ∇𝛽𝐿 𝛽𝑡; 𝑍

• For linear regression, know the 
gradient from strategy 1

𝐿 𝛽; 𝑍

𝛽

𝛽𝑡

𝛽𝑡+1

Hyperparameter defining 
convergence



Aside: Gradient As Sum of Sample-Wise Gradients

(Equivalent to our earlier matrix expression of gradient)
• By linearity of the gradient, we have

∇𝛽𝐿 𝛽; 𝑍 = ෍

𝑖=1

𝑛

∇𝛽 𝑦𝑖 − 𝛽⊤𝑥𝑖
2 = ෍

𝑖=1

𝑛

2 𝑦𝑖 − 𝛽⊤𝑥𝑖 𝑥𝑖

• The gradient term induced by a single training data sample is:

∇𝛽 𝑦𝑖 − 𝛽⊤𝑥𝑖
2 = 2 𝑦𝑖 − 𝛽⊤𝑥𝑖 𝑥𝑖

• I.e., the current error 𝑦𝑖 − 𝛽⊤𝑥𝑖 times the feature vector 𝑥𝑖

“Large error samples induce large changes to 𝛽, proportional to their 
feature values.” 



Strategy 2: Gradient Descent

ℎ(𝑥) =  −900 –  0.1 𝑥

Slide by Andrew Ng

𝑓𝛽 𝑥 𝐿 𝛽; 𝑍
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Strategy 2: Gradient Descent

Slide by Andrew Ng

𝑓𝛽 𝑥 𝐿 𝛽; 𝑍

Minimizer of loss function



Stochastic Gradient Descent

What if we just used the single-sample gradient of a randomly drawn 
sample as a noisy approximation to the mean of gradients? 



Batch Gradient Descent
 Initialize 𝛽 
 Repeat T times till convergence {

 
 }

Stochastic Gradient Descent

 Initialize 𝛽

 Randomly shuffle dataset

 Repeat T’ times until convergence {

  For i = 1...N, do

 }

𝛽𝑗 ← 𝛽𝑗 − 𝛼 ෍

𝑖=1

𝑁

2 𝑦𝑖 − 𝛽⊤𝑥𝑖 𝑥𝑖

𝛽𝑗 ← 𝛽𝑗 − 𝛼2 𝑦𝑖 − 𝛽⊤𝑥𝑖 𝑥𝑖

We are descending the original 
loss function 𝐿(𝛽; 𝑍).

At each step, we are descending a 
different loss function specific to the 
chosen sample 𝐿(𝛽; 𝑍𝑖 = { 𝑥𝑖, 𝑦𝑖 }).

Stochastic Gradient Descent



Noisy Gradients in SGD

• Learning rate α  is typically held constant
• One heuristic is to decrease α over time to force 𝜃 to converge: 𝛼𝑡 =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡1

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑢𝑚𝑏𝑒𝑟 𝑡 +𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡2

Full Dataset / “Batch” GD Stochastic GD

Walking down a hill steadily 
Walking down a slightly perturbed 

version of the hill at each step



Choice of Learning Rate

𝐿 𝛽; 𝑍

Problem: 𝛼 too large
• 𝐿 𝛽; 𝑍  increases!

𝐿 𝛽; 𝑍

Problem: 𝛼 too small
• 𝐿 𝛽; 𝑍  decreases slowly

Plot 𝐿 𝛽𝑡; 𝑍train  vs. 𝑡 to diagnose these problems



Choice of Learning Rate

• 𝛼 is a hyperparameter for gradient descent that we need to choose
• Can set just based on training data

• Rule of thumb
• 𝜶 too small: Loss decreases slowly

• 𝜶 too large: Loss increases!

• Try rates 𝛼 ∈ 1.0, 0.1, 0.01, …  (can tune further once one works)



Comparison of Strategies

• Closed-form solution
• No hyperparameters
• Slow if 𝑛 or 𝑑 are large

• Gradient descent
• Need to tune 𝛼
• Scales to large 𝑛 and 𝑑

• For linear regression, there are better optimization algorithms, but 
gradient descent is very general
• Accelerated gradient descent is an important tweak that improves 

performance in practice (and in theory)



𝑳𝟐 Regularized Linear Regression

• Recall that linear regression with 𝐿2 regularization minimizes the loss

𝐿 𝛽; 𝑍 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 + 𝜆 ෍

𝑗=1

𝑑

𝛽𝑗
2 =

1

𝑛
𝑌 − 𝑋𝛽 2

2 + 𝜆 𝛽 2
2



𝑳𝟐 Regularized Linear Regression

• Recall that linear regression with 𝐿2 regularization minimizes the loss

𝐿 𝛽; 𝑍 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 + 𝜆 ෍

𝑗=1

𝑑

𝛽𝑗
2 =

1

𝑛
𝑌 − 𝑋𝛽 2

2 + 𝜆 𝛽 2
2

• Gradient is

∇𝛽𝐿 𝛽; 𝑍 = −
2

𝑛
𝑋⊤𝑌 +

2

𝑛
𝑋⊤𝑋𝛽 + 2𝜆𝛽



Strategy 1: Closed-Form Solution

• Gradient is

∇𝛽𝐿 𝛽; 𝑍 = −
2

𝑛
𝑋⊤𝑌 +

2

𝑛
𝑋⊤𝑋𝛽 + 2𝜆𝛽

• Setting ∇𝛽𝐿 መ𝛽; 𝑍 = 0, we have 𝑋⊤𝑋 + 𝑛𝜆𝐼 መ𝛽 = 𝑋⊤𝑌

• Always invertible if 𝜆 > 0, so we have

መ𝛽 𝑍 = 𝑋⊤𝑋 + 𝑛𝜆𝐼 −1𝑋⊤𝑌



Strategy 2: Gradient Descent

• Gradient is

∇𝛽𝐿 𝛽; 𝑍 = −
2

𝑛
𝑋⊤𝑌 +

2

𝑛
𝑋⊤𝑋𝛽 + 2𝜆𝛽

• Same algorithm as vanilla linear regression (a.k.a. OLS)

• Intuition: The extra term 𝜆𝛽 in the gradient is weight decay that 
encourages 𝛽 to be small



𝛽2

𝛽1

• At this point, the 
gradients are equal 
(with opposite sign)

• Tradeoff depends on 
choice of 𝜆

𝑳𝟐 Regularization 

𝐿 𝛽; 𝑍 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 + 𝜆 ෍

𝑗=1

𝑑

𝛽𝑗
2

Minimizes 
original loss
(or if 𝜆 = 0)

Minimizes 
regularization term

(or if 𝜆 → ∞)

Minimizes 
full loss



What About 𝑳𝟏 Regularization?

• Gradient descent still works!

• Specialized algorithms work better in practice
• Simple one: Gradient descent + soft thresholding

• Basically, if 𝛽𝑡,𝑗 ≤ 𝜆, just set it to zero

• Good theoretical properties



𝑳𝟏 Regularization 

𝐿 𝛽; 𝑍 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 + 𝜆 ෍

𝑗=1

𝑑

𝛽𝑗

𝛽2

𝛽1

Minimizes 
original loss
(or if 𝜆 = 0)

Minimizes 
regularization term

(or if 𝜆 → ∞)

Minimizer of full loss at 
corner → sparse (𝛽1 = 0)!



Loss Minimization View of ML

• Two design decisions
• Model family: What are the candidate models 𝑓? (E.g., linear functions)

• Loss function: How to define “approximating”? (E.g., MSE loss)



Loss Minimization View of ML

• Three design decisions
• Model family: What are the candidate models 𝑓? (E.g., linear functions)

• Loss function: How to define “approximating”? (E.g., MSE loss)

• Optimizer: How do we minimize the loss? (E.g., gradient descent)



This Module: Linear Regression

• Your very first supervised learning algorithm

• Regression with real value label 𝑦𝑖 ∈ ℝ

Next Module:

• Classification with discrete value 𝑦𝑖 ∈ 𝑐1, … , 𝑐𝑘   
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