Announcements

* Quiz 1 due this Thursday, testing mainly lin reg.

* HWO done, grading in progress. Coding grades looked good.
* HW1 in progress.

* Coming soon:
" Project format announcements
" Mid-term preparation materials
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Recap of Linear Regression

* Lec 01: lin reg model class, loss function, feature maps

» Asides (broader than lin reg): performance evaluation & metrics,
function approx. view of ML, model capacity & overfitting

* Lec 02: Regularized lin reg loss function

" Asides (broader than lin reg): train and test error, bias and variance, the
concept of regularization, hyperparameter tuning & validation data

e Lec 03: Ways to optimize lin reg loss function
" Both involve measuring the gradient of loss w.r.t parameters.
» Option 1: set analytical expression of gradient to 0, and solve. Closed-
form solution.
" Option 2: iteratively move in the direction of gradient. Gradient descent.

* Today: wrap-up. Feature standardization and £ regularization



Indexing: from O or 17

* Our slides mostly follow the math tradition of indexing from 1.

n d
1
L(B;Z) = 52(%’ - BTx)* + /12 h
i=1 j=1

N d
1
LBD =— = BTx)? 472 ) |5
i=1 J=1

* With polynomial functions, our index starts from 0, so that §3; is the
coefficients for the j-th order term:

fg(x) = Bo + B1x + Box? + B3x> + Bax* + -+ Brox™°



Indexing: from O or 17

 With intercept term (¢p(x) =[1 x; -+ X4]"), no penalty on the weight
for the intercept term (which is 5, here):

* L(B;Z) = % i —BTx)*+ A Zj'l=2 '81'2



Features in Linear Regression

 Feature Standardization

* Automatic Feature Selection with L1 Regularization



Feature Standardization

* Unregularized linear regression is invariant to feature scaling
" Suppose we scale x;; « 2x;; for all examples x;
= Without regularization, simply use f8; < [;/2 to obtain equivalent solution

: Bj
" |[n particular, 5 2x;ij = Bj - Xij

* Not true for regularlzed regression!
" Penalty (,8]/2) is scaled by 1/4 (not cancelled out!)

* L(B;2) ==Xy (v — BTx)? + A(B + -+ BF + -+ B)

T 2
* L(B; Z)_— i (yl—g in) +/1(32+ +ﬁ’+ +ﬂd)



Feature Standardization

e Rescale features to zero mean and unit variance

Xij
Ij

) _ 1N 2 _ 1oN 2
* Xij Hj = ﬁzi=1 Xi,j 0j = N2i=1(xi,j - l‘j)

" Note: When using intercept term, do not rescale x; = 1
» Can be sensitive to outliers (fix by dropping outliers)

 Makes it easier to estimate coefficients
e Often better encodes real variations in data

« Common Rookie Error: Must use same transformation during training & prediction

" Please always compute y; and g; on training data, and use the same values when
standardizing test data



Automatic Feature Set Selection
with L1 Regularization



L, Regularization — L4 Regularization

* Sparsity: Can we minimize ||B]l, = ‘{] | B; # O}‘, the number of non-zero
components? (This is called Ly regularization)

= Automatic feature selection!
" Improves interpretability.

1\ T \2
LB Z) == ) (i = BTx)? + 11Bll;
i=1
* Challenge: ||B]|, is not differentiable, making it hard to optimize

* Solution: L4 Regularization
= \We can instead use an L; norm ||£]|; as the regularizer!
= Still harder to optimize than L, norm, but at least it is convex



L4 Regularization

For low values of A = still
get non-sparse solutions

,82 Minimizes
original loss
(orif A = 0)

Minimizer of full loss at
corner for high enough A 2
sparse ([, = 0)!

Minimizes ,31
regularization term
(orif A = o)

. d
1
LB 2 =~ = BTx)? 47 ) |5
i=1 J=1



L. Regularization for Feature Selection

* Step 1: Construct a lot of features and add to feature map

* Step 2: Use L4 regularized regression to “select” subset of features
" |.e., coefficient B; # 0 = feature j is selected)

e Optional: Remove unselected features from the feature map and run vanilla
linear regression (a.k.a. ordinary least squares)



Optimizing L1 Regularized Linear Regression?

e Gradient descent still works!

* Specialized algorithms work better in practice
" Simple one: Gradient descent + soft thresholding

= Basically, if ‘,Bt,j| < A, just set it to zero
" Good theoretical properties



What About Classification Problems?
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Recall: Supervised Learning

300

Data Z = {(x;, v}y f(Z) = argming L(B; 2) Model /7,
\ L encodes y; = f5(x;)

PS: sometimes denoted D




Recall: Regression

300

Data Z = {(x;,y)}j~y  B(Z) = argming L(B; Z) Model /72

\ L encodes y; = f5(x;)

Label is a real value y;, € R




Recall: Classification

300

Data Z = {(x;,y)}j~y  B(Z) = argming L(B; Z) Model /72

\ L encodes y; = f5(x;)

Label is a discrete value v, € Y = {1, ..., k}




(Binary) Classification

* Input: Dataset 7 = {(x{,v1), (x2,v2), ..., (6, v) §
* Output: Model y; = f5(x;)
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= \ ‘

® -
o .
>
Image: https://eyecancer.com/uncategorized/choroidal-
x1 (tumor SiZE) metastasis-test/

Example: Malignant vs. Benign Ocular Tumor



Loss Minimization View of ML

* Three design decisions
* Model family: What are the candidate models /? (E.g., linear functions)
" Loss function: How to define “approximating”? (E.g., MSE loss)
" Optimizer: How do we optimize the loss? (E.g., gradient descent)

* How do we adapt to classification?



Trying to Come up With A Model Class For Logistic

Regression




Repurpose Linear Regression For Classification?

Given {(x1, V1), (x2,v5), ..., (xn, Vn)} Where x; € RP,y; € {0, 1}

Predict y; = B x;

Predict y; =class 1if BTx; > 0 o >
Predict y; =class 0 if BTx; < 0 o




Repurpose Linear Regression For Classification?

Predict y; =class 1 if BTx; = 0
Predict y; = class 0 if BTx; < 0

’
O O ffﬂ\ Linear

O O ¢ “decision boundary”

’
O ’
’

O /

’

’

What if the data requires a non-linear decision boundary?



Non-Linear Decision Boundaries Thru Feature Expansion

Can apply basis expansion to features, same as with linear regression

Non-linear
“decision boundary”

Looks like we have a reasonable model class to start from ...

31



Can We Come Up With A Loss Function?




Loss Function

. — Training dataset overlay on
* Input: Dataset Z = {(x{, V), (x5, V5), ..., (56, Vi, ) } o sion Boundar,

* Classification:
= Labels y; € {0, 1} ;
= Predict y; = 1(f " x; = 0)
» 1(C) equals 1if C istrueand 0 if C is false < °|§
" How to learn [5? Need a loss function!

Any ideas?




Candidate Classification Loss Function: Inaccuracy

* (In)accuracy / Error ﬁate:
1
L) =2 1 (3 # f3()
=1

* Indeed often captures what we care about in
terms of classifier performance. Good
performance metric.

< 0
e But bad loss function, because )
computationally intractable to optimize 5
= Discontinuous measures are often hard to
optimize. As an example, think about gradient o
descent ...

* Need to “soften” this in some way ... make

more continuous
’?fPennEngineermg




Revisiting the Model Class




Making Soft Decisions: Revisiting the Model Class

Predict y; =class 1if3"x; = 0 O \;’
Predict y; = class 0 if 3 "x; < 0 O /
O O 7
O ’
/
O /
/
Predict p(y; = 1|x;, B) based on the value of 5 " x; ,I
Intuition:

if5 ' x;has large positive value, then high p(y; = 1]|x;,8) = 1
large negative value, then low p(y; = 1|x;, 8) - 0
zero, then p(y; = 1|x;, B) = 0.5



Logistic Regression

How to convert from ' x; which lies in Logistic / Sigmoid Function
(—o0, ) to a meaningful probability? 10 nat
/ﬂz)
Logistic regression model: 0.5
p(y=11x;p) =0(B x),
1 0.0 —

— —6 —4 -2 0 2 4 6

where 6(z) = ———

p(y=0[x;8)=1—-p(y=1|x;p)

Provides a score for each possible outcomey =0ory =1 38



Example: Interpretation of Hypothesis Output

Example: Ocular tumor diagnosis from size

* = [ 92 ]:[ tumolrSize ]

p(y=1|x;B)=0("x),

- Tumor has a 85% chance of being class 1: malignant

Image: https://eyecancer.com/uncategorized/choroidal-
metastasis-test/
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Decision Bou ndary? Exercise: What happens to x at

infinite +/- distance from boundary?
p(y=1|x;B8)=0(B"x) =05

So, decision boundary is at:

ogistic / Sigmoid Function

Lfx =0

Consistent with:
Predict y; =class 1if BTx; > 0
Predict y; =class 0 if BTx; < 0

We now have a model class that can predict
meaningful binary class probabilities!




Soft Non-Linear Decision Boundaries

Same feature expansion trick still works.

1 1.00

-0.75

-0.50

P(y = 1|x)

-0.25

0.00
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And Now, A Probability-Based Loss Function for

Classification




“Likelihood” of Data Under a Model

“Likelihood” I (f) of data D = {(x4, y1), ..., (Xy, ¥n)} under some
probabilistic model with parameters  describes, loosely:

“if this model assigned labels to each x; in the data, what is the probability

that it would assign exactly the true labels y; in D”?

Which of these datasets has high likelihood under this model?

0 1 2 3 4 0 1 2 3 4

High likelihood I, (B) Low likelihood I ()

44



“Likelihood” of Data Under a Model

* In practice, the dataset is fixed, and we are looking to find good models.

Which of these models does the data have high likelihood under?

o [l N w H (92 (@) ~

High likelihood 15 () Low likelihood I3, (B)

45



“Likelihood” of Data Under a LogReg Model

“Likelihood” I (B):“What is the probability that the model with parameters 3
would assign labels y; to the samples x; for all (xl,yl _, in the dataset D?”

For a single sample dataset D = {(x1,y7)}, th(|s would be:
o(B"x1) ifty; =1

B) = = =X1;0) =+
p(yilx; B) =p(y =y1|1x =x,;0) 1_0(3Tx1) ify, =0

For a dataset D = {(x;, y;)}}~, with N samples:

lp<ﬁ>=]_[p<yi|xi:ﬁ>

Because independent assignment of y;s to x;s |
Recall joint probability of two “independent” events =
product of their probabilities. '

46



“Maximum Likelihood Estimation”

“Likelihood” of a dataset D with N samples under model with parameters f :

I (B) —ﬂpmlxl,ﬁ)

We are looking for the ﬁ that maximizes the likelihood of the training data,
so the optimal B is the “maximum likelihood estlmate” (MLE):

MLE — 4I'g maX Ip(B) = al‘gmaXl—[P()’l | xi; B)

Note: Since each probability is in [0,1], this product is a very small number.
What happens if you multiply 0.1 by itself 10,000 times in a computer? Bad things!

47



“Log Likelihood” Objective

Need to solve B,z = argmax [(B) = argmax[[, p(v; | x;; B)

B B

Since the logarithm is always higher for higher numbers, we can take the log

without changing the optimal f:

N
Buie = argmax((B) = argmax | |p(yi %)
=1

This is called the
log likelihood

N
=argml?leogp(yilxi:ﬂ) —
i=

% Sum avoids underflow

48



“Negative Log-Likelihood Loss”

N
MLE — argmﬁxzmgp(yi | xi; B)
=1

2

= argmin— > logp(y; | x; ;ﬁ)‘g

B

hg(x) =p(y = 1|x; B) =

1+ e B'x

Taking the negative turns a
maximization problem into a
minimization problem

=1

log(1 — hg(x;))

~ {108 hg(x;)

Just to avoid writing this expression on two lines, let’s write this as:

logp(y; | x;; B) =[yiloghg(x;) + (1 —y;) log(1 — hg(x;))]




Summing up the Logistic Regression Loss Function
N
BMLE = argm[;in_;logp(% | xi;B)

logp(y; | x;;B) =[yiloghg(x;) + (1 — y;) log(1 — hg(x;))]

Logistic regression maximum likelihood loss function:

N
mein — Z[yilog hg(x;) + (1 —y;)log(1 — hg(x;)) ]
i=1

50



Thought Exercise: Maximum Likelihood More Broadly

 Maximum likelihood estimation is a general framework for thinking about
objective function design for ML problems.

* In fact, the linear regression objective (MSE) can also be viewed as the
negative log-likelihood of the training dataset under the model.

* Try to think through how: In particular, what form should p(y|x; B) = f"x
take so that log likelihood(B) = —%ZD(ﬁTxi — y;)?



Intuition on the Logistic Regression Max-Likelihood

Objective




Intuition on the Objective

* Loss for example i is

—log(a(,b’Txl-)) ify, =1 ]
. log(1—0(B"x)) ifyi=0

% Penn Engineering



Intuition on the Objective

* Loss for example i is

—log(a(,b’Txl-)) ify, =1
. log(1—0(B"x)) ifyi=0

% Penn Engineering

0.2

0.4

0.6

0.8

1.0



Intuition on the Objective

¢ Ifyl = 1:
" Ifps(Y =1]x;)=1,thenloss =0 41
"Aspp(Y =1]x) - 0,loss » o

80 02 04 06 08

pp(y1x)

—y; log(a(FTx))|— (1 = ) - log(1 — a(87x))

% Penn Engineering

1.0



Intuition on the Objective

’lfylzl

" Ifps(Y =1]x;)=1,thenloss =0
"Aspp(Y =1]x) - 0,loss » o

‘|fyl=O

= 1fps(Y =0]x;)=1,thenloss =0
" Aspp(Y =01x;)—> 0,loss » o

% Penn Engineering

—Yi

' log(a(ﬁTxl-))

—(1-y)-

4 — y=0
3.
(V)]
(Vp)
O 5]
1_
90 02 04 06 08 L0

pp(y1x)

log(1 —a(8x))




Optimizing the Logistic Regression Objective




Optimization for Logistic Regression

* To optimize the NLL loss, we need its gradient:

Vﬁf(ﬁiz) = —Dic1 Vi Vi log(a(,BTxi)) + (1 -y)- Vg 108(1 — U(,BTXL'))
_ S Vgo(BTx) o Vgo(Bxi)
O_I(Z) - i=1yl ) O'(BTxi) ( yl) 1_0'(BTxi)
= a(z)(l — a(z)) _ n ' U(BTXi)(l_U(BTXi))'Xi _ . U(BTxi)(l—U(BTxi))'Xi

i=1i " a(BTx;) (1 =) 1-o(B "x;)
l 1 Vi (1 U(,BTXi)) " Xi — (1- }’i) ' U(,BTxi) " Xi
- i=1(3’i - U(ﬁTxi)) " Xi



Optimization for Logistic Regression
* Gradient of NLL:

Vpt(B;72) = E(U(ﬁTxi) — Vi) X
i=1

 Surprisingly similar to the gradient for linear regression!
" Only difference is the o

 Gradient descent works as before
= No closed-form solution for 5 (2)



Gradient Descent for Logistic Regression

* Initialize
* Repeat until convergence
N
p1 < b1 — “z(g(ﬁ-rxi) —¥;)
i=1
(N

By < By —a| ) (0(8Tx) =y + 26,

=1

simultaneous
update for
j=2..D

60
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