
Announcements

• Quiz 1 due this Thursday, testing mainly lin reg.

• HW0 done, grading in progress. Coding grades looked good. 

• HW1 in progress.

• Coming soon:

▪ Project format announcements

▪Mid-term preparation materials



CIS 4190/5190: Lec 05 Mon Sep 16, 
2024

First few mins: Linear Regression 
Wrap-Up

Robot Image Credit: Viktoriya Sukhanova © 123RF.com



Recap of Linear Regression

• Lec 01: lin reg model class, loss function, feature maps

▪ Asides (broader than lin reg): performance evaluation & metrics, 
function approx. view of ML, model capacity & overfitting 

• Lec 02: Regularized lin reg loss function

▪ Asides (broader than lin reg): train and test error, bias and variance, the 
concept of regularization, hyperparameter tuning & validation data

• Lec 03: Ways to optimize lin reg loss function

▪ Both involve measuring the gradient of loss w.r.t parameters.

▪Option 1: set analytical expression of gradient to 0, and solve. Closed-
form solution. 

▪Option 2: iteratively move in the direction of gradient. Gradient descent.

• Today: wrap-up. Feature standardization and ℓ𝟏 regularization 



Indexing: from 0 or 1?

• Our slides mostly follow the math tradition of indexing from 1.

• With polynomial functions, our index starts from 0, so that 𝛽𝑗  is the 
coefficients for the j-th order term:

𝑓𝜷 𝑥 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + ⋯ 𝛽10𝑥10
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Indexing: from 0 or 1?

• With intercept term (𝜙 𝑥 = 1 𝑥1 … 𝑥𝑑
⊤), no penalty on the weight 

for the intercept term (which is 𝛽1 here):

• 𝐿 𝛽; 𝑍 =
1

𝑛
σ𝑖=1

𝑛 𝑦𝑖 − 𝛽⊤𝑥𝑖
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𝑑 𝛽𝑗
2



Features in Linear Regression

• Feature Standardization

• Automatic Feature Selection with L1 Regularization



Feature Standardization

• Unregularized linear regression is invariant to feature scaling
▪ Suppose we scale 𝑥𝑖𝑗 ← 2𝑥𝑖𝑗 for all examples 𝑥𝑖
▪ Without regularization, simply use 𝛽𝑗 ← 𝛽𝑗/2 to obtain equivalent solution

▪ In particular, 
𝛽𝑗

2
⋅ 2𝑥𝑖𝑗 = 𝛽𝑗 ⋅ 𝑥𝑖𝑗

• Not true for regularized regression!
▪ Penalty 𝛽𝑗/2

2
 is scaled by 1/4 (not cancelled out!)

• 𝐿 𝛽; 𝑍 =
1

𝑛
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⊤
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4
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Feature Standardization

• Rescale features to zero mean and unit variance

• 𝑥𝑖,𝑗 ←
𝑥𝑖,𝑗−𝜇𝑗

𝜎𝑗
 𝜇𝑗 =

1

𝑁
σ𝑖=1

𝑁 𝑥𝑖,𝑗  𝜎𝑗
2 =

1

𝑁
σ𝑖=1

𝑁 𝑥𝑖,𝑗 − 𝜇𝑗
2

▪ Note: When using intercept term, do not rescale 𝑥1 = 1
▪ Can be sensitive to outliers (fix by dropping outliers)

• Makes it easier to estimate coefficients
• Often better encodes real variations in data

• Common Rookie Error: Must use same transformation during training & prediction
▪ Please always compute 𝜇𝑗 and 𝜎𝑗 on training data, and use the same values when 

standardizing test data



Automatic Feature Set Selection 
with L1 Regularization



𝑳𝟎 Regularization → 𝑳𝟏 Regularization  

• Sparsity: Can we minimize 𝛽 0 = 𝑗 𝛽𝑗 ≠ 0 , the number of non-zero 
components? (This is called 𝑳𝟎 regularization)

▪ Automatic feature selection!

▪ Improves interpretability.

• Challenge: 𝛽 0 is not differentiable, making it hard to optimize

• Solution: 𝑳𝟏 Regularization 

▪We can instead use an 𝐿1 norm 𝛽 1 as the regularizer!

▪ Still harder to optimize than 𝐿2 norm, but at least it is convex

𝐿 𝛽; 𝑍 =
1

𝑛


𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 + 𝜆||𝛽||0



𝑳𝟏 Regularization 

𝐿 𝛽; 𝑍 =
1

𝑛


𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 + 𝜆 

𝑗=1

𝑑

𝛽𝑗

𝛽2

𝛽1

Minimizes 
original loss
(or if 𝜆 = 0)

Minimizes 
regularization term

(or if 𝜆 → ∞)

Minimizer of full loss at 
corner for high enough 𝜆 → 

sparse (𝛽1 = 0)!

For low values of 𝜆 → still 
get non-sparse solutions



𝑳𝟏 Regularization for Feature Selection

• Step 1: Construct a lot of features and add to feature map

• Step 2: Use 𝐿1 regularized regression to “select” subset of features

▪ I.e., coefficient 𝛽𝑗 ≠ 0 → feature 𝑗 is selected)

• Optional: Remove unselected features from the feature map and run vanilla 
linear regression (a.k.a. ordinary least squares)



Optimizing 𝑳𝟏 Regularized Linear Regression?

• Gradient descent still works!

• Specialized algorithms work better in practice

▪ Simple one: Gradient descent + soft thresholding

▪ Basically, if 𝛽𝑡,𝑗 ≤ 𝜆, just set it to zero

▪ Good theoretical properties



What About Classification Problems?
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Logistic Regression: Linear 
Models for Classification

Robot Image Credit: Viktoriya Sukhanova © 123RF.com



Recall: Supervised Learning

Data 𝑍 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛 መ𝛽 𝑍 = arg min𝛽 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦𝑖 ≈ 𝑓𝛽 𝑥𝑖

Model 𝑓𝛽 𝑍

PS: sometimes denoted 𝒟



Recall: Regression

Data 𝑍 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛 መ𝛽 𝑍 = arg min𝛽 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦𝑖 ≈ 𝑓𝛽 𝑥𝑖

Model 𝑓𝛽 𝑍

Label is a real value 𝑦𝑖 ∈ ℝ



Recall: Classification

Data 𝑍 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛 መ𝛽 𝑍 = arg min𝛽 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦𝑖 ≈ 𝑓𝛽 𝑥𝑖

Model 𝑓𝛽 𝑍

Label is a discrete value 𝑦𝑖 ∈ 𝒴 = 1, … , 𝑘



(Binary) Classification

• Input: Dataset 𝑍 = ሼ 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , ሽ𝑥𝑛, 𝑦𝑛  

• Output: Model 𝑦𝑖 ≈ 𝑓𝛽 𝑥𝑖

Image: https://eyecancer.com/uncategorized/choroidal-
metastasis-test/𝑥1 (tumor size)

𝑥
2

 (
ag

e
)

Example: Malignant vs. Benign Ocular Tumor



Loss Minimization View of ML

• Three design decisions

▪Model family: What are the candidate models 𝑓? (E.g., linear functions)

▪ Loss function: How to define “approximating”? (E.g., MSE loss)

▪Optimizer: How do we optimize the loss? (E.g., gradient descent)

• How do we adapt to classification?



Trying to Come up With A Model Class For Logistic 
Regression



Repurpose Linear Regression For Classification?

Given ሼ 𝒙𝟏, 𝑦1 , 𝒙𝟐, 𝑦2 , … , ሽ(𝒙𝑵, 𝑦𝑁)  where 𝒙𝒊 ∈ ℝ𝐷 , 𝑦𝑖 ∈ ሼ0, 1ሽ 

Predict 𝑦𝑖 = 𝜷𝑇𝒙𝑖

Predict 𝑦𝑖 = class 1 if 𝜷𝑇𝒙𝑖 ≥ 0
Predict 𝑦𝑖 = class 0 if 𝜷𝑇𝒙𝑖 < 0



Repurpose Linear Regression For Classification?

Predict 𝑦𝑖 = class 1 if 𝜷𝑇𝒙𝑖 ≥ 0
Predict 𝑦𝑖 = class 0 if 𝜷𝑇𝒙𝑖 < 0

Linear 
“decision boundary”

What if the data requires a non-linear decision boundary?



Non-Linear Decision Boundaries Thru Feature Expansion

Can apply basis expansion to features, same as with linear regression

31

𝒙 =
1
𝑥1

𝑥2

→

1
𝑥1

𝑥2

𝑥1𝑥2

𝑥1
2

𝑥2
2

𝑥1
2𝑥2

𝑥1𝑥2
2

⋮
Non-linear 

“decision boundary”

Looks like we have a reasonable model class to start from … 



Can We Come Up With A Loss Function?



Loss Function

• Input: Dataset 𝑍 = ሼ 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , ሽ𝑥𝑛, 𝑦𝑛  

• Classification:

▪ Labels 𝑦𝑖 ∈ 0, 1

▪ Predict 𝑦𝑖 ≈ 1 𝛽⊤𝑥𝑖 ≥ 0

▪ 1 𝐶  equals 1 if 𝐶 is true and 0 if 𝐶 is false

▪ How to learn 𝛽? Need a loss function!

Training dataset overlay on 
decision boundary

Any ideas?



Candidate Classification Loss Function: Inaccuracy

• (In)accuracy / Error Rate:

𝐿 𝛽; 𝑍 =
1

𝑛


𝑖=1

𝑛

1 𝑦𝑖 ≠ 𝑓𝛽 𝑥𝑖

• Indeed often captures what we care about in 
terms of classifier performance. Good 
performance metric.

• But bad loss function, because 
computationally intractable to optimize
▪ Discontinuous measures are often hard to 

optimize. As an example, think about gradient 
descent …

• Need to “soften” this in some way … make 
more continuous 𝐿 𝛽; 𝑍 =

6

50



Revisiting the Model Class



Making Soft Decisions: Revisiting the Model Class

Predict 𝑦𝑖 = class 1 if𝛽⊤𝑥𝑖 ≥ 0
Predict 𝑦𝑖 = class 0 if𝛽⊤𝑥𝑖 < 0

Predict p(𝑦𝑖 = 1|𝑥𝑖 , 𝛽) based on the value of𝛽⊤𝑥𝑖

Intuition:
if𝛽⊤𝑥𝑖has large positive value, then high p 𝑦𝑖 = 1 𝑥𝑖 , 𝛽 → 1 

large negative value, then low  p 𝑦𝑖 = 1 𝑥𝑖 , 𝛽 → 0 
zero, then p 𝑦𝑖 = 1 𝑥𝑖 , 𝛽 ≈ 0.5  



Logistic Regression

How to convert from 𝛽⊤𝑥𝑖 which lies in 
(−∞, ∞) to a meaningful probability?

Logistic regression model:
𝑝 𝑦 = 1 𝒙 ; 𝛽) = 𝜎 𝛽⊤𝑥 ,

where  𝜎 𝑧 =
1

1 + 𝑒−𝑧

38

Logistic / Sigmoid Function

𝑝  𝑦 = 0 𝒙 ; 𝛽) = 1 − 𝑝  𝑦 = 1 𝒙 ; 𝛽)

Provides a score for each possible outcome 𝑦 = 0 or 𝑦 = 1



Example: Interpretation of Hypothesis Output
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→ Tumor has a 85% chance of being class 1: malignant 

Example:  Ocular tumor diagnosis from size

Image: https://eyecancer.com/uncategorized/choroidal-
metastasis-test/

𝑥 =
𝑥1

𝑥2
=

1
𝑡𝑢𝑚𝑜𝑟𝑆𝑖𝑧𝑒

𝑝 𝑦 = 1 𝒙 ; 𝛽) = 𝜎 𝛽⊤𝑥 ,



Decision Boundary?

𝑝 𝑦 = 1 𝒙 ; 𝛽) = 𝜎 𝛽𝑇𝒙 = 0.5

So, decision boundary is at:

𝛽𝑇𝒙 = 0

Consistent with:
Predict 𝑦𝑖 = class 1 if 𝛽𝑇𝒙𝑖 ≥ 0
Predict 𝑦𝑖 = class 0 if 𝛽𝑇𝒙𝑖 < 0

Logistic / Sigmoid Function

We now have a model class that can predict 
meaningful binary class probabilities!

Exercise: What happens to 𝒙 at 
infinite +/- distance from boundary? 



Soft Non-Linear Decision Boundaries

Same feature expansion trick still works.

41
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And Now, A Probability-Based Loss Function for 
Classification



“Likelihood” of Data Under a Model

“Likelihood” 𝑙𝒟 𝜷  of data 𝒟 = 𝒙1, 𝑦1 , … , 𝒙𝑁 , 𝑦𝑁  under some 
probabilistic model with parameters 𝜷 describes, loosely: 

“if this model assigned labels to each 𝒙𝑖  in the data, what is the probability 
that it would assign exactly the true labels 𝑦𝑖 in 𝒟”?

44
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Which of these datasets has high likelihood under this model? 

High likelihood 𝑙𝒟 𝜷 Low likelihood 𝑙𝒟 𝜷



“Likelihood” of Data Under a Model

45
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Which of these models does the data have high likelihood under? 

High likelihood 𝑙𝒟 𝜷 Low likelihood 𝑙𝒟 𝜷

• In practice, the dataset is fixed, and we are looking to find good models. 
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“Likelihood” of Data Under a LogReg Model

“Likelihood” 𝑙𝒟 𝜷 :“What is the probability that the model with parameters 𝛽 
would assign labels 𝑦𝑖 to the samples 𝒙𝑖 for all 𝒙𝑖 , 𝑦𝑖 𝑖=1

𝑁  in the dataset 𝒟?”

For a single sample dataset 𝒟 = ሼ 𝒙1, 𝑦1 ሽ, this would be:

𝑝 𝑦1 𝒙1; 𝜷 = 𝑝 𝑦 = 𝑦1 𝒙 = 𝒙1 ; 𝜽) = ቐ
𝜎 𝜷𝑇𝒙1 if 𝑦1 = 1

1 − 𝜎 𝜷𝑇𝒙1 if 𝑦1 = 0

46

For a dataset 𝒟 = 𝒙𝑖 , 𝑦𝑖 𝑖=1
𝑁  with 𝑁 samples:

𝑙𝒟 𝜷 = ෑ

𝑖=1

𝑁

𝑝 𝑦𝑖 𝒙𝒊 ; 𝜷 )

Because independent assignment of 𝑦𝑖s to 𝑥𝑖s 
Recall: joint probability of two “independent” events = 

product of their probabilities.



“Maximum Likelihood Estimation”

“Likelihood” of a dataset 𝒟 with 𝑁 samples under model with parameters 𝜷 :

𝑙𝒟 𝜷 = ෑ

𝑖=1

𝑁

𝑝 𝑦𝑖 𝒙𝒊 ; 𝜷)

We are looking for the 𝜷 that maximizes the likelihood of the training data, 
so the optimal 𝜷 is the “maximum likelihood estimate” (MLE): 

𝜷𝑀𝐿𝐸 = arg max
𝜷

𝑙𝒟 𝜷 = arg max
𝜷

ෑ

𝑖=1

𝑁

𝑝 𝑦𝑖 𝒙𝒊 ; 𝜷)

47

Note: Since each probability is in [0,1], this product is a very small number. 
What happens if you multiply 0.1 by itself 10,000 times in a computer? Bad things! 



“Log Likelihood” Objective

Since the logarithm is always higher for higher numbers, we can take the log 
without changing the optimal 𝜷: 

48

Need to solve 𝜷𝑀𝐿𝐸 = arg max
𝜷

𝑙 𝜷 = arg max
𝜷

ς𝑖=1
𝑁 𝑝  𝑦𝑖  𝒙𝒊 ; 𝜷)

Sum avoids underflow

This is called the 
log likelihood

𝜷𝑀𝐿𝐸 = arg max
𝜷

𝑙 𝜷 = arg max
𝜷

ෑ

𝑖=1

𝑁

𝑝 𝑦𝑖 𝒙𝒊 ; 𝜷)

= arg max
𝜷



𝑖=1

𝑁

log 𝑝 𝑦𝑖 𝒙𝒊 ; 𝜷 )



“Negative Log-Likelihood Loss”

49

Taking the negative turns a 
maximization problem into a 

minimization problem

𝜷𝑀𝐿𝐸 = arg max
𝜷



𝑖=1

𝑁

log 𝑝 𝑦𝑖 𝒙𝒊 ; 𝜷)

= arg min
𝜷

− 

𝑖=1

𝑁

log 𝑝 𝑦𝑖 𝒙𝒊 ; 𝜷 )

= ൝
log ℎ𝜷 𝒙𝑖 if 𝑦𝑖 = 1

log(1 − ℎ𝜷 𝒙𝑖 ) if 𝑦𝑖 = 0

ℎ𝛽 𝑥 = 𝑝(𝑦 = 1|𝒙; 𝜷) =
1

1 + 𝑒−𝜷𝑻𝒙

log 𝑝  𝑦𝑖  𝒙𝒊 ; 𝜷 ) = [𝑦𝑖 log ℎ𝜷 𝒙𝑖 + 1 − 𝑦𝑖 log(1 − ℎ𝜷 𝒙𝑖 )]

Just to avoid writing this expression on two lines, let’s write this as: 
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Summing up the Logistic Regression Loss Function

Logistic regression maximum likelihood loss function:

min
𝜃

− 

𝑖=1

𝑁

𝑦𝑖log ℎ𝜷(𝒙𝑖) + (1 − 𝑦𝑖) log(1 − ℎ𝜷 𝒙𝑖 )

= arg min
𝜷

− 

𝑖=1

𝑁

log 𝑝 𝑦𝑖 𝒙𝒊 ; 𝜷 )𝜷𝑀𝐿𝐸

log 𝑝  𝑦𝑖  𝒙𝒊 ; 𝜷 ) = [𝑦𝑖 log ℎ𝜷 𝒙𝑖 + 1 − 𝑦𝑖 log(1 − ℎ𝜷 𝒙𝑖 )]



Thought Exercise: Maximum Likelihood More Broadly

• Maximum likelihood estimation is a general framework for thinking about 
objective function design for ML problems. 

• In fact, the linear regression objective (MSE) can also be viewed as the 
negative log-likelihood of the training dataset under the model. 

• Try to think through how: In particular, what form should 𝑝 𝑦 𝑥; 𝛽 = 𝛽𝑇𝑥 

take so that log likelihood 𝛽 ≈ −
1

𝑁
σ𝒟 𝛽𝑇𝑥𝑖 − 𝑦𝑖

2



Intuition on the Logistic Regression Max-Likelihood 
Objective



Intuition on the Objective

• Loss for example 𝑖 is

ቐ
− log 𝜎 𝛽⊤𝑥𝑖

− log 1 − 𝜎 𝛽⊤𝑥𝑖

if 𝑦𝑖 = 1
if 𝑦𝑖 = 0

lo
g

𝑧



Intuition on the Objective

• Loss for example 𝑖 is

ቐ
− log 𝜎 𝛽⊤𝑥𝑖

− log 1 − 𝜎 𝛽⊤𝑥𝑖

if 𝑦𝑖 = 1
if 𝑦𝑖 = 0

−
lo

g
𝑧



Intuition on the Objective

• If 𝑦𝑖 = 1:
▪ If 𝑝𝛽 𝑌 = 1 𝑥𝑖 = 1, then loss = 0

▪ As 𝑝𝛽 𝑌 = 1 𝑥𝑖 → 0, loss → ∞

𝑝𝛽 𝑦 𝑥

lo
ss

−𝑦𝑖 ⋅ log 𝜎 𝛽⊤𝑥𝑖 − 1 − 𝑦𝑖 ⋅ log 1 − 𝜎 𝛽⊤𝑥𝑖



Intuition on the Objective

• If 𝑦𝑖 = 1:
▪ If 𝑝𝛽 𝑌 = 1 𝑥𝑖 = 1, then loss = 0

▪ As 𝑝𝛽 𝑌 = 1 𝑥𝑖 → 0, loss → ∞

• If 𝑦𝑖 = 0
▪ If 𝑝𝛽 𝑌 = 0 𝑥𝑖 = 1, then loss = 0

▪ As 𝑝𝛽 𝑌 = 0 𝑥𝑖 → 0, loss → ∞

𝑝𝛽 𝑦 𝑥

lo
ss

−𝑦𝑖 ⋅ log 𝜎 𝛽⊤𝑥𝑖 − 1 − 𝑦𝑖 ⋅ log 1 − 𝜎 𝛽⊤𝑥𝑖



Optimizing the Logistic Regression Objective



Optimization for Logistic Regression

• To optimize the NLL loss, we need its gradient:

        ∇𝛽ℓ 𝛽; 𝑍 = − σ𝑖=1
𝑛 𝑦𝑖 ⋅ ∇𝛽 log 𝜎 𝛽⊤𝑥𝑖 + 1 − 𝑦𝑖 ⋅ ∇𝛽 log 1 − 𝜎 𝛽⊤𝑥𝑖

        ∇𝛽ℓ 𝛽; 𝑍 = − σ𝑖=1
𝑛 𝑦𝑖 ⋅

∇𝛽𝜎 𝛽⊤𝑥𝑖

𝜎 𝛽⊤𝑥𝑖
− 1 − 𝑦𝑖 ⋅

∇𝛽𝜎 𝛽⊤𝑥𝑖

1−𝜎 𝛽⊤𝑥𝑖

        ∇𝛽ℓ 𝛽; 𝑍 = − σ𝑖=1
𝑛 𝑦𝑖 ⋅

𝜎 𝛽⊤𝑥𝑖 1−𝜎 𝛽⊤𝑥𝑖 ⋅𝑥𝑖

𝜎 𝛽⊤𝑥𝑖
− 1 − 𝑦𝑖 ⋅

𝜎 𝛽⊤𝑥𝑖 1−𝜎 𝛽⊤𝑥𝑖 ⋅𝑥𝑖

1−𝜎 𝛽⊤𝑥𝑖

        ∇𝛽ℓ 𝛽; 𝑍 = − σ𝑖=1
𝑛 𝑦𝑖 ⋅ 1 − 𝜎 𝛽⊤𝑥𝑖 ⋅ 𝑥𝑖 − 1 − 𝑦𝑖 ⋅ 𝜎 𝛽⊤𝑥𝑖 ⋅ 𝑥𝑖

        ∇𝛽ℓ 𝛽; 𝑍 = − σ𝑖=1
𝑛 𝑦𝑖 − 𝜎 𝛽⊤𝑥𝑖 ⋅ 𝑥𝑖

𝜎′ 𝑧

= 𝜎 𝑧 1 − 𝜎 𝑧



Optimization for Logistic Regression
• Gradient of NLL:

∇𝛽ℓ 𝛽; 𝑍 = 

𝑖=1

𝑛

𝜎 𝛽⊤𝑥𝑖 − 𝑦𝑖 ⋅ 𝑥𝑖

• Surprisingly similar to the gradient for linear regression!

▪Only difference is the 𝜎

• Gradient descent works as before

▪No closed-form solution for መ𝛽 𝑍



Gradient Descent for Logistic Regression

60

• Initialize 𝛽 

• Repeat until convergence

simultaneous 
update for 
𝑗 = 2 ... D

𝛽1 ← 𝛽1 − 𝛼 

𝑖=1

𝑁

(𝜎 𝛽⊤𝑥𝑖 − 𝑦𝑖)

𝛽𝑗 ← 𝛽𝑗 − 𝛼 

𝑖=1

𝑁

𝜎 𝛽⊤𝑥𝑖 − 𝑦𝑖 𝑥𝑖𝑗 + 𝜆𝛽𝑗
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