
CIS 4190/5190: Lec 06 Wed Sep 18,
2024

Logistic Regression Part 2

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

Announcements

• Quiz 2 should be out today. Will be announced on Ed.

Recap: Logistic Regression so far

• Model class: 𝑝 𝑦 𝑥 = 𝜎 𝛽!𝑥 = "

"#$!"#$
§ The “raw” scores 𝛽!𝑥 are sometimes called “logits”,
§ 𝜎 ⋅ is called the “logistic function” or “sigmoid function”

• “Negative Log Likelihood” (NLL) loss function:

min
%
−,

&'"

(

	𝑦&log 𝜎(𝛽!𝒙&) +	(1	 − 𝑦&) log(1	 − 𝜎 𝛽!𝒙&)	

prefers model parameters 𝛽 that assign high probabilities to the true labels
𝑦& ∈ {0,1}

Optimizing the Logistic Regression Objective

Optimization for Logistic Regression

• To optimize the NLL loss, we need its gradient:

 ∇!ℓ 𝛽; 𝑍 = −∑"#$% 𝑦" ⋅ ∇! log 𝜎 𝛽&𝑥" + 1 − 𝑦" ⋅ ∇! log 1 − 𝜎 𝛽&𝑥"

 ∇!ℓ 𝛽; 𝑍 = −∑"#$% 𝑦" ⋅
∇!(!")#
(!")#

− 1 − 𝑦" ⋅
∇!(!")#
$*(!")#

 ∇!ℓ 𝛽; 𝑍 = −∑"#$% 𝑦" ⋅
(!")# $*(!")# ⋅)#

(!")#
− 1 − 𝑦" ⋅

(!")# $*(!")# ⋅)#
$*(!")#

 ∇!ℓ 𝛽; 𝑍 = −∑"#$% 𝑦" ⋅ 1 − 𝜎 𝛽&𝑥" ⋅ 𝑥" − 1 − 𝑦" ⋅ 𝜎 𝛽&𝑥" ⋅ 𝑥"
 ∇!ℓ 𝛽; 𝑍 = −∑"#$% 𝑦" − 𝜎 𝛽&𝑥" ⋅ 𝑥"

𝜎! 𝑧
= 𝜎 𝑧 1 − 𝜎 𝑧

−-
!"#

$

	𝑦!log 𝜎(𝛽%𝒙!) +	(1	 − 𝑦!) log(1	 − 𝜎 𝛽%𝒙!)	

Q: What is the dimensionality of this RHS?

Optimization for Logistic Regression
• Gradient of NLL:

∇!ℓ 𝛽; 𝑍 ='
"#$

%

𝜎 𝛽&𝑥" − 𝑦" ⋅ 𝑥"

• Surprisingly similar to the gradient for linear regression!
§ Only difference is the 𝜎(⋅)
§ Gradient of loss for 𝑖'(sample (𝑥" , 𝑦") w.r.t. parameter 𝛽) ∝ error on

that sample × 𝑗'(element of 𝑥".

• Gradient descent works as before
§ No closed-form solution for 4𝛽 𝑍

Gradient Descent for Logistic Regression

7

• Initialize 𝛽
• Repeat until convergence

simultaneous
update for
𝑗 = 2 ... D

𝛽$ ← 𝛽$ − 𝛼$
&'"

(

(𝜎 𝛽/𝑥& − 𝑦&)

𝛽0 ← 𝛽0 − 𝛼 ,
&'"

(

𝜎 𝛽/𝑥& − 𝑦& 𝑥&0 + 𝜆𝛽0

Understanding Regularization Better

Regularized Logistic Regression
• We can add ℓ" or ℓ1 regularization to the NLL loss, e.g.:

ℓ 𝛽; 𝑍 = −3
"#$

%

𝑦" ⋅ log 𝜎 𝛽&𝑥" + 1 − 𝑦" ⋅ log 1 − 𝜎 𝛽&𝑥" + 𝜆 ⋅ 𝛽 :
:

• PS: Again, do not regularize the intercept term in the parameter
vector if there is one. (You will usually add this)
• The NLL objective has a probabilistic interpretation as the likelihood

of the dataset under the model.
• How should we understand the role of regularizers in this context?

Expressing Preferences over Parameters

• Recall that the maximum likelihood objective selected parameters purely
based on the data fit:

max
%

𝑙𝒟 𝜷 =C
&'"

(

𝑝 	𝑦& 	 𝒙𝒊	; 𝜷)

• What if we expressed a preference over parameters “a priori” before ever
having seen the data?

max
%

𝑙𝒟 𝜷 =C
&'"

(

𝑝 	𝑦& 	 𝒙𝒊	; 𝜷) 𝑝(𝛽)

Prior

Maximum “a posteriori” (MAP) objective

Regularization as a Prior

max
%

𝑙𝒟 𝜷 =C
&'"

(

𝑝 	𝑦& 	 𝒙𝒊	; 𝜷) 𝑝(𝛽)

Plugging in Gaussian prior
 𝐿 𝛽; 𝑍 = 𝑝4∣6,% 𝑌 𝑋, 𝛽 ⋅ 𝑁 𝛽; 0, 𝜎1𝐼 	

 𝐿 𝛽; 𝑍 = ∏&'"
8 𝑝% 𝑦& 𝑥& ⋅ "

9 1:
𝑒;

" %
%

%&%

Taking logarithms and adding negative sign, the “loss function” is:

ℓ 𝛽; 𝑍 = −,
&'"

8

log 𝑝% 𝑦& 𝑥& + log 𝜎 2𝜋 +
𝛽 1

1

2𝜎1

Constant,
can remove

regularization! With 𝜆 = #
'(!

Parameter value for any 𝛽0

𝑝(𝛽0)

Recall: ℓ𝟐 Regularization: Gaussian Priors

• L2 regularization amounts to preferring smaller weights according to a
Gaussian “prior” probability density function.

0

0.2

0.1

We “a priori” prefer value a for 𝛽) twice as much as value b.

So the larger value is only selected for the
model if it is *much* better for the data fit
term (MSE)

a b

Intuition on ℓ𝟐 Regularization: Gaussian Priors

𝛽1

𝛽"

𝛽1

𝛽"

(uniform preference
for any parameters)

-3 -2 -1. 0. 1. 2. 3.-3

 -

2

-1

.

0.

1.

2.

3.

-3

 -

2

-1

.

0.

1.

2.

3.

-3 -2 -1. 0. 1. 2. 3.

Before regularization With L2 regularization

Intuition on ℓ𝟏 Regularization: Laplacian Priors

Similarly, ℓ" regularization corresponds to a Laplacian prior
 𝛽& ∼ Laplace 0, 𝜎1 for each 𝑖

0

What Kinds of Functions Do Models With Small Weights Express?

Scaling the Logistic Regression Parameter Vector

• Recall: 𝑝%(𝑦 = 1|𝑥) = "

"#$!𝜷𝑻𝒙

• The decision boundary is at 𝜷𝑻𝒙=0
• If you replace 𝜷 by 𝑘𝜷, where 𝑘 ≫ 1, what happens to:

§ The decision boundary?
§ The probability scores 𝑝%(𝑦 = 1|𝑥)?

𝑝 𝑦 = 1 =
1

1 + exp −10𝜷𝑻𝒙

𝜷𝑻𝒙

𝑝(𝑦 = 1) =
1

1 + exp −𝜷𝑻𝒙

𝜷𝑻𝒙

Smaller Parameters 𝜷=> “Hedging Your Bets”
𝜷*𝒙 = 10𝜷*𝒙 = 0 𝜷*𝒙 = 10𝜷*𝒙 = 0

𝑝 𝑦 = 1 =
1

1 + exp −10𝜷"𝒙

𝜷"𝒙

𝑝(𝑦 = 1) =
1

1 + exp −𝜷"𝒙

𝜷"𝒙

𝜷"𝒙~ − 2
𝜷"𝒙~ + 2

𝜷"𝒙~ − 2
𝜷"𝒙~ + 2

Regularization => Smaller 𝜷=> “Hedging Your Bets”

• When parameters are scaled up by a constant factor, category assignments
remain unchanged, but they are made with much higher confidence
• This provides a new insight about the role of regularization:

§ ℓ" and ℓ1 regularization both penalize large 𝜷, thus expressing the
preference for less overconfident classification decisions on training
data.

§ The resulting classifiers hedge their bets and perform better on test
data, especially if the training dataset is small or noisy.

Which classifier would logistic regression learn without any regularization
when trained on the dataset shown on the last slide?

Regularization is sometimes necessary!

• If your data is linearly separable, then gradient descent on the logistic
regression “diverges”.
§ Q: Why, and how does regularization stop this?

𝜷*𝒙 = 10𝜷*𝒙 = 0

Multi-class logistic regression

Multi-Class Classification
• What about more than two classes?

§ Disease diagnosis: healthy, cold, flu, pneumonia
§ Object classification: desk, chair, monitor, bookcase
§ In general, consider a finite space of labels 𝒴

𝑥1

𝑥2

Multi-Class Classification
• Naïve Strategy: One-vs-rest classification

§ Step 1: Train 𝒴 logistic regression models, where model
𝑝%* 𝑌 = 1 𝑥 is interpreted as the probability that the label for
𝑥 is 𝑦

§ Step 2: Given a new input 𝑥, predict label 𝑦 =
arg	max

=+
𝑝%*+ 𝑌 = 1 𝑥

Better Multi-Class Logistic Regression: Softmax

• Strategy: Include separate 𝛽= for each label 𝑦 ∈ 𝒴 = {1,… , 𝑘}
• Let 𝑝% 𝑦 𝑥 ∝ 𝑒%*,>, i.e.

𝑝% 𝑦 𝑥 =
𝑒%*,>

∑=+∈𝒴 𝑒
%*+
, >

• We define softmax 𝑧", … , 𝑧A =
$-.

∑/0.
1 $-/

… $-1
∑/0.
1 $-/

• Then, 𝑝% 𝑦 𝑥 = softmax 𝛽"/𝑥,… , 𝛽A/𝑥 =
§ Thus, sometimes called softmax regression

Better Multi-Class Logistic Regression: Softmax
• Model family

§ 𝑓% 𝑥 = arg	max
=

𝑝% 𝑦 𝑥 = arg	max
=

$"*
,$

∑*+∈𝒴 $
"*+
, $

=

arg	max
=

𝛽=/𝑥

• Optimization
§ Gradient descent on NLL
§ Simultaneously update all parameters 𝛽= =∈𝒴

CIS 4190/5190: Lec 06 Part 2 Wed Sep
18, 2024

Measuring Classification
Performance

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

Classification Metrics

• While we minimize the NLL, we often evaluate using accuracy = fraction of
samples that are correctly predicted
• However, even accuracy isn’t necessarily the “right” metric.

§ Imbalanced data: If 99% of labels are negative (i.e., 𝑦& = 0), accuracy of
always predicting 𝑓% 𝑥 = 0 is 99%!
§ For instance, very few patients test positive for most diseases
§ “Imbalanced data”

§ Not all mistakes are the same:
§ e.g. “better that ten guilty persons go free than that one innocent

person be convicted”
• What are alternative metrics for these settings? We will mostly discuss

metrics for binary classification

Confusion Matrix

• All test examples fall into one of the following buckets:
§ True positive (TP): Actually positive, predictive positive (↑)
§ False negative (FN): Actually positive, predicted negative ↓
§ True negative (TN): Actually negative, predicted negative (↑)
§ False positive (FP): Actually negative, predicted positive ↓

Yes

No

Yes No

Ac
tu

al
 C

la
ss

Predicted Class

TP(↑) FN (↓)

FP (↓) TN(↑)
Q: How to extend this to multi-class?

Confusion Matrix

Yes

No

Yes No

Ac
tu

al
 C

la
ss

Predicted Class

TP(↑) FN (↓)

FP (↓) TN(↑)

Classification Metrics In Terms of TP, TN, FP, FN

• Many metrics expressed in terms of these elements of the confusion
matrix; for example:

accuracy(↑) =
𝑇𝑃 + 𝑇𝑁

𝑛
	 error(↓) = 1 − accuracy =

𝐹𝑃 + 𝐹𝑁
𝑛

Here n is the number of samples you tested on in total = TP+TN+FP+FN

Confusion Matrix

Yes

No

Yes No

Ac
tu

al
 C

la
ss

Predicted Class

3 TP 4 FN

6 FP 37 TN

Accuracy = 0.8 [Q: Is this good?]

Classification Metrics

• For imbalanced datasets, we roughly want to disentangle:
§ Accuracy on “positive examples” (↑)
§ Accuracy on “negative examples” (↑)

• Different definitions are possible (and lead to different meanings)!

Precision & Recall
• Recall (↑)	: What fraction of actual positives are predicted positive?

§ Good recall: If you have the disease, the test correctly detects it
§ Also called the true positive rate (and sensitivity)
§ Emphasized when it is important to avoid false negatives

• Precision (↑)	: What fraction of predicted positives are actual positives?
§ Good precision: If the test says you have the disease, then you have it
§ Also called positive predictive value
§ Emphasized when it is important to avoid false positives e.g. criminal law: “It

is better that ten guilty persons escape than that one innocent suffer”

• Used in information retrieval, NLP

Precision & Recall

Yes

No

Yes No

Ac
tu

al
 C

la
ss

Predicted Class

TP FN

FP TN

Recall(↑) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Precision(↑) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Precision & Recall

Yes

No

Yes No

Ac
tu

al
 C

la
ss

Predicted Class

3 TP 4 FN

6 FP 37 TN

recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Precision & Recall

Yes

No

Yes No

Ac
tu

al
 C

la
ss

Predicted Class

3 TP 4 FN

6 FP 37 TN

recall = 3/7

precision = 3/9

True Positive Rate & False Positive Rate

• True Positive Rate / TPR (↑): fraction of actual positives that are predicted
positives
• False Positive Rate / FPR (↓): fraction of actual negatives that are predicted

positives

Sensitivity & Specificity
• Sensitivity(↑): What fraction of actual positives are predicted positive?

§ Good sensitivity: If you have the disease, the test correctly detects it
§ Same as true positive rate, recall, etc.
§ “accuracy on positive samples”

• Specificity(↑): What fraction of actual negatives are predicted negative?
§ Good specificity: If you do not have the disease, the test says so
§ Same as true negative rate
§ “accuracy on negative samples”

• Commonly used in medicine
• Natural extension to multi-class:

§ Per-class accuracies (↑)	: for each class k, what fraction of class k samples are
predicted as class k?

Sensitivity & Specificity

Yes

No

Yes No

Ac
tu

al
 C

la
ss

Predicted Class

TP FN

FP TN

sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

speciqicity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Sensitivity & Specificity

Yes

No

Yes No

Ac
tu

al
 C

la
ss

Predicted Class

3 TP 4 FN

6 FP 37 TN

sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

speciqicity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Sensitivity & Specificity

Yes

No

Yes No

Ac
tu

al
 C

la
ss

Predicted Class

3 TP 4 FN

6 FP 37 TN

sensitivity = 3/7

speciqicity = 37/43

Optimizing something other than the NLL?

Classification Metrics
• Obtaining a single metric from these various pairs of metrics?

§ e.g., 𝐹$	score(↑) =
,⋅./0123245⋅/01677
./01232458/01677

 is the harmonic mean
§ Mean per-class accuracy (↑)	: In binary classification, this is the mean of

sensitivity (TPR) and specificity (TNR)
§
9:;89<;

,
§ Weighted mean of per-class accuracy ↑ : Set weights for each class 𝑤:, 𝑤< to

indicate how much you care about accuracy on that class.
§
=1×9:;8=2×9<;

=18=2

§ More advanced: “Area under precision-recall curve”/ “Area under receiver
operating characteristic”

What is the “right” metric?
• No generally correct answer. Depends on the goals for the specific

problem/domain
• Whatever metric you choose, to know whether you are doing anything at

all useful, always a good idea to compare to a trivial baseline. e.g. always
predicting 1 or always 0.

https://en.wikipedia.org/wiki/Confusion_matrix

Q: Can you think of a “trivial baseline” for regression?

https://en.wikipedia.org/wiki/Confusion_matrix

Optimizing a Classification Metric

• We are training a model to minimize NLL, but we have a different “true”
metric that we actually want to optimize

• Two strategies (can be used together):
§ Strategy 1: (After training) Optimize prediction threshold threshold
§ Strategy 2: (Before training) Upweight positive (or negative) examples

Optimizing Prediction Threshold

• Consider hyperparameter 𝜏 for the threshold:

𝑓% 𝑥 = 1 𝛽/𝑥 ≥ 0

Optimizing Prediction Threshold

• Consider hyperparameter 𝜏 for the threshold:

𝑓% 𝑥 = 1 𝛽/𝑥 ≥ 𝜏

Optimizing Prediction Threshold

𝑥"

𝑥 #

1 𝛽&𝑥 ≥ 0
1 𝛽&𝑥 ≥ 1 1 𝛽&𝑥 ≥ 2

1 𝛽&𝑥 ≥ −1

1 𝛽&𝑥 ≥ −2

• Higher: recall, TPR, sensitivity
• Lower: precision, FPR, specificity

positivenegative

No free lunch. Your new classifier is not automatically objectively better, but possible to be
better than original NLL-optimal classifier on your “true” metric.

