
Lecture 7: Neural Networks (Part 1)

CIS 4190/5190

Fall 2024

Slides adapted from Chris Callison-Berch and Luke Zettlemoyer and Fei-Fei Li



CIS 4190/5190: Lec 07 Part 1

Measuring Classification 
Performance (Part 2/2)

Robot Image Credit: Viktoriya Sukhanova © 123RF.com



Visualization: ROC Curve

Each point on this 
curve corresponds 
to a choice of 𝜏

(a.k.a 1 − specificity)

(a
.k

.a
 s

en
si

ti
v

it
y

)

(PS: ignore the red and green curves)

𝑓𝛽 𝑥 = 1 𝛽⊤𝑥 ≥ 𝜏



Compare To Random Performance on TPR-FPR ROC

clearly better model!

okay model

“Area under ROC”

Area under ROC curve is another 
single scalar metric that 

evaluates መ𝛽 𝑍  in a way that is 
independent of the threshold 𝜏.

Rationale: downstream user can 
tune 𝜏 relatively easily to fit their 
needs.

There is a similar notion of the 
Area under “Precision Recall” 
curve. Also known as “average 
precision.”



Summarizing: Optimizing Prediction Threshold

• Consider hyperparameter 𝜏 for the threshold:

𝑓𝛽 𝑥 = 1 𝛽⊤𝑥 ≥ 𝜏

• Unlike most hyperparameters, we choose this one after we have already fit 
the model on the training data

▪ Then, choose the value of 𝜏 that optimizes the desired metric

▪ Pick 𝜏 using ideally validation data, but training data OK in a pinch



Optimizing a Classification Metric

• We are training a model to minimize NLL, but we have a different “true” 
metric that we actually want to optimize

• Two strategies (can be used together):

▪ Strategy 1: (After training) Optimize prediction threshold threshold

▪ Strategy 2: (Before training) Upweight positive (or negative) examples



Class Re-Weighting

• Weighted NLL: Include a class-dependent weight 𝑤𝑦:

ℓ 𝛽; 𝑍 = − 

𝑖=1

𝑛

𝑤𝑦𝑖
⋅ log 𝑝𝛽 𝑦𝑖 𝑥𝑖

• A “softened” version of the weighted mean of per-class accuracy that is 
amenable to optimize

• Intuition: Tradeoff between accuracy on negative/positive examples

▪ To improve sensitivity (true positive rate), upweight positive examples

▪ To improve specificity (true negative rate), upweight negative examples

• Can use this strategy to learn 𝛽, and the first strategy to choose 𝜏 



Classification Metrics

• NLL isn’t usually the “true” metric

▪ Instead, frequently used due to good computational properties

• Many choices with different meanings

• Typical strategy:

▪ Learn 𝛽 by minimizing the NLL loss

▪ Choose class weights 𝑤𝑦 and threshold 𝜏 to optimize desired metric



Lecture 7: Neural Networks (Part 1)

CIS 4190/5190

Fall 2024

Slides adapted from Chris Callison-Berch and Luke Zettlemoyer and Fei-Fei Li



So far in this class

input 𝑥

output 𝑦 = 𝛽⊤𝑥

𝛽

input 𝑥

output 𝑦 = 𝜎(𝛽⊤𝑥)

𝛽

input 𝑥 output 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑥)

𝑊 = [𝛽1
⊤; 𝛽2

⊤; … ; 𝛽𝐶
⊤]

Linear Regression Binary Classification Multi-Class Classification

𝑝𝑊 𝑦 = 𝑐 𝑥 =
𝑒𝛽𝑐

⊤𝑥

σ𝑦′ 𝑒
𝛽

𝑦′
⊤ 𝑥



A Unifying View

input 𝑥

output 𝑦 = 𝛽⊤𝑥

𝛽

input 𝑥

output 𝑦 = 𝜎(𝛽⊤𝑥)

𝛽

input 𝑥 output 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑥)

Linear Regression Binary Classification Multi-Class Classification

Linear transformation of input features followed by an activation function

𝑊 = [𝛽1
⊤; 𝛽2

⊤; … ; 𝛽𝐶
⊤]



A Unifying View

input 𝑥 input 𝑥

Linear Regression Binary Classification Multi-Class Classification

input 𝑥

𝑊

output 𝑦 = 𝑔(𝑊𝑥)

output 𝑦 = 𝑔(𝑊𝑥)output 𝑦 = 𝑔(𝑊𝑥)

where 𝑔 ∙ = ∙ where 𝑔 ∙ = 𝜎(∙)

where 𝑔 ∙ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(∙)

𝑊𝑊

Linear transformation of input features (𝑊𝑥) followed by an activation function 𝑔 ∙  

𝑊 ∈ ℝ𝐶×𝐷 where 𝐷 is the input dimension and 𝐶 is the output dimension.



A Unifying View: Single-Layer Neural Network

input layer
output layer

𝑊

• Challenge: it needs “good” input features

• Most ML work before focused on hand designing features



The “Promise” of Deep Neural Networks

• Representation Learning: automatically learn 
good features for tasks

• Deep Learning: learn multiple levels of 
representation at increasing levels of complexity

input layer
output layer

hidden layers



Inspired by Simplified Models of Brain Neurons

• 1943: Perceptron model (McCulloch & Pitts)
• Intended as theoretical model of biological neurons



“Dark Ages”

• 1969: Perceptrons cannot learn XOR (Minsky & Papert)
• Highly controversial (may have helped cause “AI winter”)

• 1998: Convolutional neural networks for MNIST (Lecun)
• Human-level performance on handwritten digit recognition

• 1997: Long Short-term Memory Networks (Hochreiter 
and Schmidhuber)

Extremely 
Similar Today



2012 - NOW

• 2012: ImageNet breakthrough (Krizhevsky, Sutskever, & Hinton)
• Reduced error on image classification by 50%

• 2017: Transformer architecture (Vaswani et al.)

• 2018: Turing award (Bengio, Hinton, & Lecun)

• Generative AI & LLMs… To be continued?



Why Wasn’t it Working Before?

• Small Datasets & Less Capable Hardware
• Machine translation needs millions of sentences to see improvements

• Missing bag of tricks for optimization
• Regularization like Dropout

• Some domain specific tricks & architectures
• Word embedding for NLP

Next lecture

Topics for 2nd half 
of the semester



Today’s Lecture

• Model
• Feedforward Neural Networks

• Loss functions

• Optimization
• Stochastic Gradient Descent

• Back-Propagation for Computing Gradients 





Feed-Forward Neural Networks

input layer
output layer

hidden layer 1

input layer
output layer

hidden layer hidden layer 2

• Signals move in one direction – forward – with no cycles or loops.
• Also called Multi-Layer Perceptrons (MLP)

“2-layer Neural Net”, or 
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or 
“2-hidden-layer Neural Net”

“Fully-connected” layers



Matrix Notation

1-layer Neural Net: 𝑦 = 𝑊1𝑥

2-layer Neural Net: 𝑦 = 𝑊2𝑔(𝑊1𝑥)

3-layer Neural Net: 𝑦 = 𝑊3𝑔(𝑊2𝑔(𝑊1𝑥))

𝑥 ∈ ℝ𝐷, 𝑊1 ∈ ℝ𝐻1×𝐷, 𝑊2 ∈ ℝ𝐻2×𝐻1 , 𝑊3 ∈ ℝ𝐻3×𝐻2

(In practice we will usually add a learnable bias at each layer as well)

𝑔 is a non-linear activation 
function for hidden layers



Non-Linearity 𝑔

• Sigmoid activation function:
• Outputs values between 0 and 1

• Probability of neuron firing/activated

• ReLU (Rectified Linear Unit):
• Efficient computation

• Doesn’t saturate

• Most commonly used today



Why Non-Linearity?

Q: What if we try to build a neural network without one?

2-layer Neural Net: 𝑦 = 𝑊2𝑔(𝑊1𝑥) 𝑦 = 𝑊2𝑊1𝑥

3-layer Neural Net: 𝑦 = 𝑊3𝑔(𝑊2𝑔(𝑊1𝑥)) 𝑦 = 𝑊3𝑊2𝑊1𝑥

A: We would end up with linear classifier!

Non-Linearities are important for learning features/representations 
with increasing levels of complexity 



Model Capacity

• Capacity of a feed-forward neural network is affected by both:
• Depth: number of hidden layers

• Width: number of neurons in each hidden layer

• More neurons = more capacity



Today’s Agenda

• Model
• Feedforward Neural Networks

• Loss functions

• Optimization
• Gradient Descent

• Back-Propagation for Computing Gradients 



Today’s Lecture

• Model
• Feedforward Neural Networks

• Loss functions

• Optimization
• Stochastic Gradient Descent

• Back-Propagation for Computing Gradients 



Loss Functions

• Same as single-layer models (i.e., linear and logistic regression)

• Regression:
• MSE loss:

• Classification:
• Binary cross entropy for binary classification:

• Cross entropy for multi-class classification:



Today’s Agenda

• Model
• Feedforward Neural Networks

• Loss functions

• Optimization
• Stochastic Gradient Descent

• Back-Propagation for Computing Gradients 



Optimization

Solve for  𝜃∗ = argmin
𝜃

𝐿( ො𝑦, 𝑦)

Q: Don’t I have to optimize differently for different 𝐿(·)?

A: No, just use gradient descent. It is the most general optimization 
approach we know.

Q: But what if 𝐿(·) is non-convex in 𝑊?

A: It almost surely is. Do gradient descent anyway. Just make sure 
everything is differentiable.



Computing Gradients

• You could write down the full function and calculate the gradients for 
all the weights manually.
• It takes a lot of time and paper

• Change loss function (e.g., add L2/L1) → Need to compute from scratch again

• Better Idea: 
• Use computational graph and chain rule of gradient calculation



Backpropagation

• It’s taking derivatives and applying chain rule!

• We will re-use derivatives computed for 
higher layers in computing derivates for lower 
layers so as to minimize computation

• Good news is that modern automatic 
differentiation tools did all for you!
• Implementing backprop by hand is like 

programming in assembly languages.



Computational Graph

• Break down function computation:
• Data (input, output, and intermediate)

• Operators (e.g., addition, multiplication)

• Consider the following function:

𝑤 = log 𝑥1𝑥2 sin(𝑥2)

https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/



Full Graph

Requirement for each operator:

Forward: compute their output 
function given input.

Backward: compute the gradient 
of their output w.r.t. each input.

If all operators can do forward & 
backward computation, we can 
compute the derivative of the output 
with respect to any input, procedurally.

https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/



(circles represents operators here)















































Today’s Lecture

• Model
• Feedforward Neural Networks

• Loss functions

• Optimization
• Stochastic Gradient Descent

• Back-Propagation for Computing Gradients 



Next Lecture

• Bag of tricks for optimization


	Slide 1: Lecture 7: Neural Networks (Part 1)
	Slide 2
	Slide 3: Visualization: ROC Curve
	Slide 4: Compare To Random Performance on TPR-FPR ROC
	Slide 5: Summarizing: Optimizing Prediction Threshold
	Slide 8: Optimizing a Classification Metric
	Slide 9: Class Re-Weighting
	Slide 10: Classification Metrics
	Slide 11: Lecture 7: Neural Networks (Part 1)
	Slide 12: So far in this class
	Slide 13: A Unifying View
	Slide 14: A Unifying View
	Slide 15: A Unifying View: Single-Layer Neural Network
	Slide 16: The “Promise” of Deep Neural Networks
	Slide 17: Inspired by Simplified Models of Brain Neurons
	Slide 18: “Dark Ages”
	Slide 19: 2012 - NOW
	Slide 20: Why Wasn’t it Working Before?
	Slide 21: Today’s Lecture
	Slide 23
	Slide 24: Feed-Forward Neural Networks
	Slide 25: Matrix Notation
	Slide 26: Non-Linearity 𝑔
	Slide 27: Why Non-Linearity?
	Slide 28: Model Capacity
	Slide 29: Today’s Agenda
	Slide 30: Today’s Lecture
	Slide 31: Loss Functions
	Slide 32: Today’s Agenda
	Slide 33: Optimization
	Slide 34: Computing Gradients
	Slide 35: Backpropagation
	Slide 36: Computational Graph
	Slide 37: Full Graph
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: Today’s Lecture
	Slide 62: Next Lecture

