
Announcements
• HW 1 due in 1 week (next Wed 8pm)

• HW 0 grades released. Regrade requests by 9/30.

• Worksheet for linear regression posted.
• Worksheet and Recitation for logistic regression:

• Towne 217 ALC on Friday Sep 27, 3pm to 4pm. Recording will be posted.

• Office hour change:
• My OH this Thursday is moved to next Monday (9/30 at 3-4pm).

Lecture 7: Neural Networks (Part 2)

CIS 4190/5190
Fall 2024

Slides adapted from Chris Callison-Berch and Luke Zettlemoyer and Fei-Fei Li

Agenda

• Recap

• Neural network tips and tricks

• Hyperparameter tuning

• Implementation

Recap

• Representation Learning: automatically learn good features for tasks
• Deep Learning: learn multiple levels of representation at increasing

levels of complexity
• Feedforward Neural Networks:

input layer
output layer

hidden layers

Agenda

• Recap

• Neural network tips and tricks

• Hyperparameter tuning

• Implementation

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Optimization Challenges

• Challenges
• Local minima, saddle points due to

non-convex loss
• Exploding/vanishing gradients
• Ill-conditioning

• Have heuristics that work in
common cases (but not always)

Li et al. (2018)

Challenge 1: Narrow Valleys

https://jermwatt.github.io/machine_learning_refined/

Challenge 2: Saddle Points

https://jermwatt.github.io/machine_learning_refined/

Accelerated Gradient Descent

• Vanilla gradient descent:

𝜃 ← 𝜃 − 𝛼 ⋅ ∇𝜃𝐿 𝑓𝜃 𝑥 , 𝑦

• Accelerated gradient descent (momentum):

 𝜌 ← 𝜇 ⋅ 𝜌 − 𝛼 ⋅ ∇𝜃𝐿 𝑓𝜃 𝑥 , 𝑦
 𝜃 ← 𝜃 + 𝜌

Accelerated Gradient Descent

• Intuition: 𝜌 holds the previous update 𝛼 ⋅ ∇𝜃𝐿 𝑓𝜃 𝑥 , 𝑦 , except it
“remembers” where it was heading via momentum

• New hyperparameter 𝜇 (typically 𝜇 = 0.9 or 𝜇 = 0.99)

Accelerated Gradient Descent

𝜇 = 0.7

𝜇 = 0.2

https://jermwatt.github.io/machine_learning_refined/

Nesterov Momentum

• Accelerated gradient descent:

 𝜌 ← 𝜇 ⋅ 𝜌 − 𝛼 ⋅ ∇𝜃𝐿 𝑓𝜃 𝑥 , 𝑦
 𝜃 ← 𝜃 + 𝜌

• Nesterov momentum:

 𝜌 ← 𝜇 ⋅ 𝜌 − 𝛼 ⋅ ∇𝜃𝐿 𝑓𝜃+𝜇⋅𝜌 𝑥 , 𝑦
 𝜃 ← 𝜃 + 𝜌

Nesterov Momentum

momentum
step

gradient

momentum

step

gradient

vanilla momentum Nesterov momentum

“Lookahead” helps avoid overshooting when close to the optimum

Adaptive Learning Rates

• AdaGrad: Letting 𝑔 = ∇𝛽𝐿 𝑓𝛽 𝑥 , 𝑦 , we have

𝐺 ← 𝐺 + 𝑔2 and 𝜃 ← 𝜃 −
𝛼
𝐺

⋅ 𝑔

• RMSProp: Use exponential moving average instead:

𝐺 ← 𝜆 ⋅ 𝐺 + 1 − 𝜆 𝑔2 and 𝛽 ← 𝛽 −
𝛼
𝐺

⋅ 𝑔

vector

Adaptive Learning Rates

• Adam: Similar to RMSprop, but with both the first and second
moments of the gradients

 𝐺 ← 𝜆 ⋅ 𝐺 + 1 − 𝜆 ⋅ 𝑔2
 𝑔′ ← 𝜆′ ⋅ 𝑔′ + 1 − 𝜆′ ⋅ 𝑔
 θ ← 𝜃 − 𝛼 ⋅ 𝑔′

𝐺

• Intuition: RMSProp with momentum
• Most commonly used optimizer

http://cs231n.github.io/neural-networks-3 (Alec Radford)

http://cs231n.github.io/neural-networks-3/

http://cs231n.github.io/neural-networks-3 (Alec Radford)

http://cs231n.github.io/neural-networks-3/

Learning Rate

• Most important hyperparameter; tune by looking at training loss

Learning Rate

• Schedules: Reducing the learning rate every time the validation loss
stagnates can be very effective for training

He et al, Residual Networks, 2015

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Historical Activation Functions

sigmoid tanh

Vanishing Gradient Problem

• The gradient of the sigmoid function
is often nearly zero

• Recall: In backpropagation, gradients
are products of local gradients

• Quickly multiply to zero!
• Early layers update very slowly

sigmoid

sigmoid gradient

ReLU Activation

• Activation function

𝑔 𝑧 = max 0, 𝑧

• Gradient now positive on the
entire region 𝑧 ≥ 0

• Significant performance gains for
deep neural networks

ReLU Activation

tanh

ReLU

Leaky ReLU Activation

Activation Functions

• ReLU is a good standard choice

• Tradeoffs exist, and new activation functions are still being proposed

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Weight Initialization

• Zero initialization: Very bad choice!
• All neurons 𝑧𝑖 = 𝑔 𝑤𝑖

⊤𝑥 in a given layer remain identical
• Intuition: They start out equal, so their gradients are equal!

𝑥1

𝑥2

𝑥3

𝑧1 = 𝑔 𝑤1
⊤𝑥

𝑧2 = 𝑔 𝑤2
⊤𝑥

𝑧3 = 𝑔 𝑤3
⊤𝑥

𝑧4 = 𝑔 𝑤4
⊤𝑥

𝛽⊤𝑧

Weight Initialization

• Long history of initialization tricks for 𝑊𝑗 based on “fan in” 𝑑in
• Here, 𝑑in is the dimension of the input of layer 𝑊𝑗

• Intuition: Keep initial layer inputs 𝑧 𝑗 in the “linear” part of sigmoid
• Note: Initialize intercept term to 0

• Kaiming initialization (also called “He initialization”)
• For ReLU activations, use 𝑊𝑗 ∼ 𝑁 0, 2

𝑑in

• Xavier initialization
• For tanh activations, use 𝑊𝑗 ∼ 𝑁 0, 1

𝑑in+𝑑out
 (𝑑out is output dimension)

Batch Normalization

• Problem
• During learning, the distribution of inputs to each layer are shifting (since the

layers below are also updating)
• This cause the objective to have a lot irregularity and hard to take large steps

in the loss landscape

• Solution
• As with feature standardization, standardize inputs to each layer to 𝑁 0, 𝐼
• Batch norm: Compute mean and standard deviation of current minibatch and

use it to normalize the current layer (this is differentiable!)
• Note: Needs nontrivial mini-batches or will divide by zero
• Apply after every layer (typically before activation)

Batch Normalization

Number of training steps

va
lid

at
io

n
ac

cu
ra

cy

Regularization

• Can use 𝐿1 and 𝐿2 regularization as before
• As before, do not regularize any of the intercept terms!
• 𝐿2 regularization more common

• Applied to “unrolled” weight matrices
• Equivalently, Frobenius norm 𝑊𝑗 𝐹

2 = σ𝑖=1
𝑘 σ𝑖′=1

ℎ 𝑊𝑖,𝑖′
2

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Dropout

• Idea: During training, randomly “drop” (i.e., zero out) a fraction 𝑝 of
the neurons 𝑧𝑖

𝑗 (usually take 𝑝 = 1
2
)

• Implemented as its own layer

Dropout 𝑧 = ቊ𝑧
0

with prob. 𝑝
otherwise

• Usually include it at a few layers just before the output layer

Dropout

Intuition: Dropout as regularization

• Encourages robustness to missing information from the previous layer

• Each neuron works with many different kinds of inputs

• Makes them more likely to be individually competent

Dropout at Test Time

• Naïve strategy: Stop dropping neurons
• Problem: Not the distribution the layer was trained on

• Naïve strategy: Average across all possible predictions
• Problem: There are 2#neurons possible realizations of the randomness

• Solution: Turn off dropout but multiply the outgoing weights by 𝑝
• Good approximation of the geometric mean of all 2#neurons predictions

• Note: Can also leave dropout on, sample multiple realizations of the
randomness, and report distribution to help quantify uncertainty

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Early Stopping

• Stop when your validation loss starts increasing (alternatively, finish
training and choose best model on validation set)

• Simple way to introduce regularization

Data Augmentation

• Data augmentation: Generate more data by modifying training inputs

• Often used when you know that your output is robust to some
transformations of your data

• Image domain: Color shifts, add noise, rotations, translations, flips, crops
• NLP domain: Substitute synonyms, generate examples (doesn’t work as well

but ongoing research direction)
• Can combine primitive shifts

• Note: Labels are simply the label of original image

Data Augmentation

Agenda

• Recap

• Neural network tips and tricks

• Hyperparameter tuning

• Implementation

(Default) Hyperparameteter Choices

• Architecture: Stick close to tried-and-tested architectures (esp. for images)
• SGD variant: Adam, second choice SGD + 0.9 momentum
• Learning rate: 3e-4 (Adam), 1e-4 (for SGD + momentum)
• Learning rate schedule: Divide by 10 every time training loss stagnates
• Weight initialization: “Kaiming” initialization (scaled Gaussian)
• Activation functions: ReLU
• Regularization: BatchNorm (& cousins), L2 regularization + Dropout on

some or all fully connected layers
• Hyperparameter Optimization: Random sampling (often uniform on log

scale), coarse to fine

Hyperparameter Optimization

• Recall: Use cross-validation to tune hyperparameters!
• Typically use one held-out validation set for computational tractability
• E.g., 60/20/20 split
• Can use smaller validation/test sets if you have a very large dataset

Given data 𝑍

Training data 𝑍train Test data 𝑍testVal data 𝑍val

Hyperparameter Optimization Tips

• Keep the number of hyperparameters as small as possible
• Most important: Learning rate, batch size

• Strategy: Automatically search over grid of hyperparameters and
choose the best one on the validation set

• Easy to parallelize across many machines
• Record hyperparameters of all runs carefully!
• Use the same random seeds for all runs

Hyperparameter Optimization Tips

• What about multiple hyperparameters?
• For 2 or 3 hyperparameters, do a systematic “grid search”

[Bergstra & Bengio, JMLR 2012]

Hyperparameter Optimization Tips

• What about multiple hyperparameters?
• For >3 hyperparameters, do random search

[Bergstra & Bengio, JMLR 2012]

Hyperparameter Optimization Tips

• Coarse-to-find search
• Iteratively search over a window of

hyperparameters
• If the best results are near the boundary,

center it on best hyperparameters
• Otherwise, set a smaller window

centered on the best hyperparameters

• Bayesian optimization: ML-guided
search across hyperparameter trials to
find good choices

https://www.andreaperlato.com/aipost/hyperparameters-tuning-in-ai/

https://www.andreaperlato.com/aipost/hyperparameters-tuning-in-ai/

Practical tips for training neural nets

• See Andrej Karpathy’s blog post: http://karpathy.github.io/2019/04/25/recipe/
• Fix random seed during debugging
• Overfit a tiny dataset first
• With everything (architecture, learning algorithm, data etc.), start simple and

build complexity slowly over iterations.
• Plot weight and gradient magnitudes to detect vanishing/exploding gradients.

• Assigned reading: Chapter 11 of the Deep Learning textbook: “Practical
Methodology” https://www.deeplearningbook.org/contents/guidelines.html

http://karpathy.github.io/2019/04/25/recipe/
https://www.deeplearningbook.org/contents/guidelines.html

Agenda

• Recap

• Neural network tips and tricks

• Hyperparameter tuning

• Implementation

Pytorch

• Open source packages have helped democratize deep learning

Pytorch: Defining a network “architecture”

Constructor: Defining layers of the network

Forward propagation: Defining f(x) through the layers

Common parent class: nn.Module

What about backward propagation?

Autograd
Good news: Chain rule based gradient computation is implemented in
pytorch naturally! (True for all the important libraries today, including
Tensorflow, Jax). No need to implement backward()!

loss.backward() simply backtracks through the computational
graph, applying the chain rule, computing gradients with respect to all
tensors involved.

Does not apply any gradient descent updates yet.

Pytorch: Training function

Flush out all old gradients
Runs forward pass model.forward(data)

Full gradient computation
Update all parameters

Looping over mini-batches

Loss computation

	Slide 1: Announcements
	Slide 2: Lecture 7: Neural Networks (Part 2)
	Slide 3: Agenda
	Slide 4: Recap
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Agenda
	Slide 15: Neural Network Tips & Tricks
	Slide 16: Neural Network Tips & Tricks
	Slide 17: Optimization Challenges
	Slide 18: Challenge 1: Narrow Valleys
	Slide 19: Challenge 2: Saddle Points
	Slide 20
	Slide 21: Accelerated Gradient Descent
	Slide 22: Accelerated Gradient Descent
	Slide 23: Accelerated Gradient Descent
	Slide 24: Nesterov Momentum
	Slide 25: Nesterov Momentum
	Slide 26: Adaptive Learning Rates
	Slide 27: Adaptive Learning Rates
	Slide 28
	Slide 29
	Slide 30: Learning Rate
	Slide 31: Learning Rate
	Slide 32: Neural Network Tips & Tricks
	Slide 33: Neural Network Tips & Tricks
	Slide 34: Historical Activation Functions
	Slide 35: Vanishing Gradient Problem
	Slide 36: ReLU Activation
	Slide 37: ReLU Activation
	Slide 38: Leaky ReLU Activation
	Slide 39: Activation Functions
	Slide 40: Neural Network Tips & Tricks
	Slide 41: Neural Network Tips & Tricks
	Slide 42: Weight Initialization
	Slide 43: Weight Initialization
	Slide 44: Batch Normalization
	Slide 45: Batch Normalization
	Slide 46: Regularization
	Slide 47: Neural Network Tips & Tricks
	Slide 48: Neural Network Tips & Tricks
	Slide 49: Dropout
	Slide 50: Dropout
	Slide 51: Intuition: Dropout as regularization
	Slide 52: Dropout at Test Time
	Slide 53: Neural Network Tips & Tricks
	Slide 54: Neural Network Tips & Tricks
	Slide 55: Early Stopping
	Slide 56: Data Augmentation
	Slide 57: Data Augmentation
	Slide 58: Agenda
	Slide 59: (Default) Hyperparameteter Choices
	Slide 60: Hyperparameter Optimization
	Slide 61: Hyperparameter Optimization Tips
	Slide 62: Hyperparameter Optimization Tips
	Slide 63: Hyperparameter Optimization Tips
	Slide 64: Hyperparameter Optimization Tips
	Slide 65: Practical tips for training neural nets
	Slide 66: Agenda
	Slide 67: Pytorch
	Slide 68: Pytorch: Defining a network “architecture”
	Slide 69: Autograd
	Slide 70: Pytorch: Training function
	Slide 71: Agenda

