
Announcements
• HW 1 due in 1 week (next Wed 8pm)

• HW 0 grades released. Regrade requests by 9/30.

• Worksheet for linear regression posted.
• Worksheet and Recitation for logistic regression:

• Towne 217 ALC on Friday Sep 27, 3pm to 4pm. Recording will be posted. 

• Office hour change:
• My OH this Thursday is moved to next Monday (9/30 at 3-4pm).



Lecture 7: Neural Networks (Part 2)

CIS 4190/5190
Fall 2024

Slides adapted from Chris Callison-Berch and Luke Zettlemoyer and Fei-Fei Li



Agenda

• Recap

• Neural network tips and tricks

• Hyperparameter tuning

• Implementation



Recap

• Representation Learning: automatically learn good features for tasks
• Deep Learning: learn multiple levels of representation at increasing 

levels of complexity
• Feedforward Neural Networks: 

input layer
output layer

hidden layers
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Optimization Challenges

• Challenges
• Local minima, saddle points due to 

non-convex loss
• Exploding/vanishing gradients
• Ill-conditioning

• Have heuristics that work in 
common cases (but not always)

Li et al. (2018)



Challenge 1: Narrow Valleys

https://jermwatt.github.io/machine_learning_refined/



Challenge 2: Saddle Points

https://jermwatt.github.io/machine_learning_refined/





Accelerated Gradient Descent

• Vanilla gradient descent:

𝜃 ← 𝜃 − 𝛼 ⋅ ∇𝜃𝐿 𝑓𝜃 𝑥 , 𝑦

• Accelerated gradient descent (momentum):

   𝜌 ← 𝜇 ⋅ 𝜌 − 𝛼 ⋅ ∇𝜃𝐿 𝑓𝜃 𝑥 , 𝑦  
    𝜃 ← 𝜃 + 𝜌



Accelerated Gradient Descent

• Intuition: 𝜌 holds the previous update 𝛼 ⋅ ∇𝜃𝐿 𝑓𝜃 𝑥 , 𝑦 , except it 
“remembers” where it was heading via momentum

• New hyperparameter 𝜇 (typically 𝜇 = 0.9 or 𝜇 = 0.99)



Accelerated Gradient Descent

𝜇 = 0.7

𝜇 = 0.2

https://jermwatt.github.io/machine_learning_refined/



Nesterov Momentum

• Accelerated gradient descent:

   𝜌 ← 𝜇 ⋅ 𝜌 − 𝛼 ⋅ ∇𝜃𝐿 𝑓𝜃 𝑥 , 𝑦  
   𝜃 ← 𝜃 + 𝜌

• Nesterov momentum:

   𝜌 ← 𝜇 ⋅ 𝜌 − 𝛼 ⋅ ∇𝜃𝐿 𝑓𝜃+𝜇⋅𝜌 𝑥 , 𝑦  
    𝜃 ← 𝜃 + 𝜌



Nesterov Momentum

momentum
step

gradient

momentum

step

gradient

vanilla momentum Nesterov momentum

“Lookahead” helps avoid overshooting when close to the optimum



Adaptive Learning Rates

• AdaGrad: Letting 𝑔 = ∇𝛽𝐿 𝑓𝛽 𝑥 , 𝑦 , we have

𝐺 ← 𝐺 + 𝑔2 and 𝜃 ← 𝜃 −
𝛼
𝐺

⋅ 𝑔

• RMSProp: Use exponential moving average instead:

𝐺 ← 𝜆 ⋅ 𝐺 + 1 − 𝜆 𝑔2 and 𝛽 ← 𝛽 −
𝛼
𝐺

⋅ 𝑔

vector



Adaptive Learning Rates

• Adam: Similar to RMSprop, but with both the first and second 
moments of the gradients

  𝐺 ← 𝜆 ⋅ 𝐺 + 1 − 𝜆 ⋅ 𝑔2 
  𝑔′ ← 𝜆′ ⋅ 𝑔′ + 1 − 𝜆′ ⋅ 𝑔 
  θ ← 𝜃 − 𝛼 ⋅ 𝑔′

𝐺
 

• Intuition: RMSProp with momentum
• Most commonly used optimizer



http://cs231n.github.io/neural-networks-3 (Alec Radford)

http://cs231n.github.io/neural-networks-3/


http://cs231n.github.io/neural-networks-3 (Alec Radford)

http://cs231n.github.io/neural-networks-3/


Learning Rate

• Most important hyperparameter; tune by looking at training loss



Learning Rate

• Schedules: Reducing the learning rate every time the validation loss 
stagnates can be very effective for training

He et al, Residual Networks, 2015



Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions



Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions



Historical Activation Functions

sigmoid tanh



Vanishing Gradient Problem

• The gradient of the sigmoid function 
is often nearly zero

• Recall: In backpropagation, gradients 
are  products of local gradients

• Quickly multiply to zero!
• Early layers update very slowly

sigmoid

sigmoid gradient



ReLU Activation

• Activation function

𝑔 𝑧 = max 0, 𝑧

• Gradient now positive on the 
entire region 𝑧 ≥ 0

• Significant performance gains for 
deep neural networks



ReLU Activation

tanh

ReLU



Leaky ReLU Activation



Activation Functions

• ReLU is a good standard choice

• Tradeoffs exist, and new activation functions are still being proposed
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Weight Initialization

• Zero initialization: Very bad choice!
• All neurons 𝑧𝑖 = 𝑔 𝑤𝑖

⊤𝑥  in a given layer remain identical
• Intuition: They start out equal, so their gradients are equal!

𝑥1

𝑥2

𝑥3

𝑧1 = 𝑔 𝑤1
⊤𝑥

𝑧2 = 𝑔 𝑤2
⊤𝑥

𝑧3 = 𝑔 𝑤3
⊤𝑥

𝑧4 = 𝑔 𝑤4
⊤𝑥

𝛽⊤𝑧



Weight Initialization

• Long history of initialization tricks for 𝑊𝑗  based on “fan in” 𝑑in
• Here, 𝑑in is the dimension of the input of layer 𝑊𝑗

• Intuition: Keep initial layer inputs 𝑧 𝑗  in the “linear” part of sigmoid
• Note: Initialize intercept term to 0

• Kaiming initialization (also called “He initialization”)
• For ReLU activations, use 𝑊𝑗 ∼ 𝑁 0, 2

𝑑in

• Xavier initialization
• For tanh activations, use 𝑊𝑗 ∼ 𝑁 0, 1

𝑑in+𝑑out
 (𝑑out is output dimension)



Batch Normalization

• Problem
• During learning, the distribution of inputs to each layer are shifting (since the 

layers below are also updating)
• This cause the objective to have a lot irregularity and hard to take large steps 

in the loss landscape

• Solution
• As with feature standardization, standardize inputs to each layer to 𝑁 0, 𝐼
• Batch norm: Compute mean and standard deviation of current minibatch and 

use it to normalize the current layer (this is differentiable!)
• Note: Needs nontrivial mini-batches or will divide by zero
• Apply after every layer (typically before activation)



Batch Normalization

Number of training steps
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lid
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Regularization

• Can use 𝐿1 and 𝐿2 regularization as before
• As before, do not regularize any of the intercept terms!
• 𝐿2 regularization more common

• Applied to “unrolled” weight matrices
• Equivalently, Frobenius norm 𝑊𝑗 𝐹

2 = σ𝑖=1
𝑘 σ𝑖′=1

ℎ 𝑊𝑖,𝑖′
2
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Dropout

• Idea:  During training, randomly “drop” (i.e., zero out) a fraction 𝑝 of 
the neurons 𝑧𝑖

𝑗  (usually take 𝑝 = 1
2
)

• Implemented as its own layer

Dropout 𝑧 = ቊ𝑧
0

with prob. 𝑝
otherwise

• Usually include it at a few layers just before the output layer



Dropout



Intuition: Dropout as regularization

• Encourages robustness to missing information from the previous layer

• Each neuron works with many different kinds of inputs

• Makes them more likely to be individually competent



Dropout at Test Time

• Naïve strategy: Stop dropping neurons
• Problem: Not the distribution the layer was trained on

• Naïve strategy: Average across all possible predictions
• Problem: There are 2#neurons possible realizations of the randomness

• Solution: Turn off dropout but multiply the outgoing weights by 𝑝
• Good approximation of the geometric mean of all 2#neurons predictions

• Note: Can also leave dropout on, sample multiple realizations of the 
randomness, and report distribution to help quantify uncertainty
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Early Stopping

• Stop when your validation loss starts increasing (alternatively, finish 
training and choose best model on validation set)

• Simple way to introduce regularization



Data Augmentation

• Data augmentation: Generate more data by modifying training inputs

• Often used when you know that your output is robust to some 
transformations of your data

• Image domain: Color shifts, add noise, rotations, translations, flips, crops
• NLP domain: Substitute synonyms, generate examples (doesn’t work as well 

but ongoing research direction)
• Can combine primitive shifts

• Note: Labels are simply the label of original image



Data Augmentation
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(Default) Hyperparameteter Choices

• Architecture: Stick close to tried-and-tested architectures (esp. for images)
• SGD variant: Adam, second choice SGD + 0.9 momentum 
• Learning rate: 3e-4 (Adam), 1e-4 (for SGD + momentum)
• Learning rate schedule: Divide by 10 every time training loss stagnates
• Weight initialization: “Kaiming” initialization (scaled Gaussian)
• Activation functions: ReLU
• Regularization: BatchNorm (& cousins), L2 regularization + Dropout on 

some or all fully connected layers
• Hyperparameter Optimization: Random sampling (often uniform on log 

scale), coarse to fine



Hyperparameter Optimization

• Recall: Use cross-validation to tune hyperparameters!
• Typically use one held-out validation set for computational tractability
• E.g., 60/20/20 split
• Can use smaller validation/test sets if you have a very large dataset

Given data 𝑍

Training data 𝑍train Test data 𝑍testVal data 𝑍val



Hyperparameter Optimization Tips

• Keep the number of hyperparameters as small as possible
• Most important: Learning rate, batch size

• Strategy: Automatically search over grid of hyperparameters and 
choose the best one on the validation set

• Easy to parallelize across many machines
• Record hyperparameters of all runs carefully!
• Use the same random seeds for all runs



Hyperparameter Optimization Tips

• What about multiple hyperparameters?
• For 2 or 3 hyperparameters, do a systematic “grid search”

[Bergstra & Bengio, JMLR 2012]



Hyperparameter Optimization Tips

• What about multiple hyperparameters?
• For >3 hyperparameters, do random search

[Bergstra & Bengio, JMLR 2012]



Hyperparameter Optimization Tips

• Coarse-to-find search
• Iteratively search over a window of 

hyperparameters
• If the best results are near the boundary, 

center it on best hyperparameters
• Otherwise, set a smaller window 

centered on the best hyperparameters

• Bayesian optimization: ML-guided 
search across hyperparameter trials to 
find good choices

https://www.andreaperlato.com/aipost/hyperparameters-tuning-in-ai/

https://www.andreaperlato.com/aipost/hyperparameters-tuning-in-ai/


Practical tips for training neural nets

• See Andrej Karpathy’s blog post: http://karpathy.github.io/2019/04/25/recipe/
• Fix random seed during debugging
• Overfit a tiny dataset first
• With everything (architecture, learning algorithm, data etc.), start simple and 

build complexity slowly over iterations.
• Plot weight and gradient magnitudes to detect vanishing/exploding gradients.

• Assigned reading: Chapter 11 of the Deep Learning textbook: “Practical 
Methodology” https://www.deeplearningbook.org/contents/guidelines.html

http://karpathy.github.io/2019/04/25/recipe/
https://www.deeplearningbook.org/contents/guidelines.html
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Pytorch

• Open source packages have helped democratize deep learning



Pytorch: Defining a network “architecture”

Constructor: Defining layers of the network

Forward propagation: Defining f(x) through the layers

Common parent class: nn.Module

What about backward propagation?



Autograd
Good news: Chain rule based gradient computation is implemented in 
pytorch naturally! (True for all the important libraries today, including 
Tensorflow, Jax). No need to implement backward()!

loss.backward() simply backtracks through the computational 
graph, applying the chain rule, computing gradients with respect to all 
tensors involved. 

Does not apply any gradient descent updates yet.



Pytorch: Training function

Flush out all old gradients 
Runs forward pass model.forward(data) 

Full gradient computation
Update all parameters

Looping over mini-batches

Loss computation
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