Mid term 1

* Exam:
75-min exam on Oct 16 (lecture time and location)
In-person closed-book

Can bring a cheatsheet: 1 handwritten piece of paper (letter size, two sides)
No need for calculator

* Practice exam:
* Exam and solutions posted on course website (under the files tab)
e Will go over during the review for mid term 1 (Oct 14)

* Mid term 1 covers:
* All the modules we have learned so far including K-Means and PCA (this week)



Project

Start after mid term 1 (30%)
* Projects announcement on 10/21

Team of 2-3

Choose from one of the projects options (3 in total)
» Different modalities: images, text, and audio clips.

* Computing resources.
* Email both instructors if you want to use your own research for this project (i.e., you are
actively doing ML research with a faculty member, who can help assess your work)

Grading

* Performance & report



Lecture 11: Unsupervised Learning
(Part 1)

CIS 4190/5190
Fall 2024



Types of Learning

* Supervised learning

* Input: Examples of inputs and desired outputs
e Output: Model that predicts output given a new input

* Unsupervised learning
* Input: Examples of some data (no “outputs”)
e Output: Representation of structure in the data

* Reinforcement learning

* Input: Sequence of interactions with an environment
* Output: Policy that performs a desired task



Unsupervised Learning
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Applications of Unsupervised Learning

* Visualization
e Exploring a dataset, or a machine learning model’s outputs

* Feature Learning
* Automatically construct lower-dimensional features
e Especially useful with a lot of unlabeled data and just a few labeled examples

* Image Compression

* E.g., JPEG is adopting unsupervised machine learning approaches
* https://jpeg.org/items/20190327 press.html



Applications of Unsupervised Learning

 Visualize the data, find clusters

* |dentify interesting supervised learning problems within your dataset

e Generate new data

* |dentify important features in the dataset



Applications of Unsupervised Learning
_ Framing an ML problem

Data curation (sourcing, scraping, collection, labeling)
_ Data analysis / visualization
_ ML Design (hypothesis class, loss function, optimizer, hyperparameters, features)
2.1 Train model
_ Validate / Evaluate
Deploy (and generate new data)

Monitor performance on new data



Loss Minimization Framework

* To design an unsupervised learning algorithm:
* Model family: Choose a model family F = {fﬁ}ﬁ' where 11 = fz(x) encodes

the structure of x
* Loss function: Choose a loss function L(f3; Z)

* Resulting algorithm:

f(Z) = arg min L(f; 2)
b



Types of Unsupervised Learning

* Clustering
* Map samples x € R% to f(x) € N
* Each k € N is associated with a representative example x; € R?
 Examples: K-means clustering, greedy hierarchical clustering

* Dimensionality reduction

* Map samples x € R% to f(x) € RY whered’ « d
e Example: Principal components analysis (PCA)
* Modern deep learning is based on this idea



The Clustering Problem

* Input: Dataset Z = {x;}/"

* Output: Model f(x) € {1, ...,K}
* Intuition: Predictions should encode “natural” clusters in the data
 Here, K € N is a hyperparameter
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The Clustering Problem
* Input: Dataset Z = {x;}/"

* Output: Model f(x) € {1, ...,K}
* Intuition: Predictions should encode “natural” clusters in the data
 Here, K € N is a hyperparameter

* How to formalize “naturalness”?
e Using a loss function!



Clustering Loss

* Loss depends on the structure of the data we are trying to capture
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* K-Means clustering aims to minimize specific loss over a specific
model family



K-Means Clustering Model Family

* Parameters:
* Centroids 1;, forj € {1, ...,K}

* One for each cluster (K is a hyperparameter)
* Intuition: 1/, is the “center” of cluster j

* Assignment: assign each data point x it to the nearest cluster:
_ 2
fu(x) = argjmm”x — “1'”2

e Can use other distance functions



K-Means Clustering Loss

 Compute MSE of each point in the training data to its centroid
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K-Means Clustering Loss

 Compute MSE of each point in the training data to its centroid




K-Means Clustering Loss

* K-means clustering chooses centroids that minimize loss of training
examples Z

 Compute MSE of each point in the training data to its nearest

centroid:
n
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K-Means Clustering Loss
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K-Means Clustering Loss
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K-Means Clustering Summary

* Model family: f,,(x) = arg mion — Mj”i
J

‘ 2

* Loss: L(1;Z) = Y1ty ‘ Xi = Mg, (x;)

2

* Optimizer:
* If we know the assignment of points to clusters
* Mean of point per cluster is the vector that minimizes the squared loss!

* Without knowledge of true assignments, this optimization is non-convex and
has many local optimums



K-Means Clustering Summary

* Model family: f,,(x) = arg mion — Mj”i
J

‘ 2
2

* Optimizer: Alternating minimization
* Given an initial (potentially random) estimate of means,
* Find every cluster assignment
 Recompute means (changing them)
* |terate until convergence.

* Loss: L(1;7) = Xy ‘

Xi = 'ufu(xl)



K-Means Clustering Algorithm

Kmeans(Z):

forj e {1,..,k}:
11,j < Random(Z)
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return y;



K-Means Clustering Algorithm

Kmeans(Z):

forje{1,..,k}:
11,j < Random(Z) .
. R e
fOl' t E {1,2, ...}. | R ....;3:3.%:3 . . R .o:o”'.. .
forie{1,..,nk R ':'»3..?( . . wé‘ 5k

c‘i’ !° ’

st * % u'.“ ot oo . '.:"' ey N

Jei < fu (i) e T R Sl R
. ° s, et o * . ®

forj e{1,.., k}: T °:?,:‘}: % RS

ey mean({x | = 7)) | RS
if pe = pe—q:

return y;



K-Means Clustering Algorithm

Kmeans(Z):

forje{l,.., k}:
11,j < Random(Z)
fort e {1,2, ..}

fori e {1,..,nk .. “'i*' ".,-,
. st I ,.‘-., xan. .
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if up = pe—1:

return (i,



K-Means Clustering Algorithm

Kmeans(Z):

forj e {1,..,k}:
11,j < Random(Z)
fort € {1,2,..}:

fori € {1,..,n}k . “'i*' ".r,
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forje{1,..,k}:
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if up = pe—1:

return y;



K-Means Clustering Algorithm

KMeans Iteration: Total within Cluster Sum of Squareszl
' : 250k |
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Kmeans Iterations
https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/



https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/

Random Initialization

e Sensitive to initialization

* One strategy is to run multiple times with different random centroids
and choose the model with lowest MSE

* Alternative: K-means++
* Randomly initialize first centroid to some x € 7

e Subsequently, choose centroid randomly according to p(x) « d2, where d., is
the distance to the nearest centroid so far

* Upweights points that are farther from existing centroids



K-Means++ : Address initialization challenge




K-Means++




K-Means++




K-Means++
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Then, run alternating minimization



Number of Clusters

* As K becomes large
 MSE becomes small
* Many clusters = might be less useful

* Choice of K is subjective



Number of Clusters

Elbow Method For Optimal k
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https://blog.cambridgespark.com/how-to-determine-the-optimal-number-of-clusters-for-k-means-clustering-14f27070048f



https://blog.cambridgespark.com/how-to-determine-the-optimal-number-of-clusters-for-k-means-clustering-14f27070048f

Many Clustering Algorithms

MiniBatchKMea®#éfinityPropagation MeanShift SpectralClustering Ward AgglomerativeClusteringDBSCAN OPTICS Birch GaussianMixture
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https://scikit-learn.org/stable/modules/clustering.html#clustering



https://scikit-learn.org/stable/modules/clustering.html
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