
Mid term 1
• Exam:

• 75-min exam on Oct 16 (lecture time and location)

• In-person closed-book

• Can bring a cheatsheet: 1 handwritten piece of paper (letter size, two sides)

• No need for calculator 

• Practice exam:
• Exam and solutions posted on course website (under the files tab)

• Will go over during the review for mid term 1 (Oct 14)

• Mid term 1 covers:
• All the modules we have learned so far including K-Means and PCA (this week)
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Principal Component Analysis



Dimensionality Reduction

• Goal: Learn a mapping from 𝑥 ∈ ℝ𝑑 to 𝑥 ∈ ℝ𝑑′
, with 𝑑′ ≪ 𝑑

• We may want to reduce the number of features for several reasons:
• Reduce the complexity of our learning problem

• Remove colinear/correlated features

• Visualize the features



Learning Good Features

Data from: De Cock. Journal of Statistics Education 19(3), 2011

227 features



Data Visualization

Image: https://arxiv.org/pdf/1703.08893.pdf

https://arxiv.org/pdf/1703.08893.pdf


Dimensionality Reduction

• We can write each input 𝑥 as

𝑥 =

𝑥1

⋮
𝑥𝑑

= 𝑥1

1
0
⋮
0

+ 𝑥2

0
1
⋮
0

+ ⋯ + 𝑥𝑑

0
0
⋮
1

• We aim to approximate 𝑥 using a new basis 𝑣𝑖 𝑖 (of unit norm):

𝑥 ≈ ሚ𝑓 𝑥 = 𝑓 𝑥 1𝑣1 + 𝑓 𝑥 2𝑣2 + ⋯ + 𝑓 𝑥 𝑑′𝑣𝑑′

original axesprojections



Representation vs. Approximation

• We approximate 𝑥 as follows:

𝑥 ≈ ሚ𝑓 𝑥 = 𝑓 𝑥 1𝑣1 + 𝑓 𝑥 2𝑣2 + ⋯ + 𝑓 𝑥 𝑑′𝑣𝑑′ ∈ ℝ𝑑

• The corresponding representation is

𝑓 𝑥 = 𝑓 𝑥 1 𝑓 𝑥 2 ⋯ 𝑓 𝑥 𝑑′ ∈ ℝ𝑑′



Dimensionality Reduction

• Loss function: Minimize MSE of projected vectors

𝐿 𝑓; 𝑍 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 − ሚ𝑓 𝑥𝑖 2

2



1D Case

• Simplest case: If 𝑑′ = 1, then we want 𝑥 ≈ 𝑓 𝑥 1𝑣1

• Given 𝑣1, we can take 𝑓 𝑥 1 = 𝑥⊤𝑣1

• Minimizes 𝑥 − 𝑓 𝑥 1𝑣1 2
2

• Then, we have ሚ𝑓 𝑥 = 𝑥⊤𝑣1 𝑣1

• i.e., orthogonal projection

• Assuming 𝑣1 2 = 1

𝑣1



1D Case

• Simplest case: If 𝑑′ = 1, then we want 𝑥 ≈ 𝑓 𝑥 1𝑣1

• Given 𝑣1, we can take 𝑓 𝑥 1 = 𝑥⊤𝑣1

• Minimizes MSE of 𝑥 − 𝑓 𝑥 1𝑣1

• Then, we have ሚ𝑓 𝑥 = 𝑥⊤𝑣1 𝑣1

• i.e., orthogonal projection

• Assuming 𝑣1 2 = 1

• How do we pick 𝑣1 ? 

(fig: stats.stackexchange)



1D Case

• In this case, the loss is

𝐿 𝑣1; 𝑍 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 − 𝑥𝑖
⊤𝑣1 𝑣1 2

2

• Can be shown to be equivalent to maximizing variance:

𝐿 𝑣1; 𝑍 = −Var 𝑥𝑖
⊤𝑣1 𝑖

• If variance of projection on 𝑣1 is low, 𝑣1 is not informative about 𝑥𝑖



1D Case

• Need a way to minimize 𝐿 𝑣1; 𝑍

• The covariance matrix is

𝐶 = 𝔼 𝑥𝑥⊤ = 𝔼

𝑥1𝑥1 ⋯ 𝑥1𝑥𝑑

⋮ ⋱ ⋮
𝑥𝑑𝑥𝑑 ⋯ 𝑥𝑑𝑥𝑑

• Given 𝑣1, we have Var 𝑥⊤𝑣1 = 𝑣1
⊤𝐶𝑣1

• Thus, 𝐿 𝑣1; 𝑍 = −Var 𝑥⊤𝑣1 = −𝑣1
⊤𝐶𝑣1



1D Case

• The principal components analysis (PCA) algorithm computes

𝑣1
∗ = min

𝑣1

𝐿 𝑣1; 𝑍 = max
𝑣1

𝑣1
⊤𝐶𝑣1

• Theorem: Solution is 𝑣1
∗ = TopEigenvector 𝐶

• That is, eigenvector corresponding to the largest eigenvalue

• Recall: If 𝐶𝑣 = 𝜆𝑣, then 𝑣 is an eigenvector corresponding to eigenvalue 𝜆



1D Case

• In practice, use empirical covariance matrix

መ𝐶 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖𝑥𝑖
⊤ =

1

𝑛
෍

𝑖=1

𝑛 𝑥𝑖,1𝑥𝑖,1 ⋯ 𝑥𝑖,1𝑥𝑖,𝑑

⋮ ⋱ ⋮
𝑥𝑖,𝑑𝑥𝑖,𝑑 ⋯ 𝑥𝑖,𝑑𝑥𝑖,𝑑

• Algorithm: Compute eigenvectors + eigenvalues of መ𝐶 and return the 
(unit) eigenvector corresponding to the largest eigenvalue
• Sign of eigenvector doesn’t matter



General Case

PCA 𝑍 : 

 𝑍 ← 𝑥 − Mean 𝑍 𝑥 ∈ 𝑍

 𝐶 ←
1

𝑛
σ𝑖=1

𝑛 𝑥𝑖𝑥𝑖
⊤

 𝐟𝐨𝐫 𝑗 ∈ 1, … , 𝑑′ : 

  𝑣𝑗 ← Eigenvector 𝐶, 𝑗

 𝐫𝐞𝐭𝐮𝐫𝐧 𝑓: 𝑥 ↦ 𝑥⊤𝑣1 ⋯ 𝑥⊤𝑣𝑑′
⊤



General Case

• Resulting function is

𝑓 𝑥 =
𝑥⊤𝑣1

⋮
𝑥⊤𝑣𝑑′

=
𝑣1

⊤

⋮
𝑣𝑑′

⊤
𝑥 = 𝑉𝑥



1st principal
component

2nd principal
component

PCA on a 2D Gaussian Dataset

• The vectors 𝑣𝑗  are called 
principal components
• Mutually orthogonal

• Largest directions of variation

• Subtract mean to ensure vectors 
originate from the mean

By Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=46871195



Dimensionality Reduction

• Taking 𝑑′ = 𝑑 is just a change of basis
• Linear regression does not change, but other algorithms may be affected

• Taking 𝑑′ ≪ 𝑑 reduce dimensionality of data while removing the 
smallest possible amount of information
• In a linear sense



Dimensionality Reduction
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Based on slide by Barnabás Póczos, UAlberta

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 % =  100 ∗ 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝑖) ෍

𝑗=1

𝑑

𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝑗)



Applications

• Can use 𝑓 𝑥  as the feature map
• First examples of “learned features”

• Form of regularization

• Forms the basis for important 
modern deep learning algorithms

• Can be used to visualize high-
dimensional data

Novembre et al., Genes mirror geography within Europe. Nature 2009.



Eigenfaces

(1000 64 × 64 images)
https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184


Eigenfaces

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184


Eigenface Projections

𝑑′ = 1000𝑑 = 4096



𝑑′ = 250

Eigenface Projections

𝑑 = 4096



Eigenface Projections

𝑑′ = 100𝑑 = 4096



Eigenface Projections

𝑑′ = 50



MNIST Digit Dataset

Fig: Laurens van der Maaten



Nonlinear Dimensionality Reduction

Fig: Laurens van der Maaten



Nonlinear Dimensionality Reduction

• PCA benefits
• Projected representation of data can be approximate data in original space

• Easy to optimize

• No hyperparameters (except 𝑑′)

• Deep learning based approaches
• Nonlinear PCA is the basis of the autoencoder

• Fundamental algorithm for feature learning that is still widely used
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