Mid term 1

• Exam:

- 75-min exam on Oct 16 (lecture time and location)
- In-person closed-book
- Can bring a cheatsheet: 1 handwritten piece of paper (letter size, two sides)
- No need for calculator

• Practice exam:

- Exam and solutions posted on course website (under the files tab)
- Will go over during the review for mid term 1 (Oct 14)

• Mid term 1 covers:

All the modules we have learned so far including K-Means and PCA (this week)

Lecture 12: Unsupervised Learning (Part 2)

CIS 4190/5190 Fall 2024

Principal Component Analysis

Dimensionality Reduction

- Goal: Learn a mapping from $x \in \mathbb{R}^d$ to $x \in \mathbb{R}^{d'}$, with $d' \ll d$
- We may want to reduce the number of features for several reasons:
 - Reduce the complexity of our learning problem
 - Remove colinear/correlated features
 - Visualize the features

Learning Good Features

	LotFrontage	LotArea	Street	LotShape	Utilities	LandSlope	OverallQual	OverallCond	YearBuilt	YearRemodAdd	MasVnrArea	ExterQual	ExterCond	BsmtQual	BsmtExposure	BsmtFinType1	BsmtFinSF1	BsmtFinType2	 SaleCondition_AbnormI
0	65.0	8450	2	4	4	3	7	5	2003	2003	196.0	4	3	4	0	6	706	1	 0
1	80.0	9600	2	4	4	3	6	8	1976	1976	0.0	3	3	4	3	5	978	1	 0
2	68.0	11250	2	3	4	3	7	5	2001	2002	162.0	4	3	4	1	6	486	1	 0
3	60.0	9550	2	3	4	3	7	5	1915	1970	0.0	3	3	3	0	5	216	1	 1
4	84.0	14260	2	3	4	3	8	5	2000	2000	350.0	4	3	4	2	6	655	1	 0
5	85.0	14115	2	3	4	3	5	5	1993	1995	0.0	3	3	4	0	6	732	1	 0
6	75.0	10084	2	4	4	3	8	5	2004	2005	186.0	4	3	5	2	6	1369	1	 0
7	0.0	10382	2	3	4	3	7	6	1973	1973	240.0	3	3	4	1	5	859	4	 0
8	51.0	6120	2	4	4	3	7	5	1931	1950	0.0	3	3	3	0	1	0	1	 1
9	50.0	7420	2	4	4	3	5	6	1939	1950	0.0	3	3	3	0	6	851	1	 0
10	70.0	11200	2	4	4	3	5	5	1965	1965	0.0	3	3	3	0	3	906	1	 0
11	85.0	11924	2	3	4	3	9	5	2005	2006	286.0	5	3	5	0	6	998	1	 0
12	0.0	12968	2	2	4	3	5	6	1962	1962	0.0	3	3	3	0	5	737	1	 0
13	91.0	10652	2	3	4	3	7	5	2006	2007	306.0	4	3	4	2	1	0	1	 0
14	0.0	10920	2	3	4	3	6	5	1960	1960	212.0	3	3	3	0	4	733	1	 0
15	51.0	6120	2	4	4	3	7	8	1929	2001	0.0	3	3	3	0	1	0	1	 0
16	0.0	11241	2	3	4	3	6	7	1970	1970	180.0	3	3	3	0	5	578	1	 0
17	72.0	10791	2	4	4	3	4	5	1967	1967	0.0	3	3	0	0	0	0	0	 0
18	66.0	13695	2	4	4	3	5	5	2004	2004	0.0	3	3	3	0	6	646	1	 0
19	70.0	7560	2	4	4	3	5	6	1958	1965	0.0	3	3	3	0	2	504	1	 1
20	101.0	14215	2	3	4	3	8	5	2005	2006	380.0	4	3	5	2	1	0	1	 0
21	57.0	7449	2	4	4	3	7	7	1930	1950	0.0	3	3	3	0	1	0	1	 0
22	75.0	9742	2	4	4	3	8	5	2002	2002	281.0	4	3	4	0	1	0	1	 0
23	44.0	4224	2	4	4	3	5	7	1976	1976	0.0	3	3	4	0	6	840	1	 0

227 features

Data Visualization

Image: https://arxiv.org/pdf/1703.08893.pdf

Dimensionality Reduction

• We can write each input x as

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 1 \end{bmatrix} + \dots + x_d \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$
projections
original axes

• We aim to approximate x using a new basis $\{v_i\}_i$ (of unit norm):

$$x \approx \tilde{f}(x) = f(x)_1 v_1 + f(x)_2 v_2 + \dots + f(x)_{d'} v_{d'}$$

Representation vs. Approximation

• We approximate x as follows:

$$x \approx \tilde{f}(x) = f(x)_1 v_1 + f(x)_2 v_2 + \dots + f(x)_{d'} v_{d'} \in \mathbb{R}^d$$

The corresponding representation is

$$f(x) = [f(x)_1 \quad f(x)_2 \quad \cdots \quad f(x)_{d'}] \in \mathbb{R}^{d'}$$

Dimensionality Reduction

• Loss function: Minimize MSE of projected vectors

$$L(f; \mathbf{Z}) = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \tilde{f}(\mathbf{x}_{i})\|_{2}^{2}$$

• Simplest case: If d'=1, then we want $\mathbf{x}\approx f(\mathbf{x})_1\mathbf{v}_1$

- Given v_1 , we can take $f(x)_1 = x^T v_1$
 - Minimizes $||x f(x)_1 v_1||_2^2$
 - Then, we have $\tilde{f}(x) = (x^{\mathsf{T}}v_1)v_1$
 - i.e., orthogonal projection
 - Assuming $||v_1||_2 = 1$

- Simplest case: If d'=1, then we want $\mathbf{x}\approx f(\mathbf{x})_1\mathbf{v_1}$
- Given v_1 , we can take $f(x)_1 = x^T v_1$
 - Minimizes MSE of $||x f(x)_1 v_1||$
 - Then, we have $\tilde{f}(x) = (x^{\mathsf{T}}v_1)v_1$
 - i.e., orthogonal projection
 - Assuming $||v_1||_2 = 1$
- How do we pick v_1 ?

• In this case, the loss is

$$L(v_1; \mathbf{Z}) = \frac{1}{n} \sum_{i=1}^{n} \| \mathbf{x}_i - (\mathbf{x}_i^{\mathsf{T}} v_1) v_1 \|_2^2$$

Can be shown to be equivalent to maximizing variance:

$$L(v_1; \mathbf{Z}) = -Var(\{x_i^\mathsf{T} v_1\}_i)$$

• If variance of projection on v_1 is low, v_1 is not informative about x_i

- Need a way to minimize $L(v_1; Z)$
- The **covariance matrix** is

$$C = \mathbb{E}[xx^{\mathsf{T}}] = \mathbb{E}\begin{bmatrix} x_1x_1 & \cdots & x_1x_d \\ \vdots & \ddots & \vdots \\ x_dx_d & \cdots & x_dx_d \end{bmatrix}$$

- Given v_1 , we have $Var(x^Tv_1) = v_1^TCv_1$
- Thus, $L(v_1; Z) = -Var(x^T v_1) = -v_1^T C v_1$

• The principal components analysis (PCA) algorithm computes

$$v_1^* = \min_{v_1} L(v_1; \mathbf{Z}) = \max_{v_1} v_1^{\mathsf{T}} C v_1$$

- Theorem: Solution is $v_1^* = \text{TopEigenvector}(C)$
 - That is, eigenvector corresponding to the largest eigenvalue
 - **Recall:** If $Cv = \lambda v$, then v is an eigenvector corresponding to eigenvalue λ

• In practice, use empirical covariance matrix

$$\hat{C} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\mathsf{T}} = \frac{1}{n} \sum_{i=1}^{n} \begin{bmatrix} x_{i,1} x_{i,1} & \dots & x_{i,1} x_{i,d} \\ \vdots & \ddots & \vdots \\ x_{i,d} x_{i,d} & \dots & x_{i,d} x_{i,d} \end{bmatrix}$$

- Algorithm: Compute eigenvectors + eigenvalues of \hat{C} and return the (unit) eigenvector corresponding to the largest eigenvalue
 - Sign of eigenvector doesn't matter

General Case

```
PCA(Z):

Z \leftarrow \{x - \text{Mean}(Z) \mid x \in Z\}
C \leftarrow \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\mathsf{T}}
\mathbf{for} \ j \in \{1, ..., d'\}:
v_j \leftarrow \text{Eigenvector}(C, j)
\mathbf{return} \ f: x \mapsto [x^{\mathsf{T}} v_1 \quad \cdots \quad x^{\mathsf{T}} v_{d'}]^{\mathsf{T}}
```

General Case

Resulting function is

$$f(x) = \begin{bmatrix} x^{\mathsf{T}} v_1 \\ \vdots \\ x^{\mathsf{T}} v_{d'} \end{bmatrix} = \begin{bmatrix} v_1^{\mathsf{T}} \\ \vdots \\ v_{d'}^{\mathsf{T}} \end{bmatrix} x = Vx$$

PCA on a 2D Gaussian Dataset

- The vectors v_j are called principal components
 - Mutually orthogonal
 - Largest directions of variation
- Subtract mean to ensure vectors originate from the mean

Dimensionality Reduction

- Taking d' = d is just a change of basis
 - Linear regression does not change, but other algorithms may be affected
- Taking $d' \ll d$ reduce dimensionality of data while removing the smallest possible amount of information
 - In a linear sense

Dimensionality Reduction

Applications

- Can use f(x) as the feature map
 - First examples of "learned features"
 - Form of regularization
 - Forms the basis for important modern deep learning algorithms
- Can be used to visualize highdimensional data

Eigenfaces

 $(1000 64 \times 64 \text{ images})$

Eigenfaces

$$d = 4096$$

$$d' = 250$$

d = 4096

d' = 100

$$d' = 50$$

MNIST Digit Dataset

Fig: Laurens van der Maaten

Nonlinear Dimensionality Reduction

Fig: Laurens van der Maaten

Nonlinear Dimensionality Reduction

PCA benefits

- Projected representation of data can be approximate data in original space
- Easy to optimize
- No hyperparameters (except d')

Deep learning based approaches

- Nonlinear PCA is the basis of the autoencoder
- Fundamental algorithm for feature learning that is still widely used