
CIS 4190/5190: Lec 13 Mon Oct 21,
2024

Convolutional Neural Networks Part
1/2

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

Course Progress
Till now: (mostly) foundational algorithms applicable to large classes of
machine learning problems.

Going forward: (mostly) applications to specific types of data and specific
types of problems.
• New Types of Data: Grids (e.g. Images), Sequences (e.g. Language)
• New Types of Problems: Making Sequences of Decisions (e.g. Robotics),

Recommendation Systems

Types of Data

• Until now, the 𝑖!" sample in our dataset was either naturally a vector 𝑥# or
we converted it into one.

• What if our data samples were more naturally expressed in a different
structure?
§ 𝒙# is a “grid”: e.g. images
§ 𝒙# is a “sequence”: e.g. text
§ 𝒙# is a “graph”: e.g. protein structure

Neural Networks Specialized to Grid Data

• We will study a class of neural networks called convolutions that specialize
to properties often present in grid data, particularly images.

Spectrogram encoding of audio Digital image

https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939https://en.wikipedia.org/wiki/Spectrogram

https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
https://en.wikipedia.org/wiki/Spectrogram

Images as 2D Arrays

What we see What a computer sees

Source: S. Narasimhan, S. Lazebnik

Computer vision:

How to extract
meaning out of these
2D arrays?

Note: for color images, a stack of (typically 3) 2D arrays, each called a “channel”.

Color Images Are 3D Arrays with 2 Spatial Dimensions

https://dev.to/sandeepbalachandran/machine-learning-going-furthur-with-cnn-part-2-41km

RGB encoding
(Red, Green, Blue “channels”)

We will see: convenient to deal with the spatial dimensions separately, and there
are still only two of those.

https://dev.to/sandeepbalachandran/machine-learning-going-furthur-with-cnn-part-2-41km

Source: S. Lazebnik

What Info can be Extracted from Images?

Source: S. Lazebnik

geometric
information

What Info can be Extracted from Images?

Source: S. Lazebnik

semantic
information

building

person trashcan car car

ground

tree
tree

sky

do
or

window

building

roof

chimney

Outdoor scene
City European

…

geometric
information

What Info can be Extracted from Images?

Source: XKCD

Vision is Deceptively Hard!

In the 1960s, Marvin Minsky assigned a
couple of undergrads to spend the
summer programming a computer to
use a camera to identify objects in a
scene. He figured they'd have the
problem solved by the end of the
summer.

Half a century later, we're still working
on it.

10

The Treachery of Images – Rene Magritte

Vision often involves making educated guesses.

“This is not a pipe”

ML in Computer Vision

12

The old: Mid 1990’s – 2012

Image → hand-def. features → learned classifier

The very old: 1960’s - Mid 1990’s

Image → hand-def. features → hand-def. classifier

What Should Good Visual Representations Do?

𝐷-length
feature 𝒙

Image

?

What Should Good Visual Representations Do?

What is a “good”
feature space?

?

cat

running

tongue

lawn

…Good features make useful tasks easy to perform.

What Should Good Visual Representations Do?

𝐷-length
feature 𝒙

Image

?

How should we produce such good features?

ML
model “Dog”

Visual Features Before Deep
Learning

Most Feature Extraction Frameworks Pre-2012

• Step 1: Focus on “interest points” rather than all pixels
§ E.g. corner points, “difference of gaussians”, or

even a uniform grid
• Step 2: Compute features at interest points.

§ E.g. “SIFT”, “HOG”, “SURF”, “GIST”, etc.
• Step 3: Convert to fixed-dimensional feature vector by

measuring statistics of the features such as histograms
§ E.g. “Bag of Words”, “Spatial Pyramids”, etc.

…

Bag-of-Words histogram

Use your favorite ML model now!

See libraries like VLFeat and OpenCV

Successes of ML for Vision Pre-2012

Viola-Jones face detector
(with AdaBoost!)

~2000

https://github.com/alexdemartos/ViolaAndJones

Deformable Parts Model
object detection

(with SVMs!)
~2010

GIST
Scene retrieval

(with nearest neighbors!)
~2006

https://github.com/alexdemartos/ViolaAndJones

ML in Computer Vision

24

The old: Mid 1990’s – 2012

Image → hand-def. features → learned classifier

The very old: 1960’s - Mid 1990’s

Image → hand-def. features → hand-def. classifier

The new: 2012 – ?

Image → jointly learned features + classifier with
“deep” multi-layer neural networks

Representation Learning for
Images
Convolutional Neural Networks

What is Different Now?

26

The old: Mid 90’s – 2012

Image → hand-def. features → learned classifier

The very old: 60’s - Mid 90’s

Image → hand-def. features → hand-def. classifier

The new: 2012 – ?

Image → jointly learned features + classifier

Answer: Representation learning

“Deep” Learning

• “Deep” multi-layer neural networks are representation learners.
• Every layer improves upon its preceding layer, tailoring the representation

to the task.

𝐷-length
feature 𝒙

Image

“dog”

Impact of Deep Learning in Computer Vision

0

5

10

15

20

25

30

2011 2012 2013 2014 2015 2016

ImageNet top-5 object recognition
error (%)

ImageNet 1000-object category recognition challenge

But the neural networks you have seen so far won’t work well on images!

What’s special about images?

• Images are special. Why?
• Bad news: They are very high-dimensional, which makes all ML harder.
• Good news: We don’t have to treat images as just vectors of pixels. We

know more about them, and can exploit that knowledge.

29

Structure in Images

• 2D image structure
§ So far, we could shuffle features without changing the problem (e.g.,
𝛽$𝑥)

§ Not true for images! Location associations and spatial neighborhoods
are meaningful

Structure in Images

• Translation invariance
§ Consider image classification (e.g., labels are cat, dog, etc.)
§ Invariance: If we translate an image, it does not change the category

label

Source: Ott et al., Learning in the machine: To share or not to share?

Structure in Images

• Translation equivariance
§ Consider object detection (e.g., find the position of the cat in an image)
§ Equivariance: If we translate an image, the object is translated similarly

We will exploit this through image-specific operations in neural networks.

“Image”-Specific Operators/Layers
• We want to retain useful location associations, and exploit translation invariance and

equivariance.

• Two key operations in neural networks for images:

33

Convolution layers
(capture equivariance)

Pooling layers
(capture invariance)

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

Convolutions Beyond Images
• Recall: convolutions try to gather useful location associations, and exploit translation

invariance and equivariance.

• These properties are useful beyond just images. Need not even be 2-D grids.
§ E.g. detecting spikes in a time series of stock prices, or an audio stream. (1-D)

§ Also important to retain location associations
§ Local operations, invariance, equivariance.

§ Can also apply in higher dimensions. E.g. convolving over a 3D “grid” of voxels to
detect objects.

34
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

Convolution

Convolution Filters: Template Matching over an Image
• Intuitively, convolutional filters search

for local patterns that resemble the
filters themselves.

• Suppose you are given a convolution
filter like this. (later, we will learn filters)

36
Input Feature Activation Map

.

.

.

graphic credit: S. Lazebnik

Convolutional filtering in 1D

• Suppose your input 𝑥 is a 1-D sequence, such as a time sequence, e.g. the
stock market: 𝒙 = [25000, 28000, 30000, 21000, 18000,…]
• Given a “kernel” sequence, e.g. 𝒌 = [−1, 1, −1]
• Convolution is defined by the following operation:

𝑦 𝑡 = 4
%&'

𝒌)*

𝑘 𝜏 𝑥[𝑡 + 𝜏]

𝑦 0 = 𝑘 0 𝑥 0 + 𝑘 1 𝑥 1 + 𝑘 2 𝑥 2 = −25000 + 28000 − 30000
𝑦 1 = 𝑘 0 𝑥 1 + 𝑘 1 𝑥 2 + 𝑘 2 𝑥 3 = −28000 + 30000 − 21000
𝑦 2 = 𝑘 0 𝑥 2 + 𝑘 1 𝑥 3 + 𝑘 2 𝑥 4 = −30000 + 21000 − 18000

In neural networks, the weights 𝒌
are learned. (Plus a bias)

Strictly “cross-correlation”, but
we’ll call it “convolution”

Convolutional Filtering in 1D

38https://gitlab.com/brohrer/

https://gitlab.com/brohrer/

Convolutional Filtering in 1D

39https://gitlab.com/brohrer/

No good positive match, but good negative match?

https://gitlab.com/brohrer/

Convolutional Filtering in 1D

40https://gitlab.com/brohrer/

https://gitlab.com/brohrer/

Convolutional filtering in 2D

• 1-D convolution is defined by the following operation:

𝑦 𝑡 = 4
%&'

+)*

𝑘 𝜏 𝑥[𝑡 + 𝜏]

• With a 2-D signal 𝒙 and 2-D ℎ×𝑤 kernel 𝒌, 2-D convolution is defined by
the following operation:

𝑦 𝑠, 𝑡 = 4
%&'

,)*

4
-&'

.)*

𝑘 𝜏, 𝛾 𝑥[𝑠 + 𝜏, 𝑡 + 𝛾]

Again, in convolutional neural
networks, the weights 𝒌 will be
learned.

Convolutional filtering in 2D

𝑦 𝑠, 𝑡 = 4
%&'

,)*

4
-&'

.)*

𝑘 𝜏, 𝛾 𝑥[𝑠 + 𝜏, 𝑡 + 𝛾]

• To compute:
§ Slide kernel over image
§ Take the element-wise multiplication over the window and sum

Image: https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

Example: Edge Detection via Convolution

https://aishack.in/tutorials/image-convolution-examples/

Example Edge Detection Kernels Result of Convolution with Horizontal Kernel

https://aishack.in/tutorials/image-convolution-examples/

Back To Our Example

graphic credit: S. Lazebnik

Back To Our Example

graphic credit: S. Lazebnik

output 0,0 = 6
!"#

$%&

6
'"#

$%&

7ilter 𝜏, 𝛾 ⋅ image 0 + 𝜏, 0 + 𝛾

Back To Our Example

graphic credit: S. Lazebnik

output 0,1 = 6
!"#

$%&

6
'"#

$%&

7ilter 𝜏, 𝛾 ⋅ image 0 + 𝜏, 1 + 𝛾

Back To Our Example

graphic credit: S. Lazebnik

output 0,2 = 6
!"#

$%&

6
'"#

$%&

7ilter 𝜏, 𝛾 ⋅ image 0 + 𝜏, 2 + 𝛾

Back To Our Example

graphic credit: S. Lazebnik

output 𝑖, 𝑗 = 6
!"#

$%&

6
'"#

$%&

7ilter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾

Back To Our Example

graphic credit: S. Lazebnik

output 𝑖, 𝑗 = 6
!"#

$%&

6
'"#

$%&

7ilter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾

Back To Our Example

graphic credit: S. Lazebnik

output 𝑖, 𝑗 = 6
!"#

$%&

6
'"#

$%&

7ilter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾

Convolutions Are Frugal
From fully connected layers to convolutions

Convolutional Layer: Local Connectivity

• # input units (neurons): 7
• # hidden units: 3
• Number of parameters (ignoring bias)

§ Global connectivity: 3 x 7 = 21
§ Local connectivity: 3 x 3 = 9

Incoming layer

Outgoing layer

Global connectivity Local connectivity

Slide credit: Jia-Bin Huang 53

Hence “fully connected” / “fc” layers.

Convolutional Layer: Weight Sharing

• # input units (neurons): 7
• # hidden units: 3
• Number of parameters (ignoring bias)

– Without weight sharing: 3 x 3 = 9
– With weight sharing : 3 x 1 = 3

w1

w2

w3

w4

w5

w6

w7

w8

w9

Without weight sharing With weight sharing

w1

w2

w3 w1

w2

w3

w1

w2

w3

Slide credit: Jia-Bin Huang 54

Incoming layer

Outgoing layer

From Convolutions to
Convolutional Layers

Extending convolutions

• We have just discussed the connection between normal “fully connected”
layers and convolutions.

• But convolutional layers in neural networks extend this a bit more (next 2
slides):
§ They can handle multiple input channels (e.g. RGB channels in color

image)
§ They can also handle multiple output channels
§ They can modify the inputs to maintain desired activation sizes

Convolutional Layer with >1 input “channels” / “maps”

Single input channel Multiple input channels

Channel 2

Channel 1

Filter weights Filter weights
Slide credit: Jia-Bin Huang 57

Incoming layer

Outgoing layer

Convolutional Layer with >1 output “channels” / “maps”

Single output map Multiple output maps

Filter weights

Map 1

Map 2

Filter 1 Filter 2

Filter weights
Slide credit: Jia-Bin Huang 58

Incoming layer

Outgoing layer

