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Course Progress

Till now: (mostly) foundational algorithms applicable to large classes of
machine learning problems.

Going forward: (mostly) applications to specific types of data and specific
types of problems.

* New Types of Data: Grids (e.g. Images), Sequences (e.g. Language)

* New Types of Problems: Making Sequences of Decisions (e.g. Robotics),
Recommendation Systems



ypes of Data

e Until now, the it" sample in our dataset was either naturally a vector x; or
] ] l
we converted it into one.

* What if our data samples were more naturally expressed in a different
structure?

" x; is a “grid”: e.g. images
" x; is a “sequence”: e.g. text
" x; is a “graph”: e.g. protein structure



Neural Networks Specialized to Grid Data

* We will study a class of neural networks called convolutions that specialize
to properties often present in grid data, particularly images.

https://en.wikipedia.org/wiki/Spectrogram

Spectrogram encoding of audio

https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
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https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
https://en.wikipedia.org/wiki/Spectrogram
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Note: for color images, a stack of (typically 3) 2D arrays, each called a “channel”.

Source: S. Narasimhan, S. Lazebnik



Color Images Are 3D Arrays with 2 Spatial Dimensions
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We will see: convenient to deal with the spatial dimensions separately, and there
ttttt are still only two of those.



https://dev.to/sandeepbalachandran/machine-learning-going-furthur-with-cnn-part-2-41km
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What Info can be Extracted from Images

Source: S. Lazebnik
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What Info can be Extracted from Images

geometric
information

Source: S. Lazebnik



?

What Info can be Extracted from Images

semantic
information

geometric
information

Source: S. Lazebnik



Vision is Deceptively Hard!

In the 1960s, Marvin Minsky assigned a
couple of undergrads to spend the
summer programming a computer to
use a camera to identify objects in a
scene. He figured they'd have the
problem solved by the end of the
summer.

Half a century later, we're still working
on it.

WHEN A USER TAKES A PHOTO,
THE APP SHOULD CHECK WHETHER
THEY'RE IN A NATIONAL PARK ...

SURE, EASY GIS LOOKUP
GIMME A FEW HOURS.

. AND CHECK UHETHER
THE PHOTO IS OF A BIRD.

ILLNEEDARESEHRCH

=

IN C5, IT CAN BE HARD TO EXPLAIN
THE DIFFERENCE BETWEEN THE EARSY
AND THE VIRTUALLY IMPOSSIBLE.
Source: XKCD 10



he Treachery of Images — Rene Magritte

“This is not a pipe”

LCeci nest nas une fufle.

Vision often involves making educated guesses.
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What Should Good Visual Representations Do?

D-length
feature x

-H-

Image




What Should Good Vi

What is a “good”
feature space?

al Representations Do?

W e
. running

Good features make useful tasks easy to perform.




What Should Good Visual Representations Do?

D-length
feature x

=

How should we produce such good features?




Visual Features Before Deep
Learning



Most Feature Extraction Frameworks Pre-2012

» Step 1: Focus on “interest points” rather than all pixels [
" E.g. corner points, “difference of gaussians”, or 5
even a uniform grid
 Step 2: Compute features at interest points. S ; o -
= E.g. “SIFT”, “HOG”, “SURF”, “GIST”, etc.  aSaa

 Step 3: Convert to fixed-dimensional feature vector by
measuring statistics of the features such as histograms

" E.g. “Bag of Words”, “Spatial Pyramids”, etc.

Bag-of-Words histogram

Use your favorite ML model now!

See libraries like VLFeat and OpenCV I I
L =
m & &



Successes of ML for Vision Pre-2012

https://github.com/alexdemartos/ViolaAndJones

Viola-Jones face detector
(with AdaBoost!)
~2000

Deformable Parts Model
object detection
(with SVMs!)
~2010

GIST
Scene retrieval
(with nearest neighbors!)

~2006


https://github.com/alexdemartos/ViolaAndJones
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Representation Learning for
Images

Convolutional Neural Networks
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The old: Mid 90’s — 2012
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Keypoint descriplar

The new: 2012 -7

Image — jointly learned features + classifier

Answer: Representation learning
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“Deep” Learning

e “Deep” multi-layer neural networks are representation learners.

* Every layer improves upon its preceding layer, tailoring the representation
to the task.

D-length
feature x

Image

’)

Ildog




Impact of Deep Learning in Computer Vision

ImageNet top-5 object recognition
error (%)

15

10 |||

s i

) ll-

2011 2012 2013 2014 2015 2016

ImageNet 1000-object category recognition challenge

But the neural networks you have seen so far won’t work well on images!




What’s special about images?

* Images are special. Why?
* Bad news: They are very high-dimensional, which makes all ML harder.

* Good news: We don’t have to treat images as just vectors of pixels. We
know more about them, and can exploit that knowledge.

29



Structure in Images

* 2D image structure
= So far, we could shuffle features without changing the problem (e.g.,

B x)
= Not true for images! Location associations and spatial neighborhoods
are meaningful

Camera obscura

Subject Box Screen

P
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Light rays

Hole in the box

Upside down image
©Designua | Dreamstime.com



Structure in Images

* Translation invariance
» Consider image classification (e.g., labels are cat, dog, etc.)

" Invariance: If we translate an image, it does not change the category
label

(b) 10.0 % (¢) 20.0 % (d) 30.0 % (e) 40.0 % (f) 50.0 %

HaAAR

() 60.0% (h) 70.0 % (i) 80.0 % (1) 90.0 % (k) 99.0 %

Source: Ott et al., Learning in the machine: To share or not to share?

(a) 0.0 %




Structure in Images

* Translation equivariance
= Consider object detection (e.g., find the position of the cat in an image)
= Equivariance: If we translate an image, the object is translated similarly

g

We will exploit this through image-specific operations in neural networks.




“Image”-Specific Operators/Layers

* We want to retain useful location associations, and exploit translation invariance and
equivariance.

* Two key operations in neural networks for images:

)
A
[\/

=12
\=\p
A
A\

e

Convolution layers Pooling layers
(capture equivariance) (capture invariance)

\

A\
A\

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d _max_pooling pal.png
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https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

Convolutions Beyond Images

* Recall: convolutions try to gather useful location associations, and exploit translation
invariance and equivariance.

* These properties are useful beyond just images. Need not even be 2-D grids.
" E.g. detecting spikes in a time series of stock prices, or an audio stream. (1-D)
= Also important to retain location associations
" Local operations, invariance, equivariance.

= Can also apply in higher dimensions. E.g. convolving over a 3D “grid” of voxels to
detect objects.

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d _max_pooling pal.png



https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

Convolution



Convolution Filters: Template Matching over an Image

* Intuitively, convolutional filters search
for local patterns that resemble the
filters themselves.

e Suppose you are given a convolution
filter like this. (later, we will learn filters)
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Feature Activation Map
graphic credit: S. Lazebnik



Convolutional filtering in 1D

» Suppose your input x is a 1-D sequence, such as a time sequence, e.g. the
stock market: x = [25000,28000,30000,21000, 18000, ... ]

* Given a “kernel” sequence, e.g. k =

Strictly “cross-correlation”, but
we’ll call it “convolution”
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* Convolution is defined by the follll?lwmg operation:

Zk

t-I-T

In neural networks, the weights k

\ are learned. (Plus a bias)
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—25000 + 28000 — 30000
—28000 + 30000 — 21000
—30000 + 21000 — 18000



Convolutional Filtering in 1D
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https://gitlab.com/brohrer/ 38



https://gitlab.com/brohrer/

Convolutional Filtering in 1D

_.Tf .0 [
I L‘l‘ol" 5
Y A1 9N

No good positive match, but good negative match?

https://gitlab.com/brohrer/ 39



https://gitlab.com/brohrer/

Convolutional Filtering in 1D
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https://gitlab.com/brohrer/ 40



https://gitlab.com/brohrer/




Convolutional filtering in 2D

e 1-D convolution is defined by thle 1|‘o||owmg operation:
k —

Zk x|t + 1]

e With a 2-D signal x and 2-D hXw kernel k, 2-D convolution is defined by

the following operation:
W —
Z x[s+1,t+y]

Again, in convolutional neural
networks, the weights k will be
learned.

4




Convolutional filtering in 2D

h—-1w-1

yls, t] = Z Z klt,ylx[s +1,t + V]

T=0 y=0

* To compute:
= Slide kernel over image
= Take the element-wise multiplication over the window and sum

Image: https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faeel



https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

Example: Edge Detection via Convolution

Example Edge Detection Kernels Result of Convolution with Horizontal Kernel

-1 (-1 -1 -1 2 | -1
2 | @ | 2 -1 2 [ -1
-1(-1]-1 -1 2 |-1
Horizontal lines Vertical Enes

-1 | -1 2 2 | -1 -1
-1 2 |1 12| -1
2 | -1]-1 -1 -1] 2

45 degree lnes 135 degree lines

https://aishack.in/tutorials/image-convolution-examples/



https://aishack.in/tutorials/image-convolution-examples/

Back To Our Example

graphic credit: S. Lazebnik



Back To Our Example

output[0,0] z z filter[r,y] - image[0 + 7,0 + ]

graphic credit: S. Lazebnik



Back To Our Example

w
k—1k-1

output[0,1] = z z filter|t,y] - image[0 + 7,1 + Y]
7=0y=0

graphic credit: S. Lazebnik



Back To Our Example

o
k—1k-1

output[0,2] = z z filter|t,y] - image[0 + 7,2 + ]
7=0y=0

graphic credit: S. Lazebnik



Back To Our Example

k-1k-1

output|i, j] = 2 z filter|t,y] - imageli + 7,j + ¥]
=0 y=0

graphic credit: S. Lazebnik



Back To Our Example

E FfEarT e T
k—1k-1
output|i, j] 2 z filter|t,y] - imageli + 7,j + V]
7=0 y=0

graphic credit: S. Lazebnik



Back To Our Example

filter[z,y] - image[i + 7,/ + y]

graphic credit: S. Lazebnik



Convolutions Are Frugal

From fully connected layers to convolutions



Convolutional Layer: Local Connectivity

Hence “fully connected” / “fc” layers.

Outgoing layer

Incoming layer

Global connectivity

e # input units (neurons): 7
* # hidden units: 3

 Number of parameters (ignoring bias)
= Global connectivity: 3x7 =21
" Local connectivity: 3x3=9

Local connectivity

Slide credit: Jia-Bin Huang

53



Convolutional Layer: Weight Sharing

Outgoing layer

. ‘ Incoming layer / / /‘ ‘
Without weight sharing With weight sharing

* #input units (neurons): 7
* # hidden units: 3

* Number of parameters (ignoring bias)
— Without weight sharing: 3x3 =9

— With weight sharing: 3x1=3
Slide credit: Jia-Bin Huang 54



From Convolutions to
Convolutional Layers



Extending convolutions

* We have just discussed the connection between normal “fully connected”
layers and convolutions.

* But convolutional layers in neural networks extend this a bit more (next 2
slides):
" They can handle multiple input channels (e.g. RGB channels in color
image)
" They can also handle multiple output channels
" They can modify the inputs to maintain desired activation sizes



Convolutional Layer with >1 input “channels” / “maps”

Outgoing layer

SN A

Channel 2

Single input channel Multiple input channels

Filter weights Filter weights
Slide credit: Jia-Bin Huang

57



Convolutional Layer with >1 output “channels” / “maps”

Outgoing layer Map 1 , , ,

® 6 o
/‘ /‘ /‘ @ ncoming layer

Single output map Multiple output maps
Filter 1/ mﬁlter 2
Filter weights Filter weights

Slide credit: Jia-Bin Huang
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