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Course Progress
Till now: (mostly) foundational algorithms applicable to large classes of 
machine learning problems.

Going forward: (mostly) applications to specific types of data and specific 
types of problems.
• New Types of Data: Grids (e.g. Images), Sequences (e.g. Language)
• New Types of Problems: Making Sequences of Decisions (e.g. Robotics), 

Recommendation Systems



Types of Data

• Until now, the 𝑖!" sample in our dataset was either naturally a vector 𝑥#  or 
we converted it into one.

• What if our data samples were more naturally expressed in a different 
structure? 
§ 𝒙#  is a “grid”: e.g. images
§ 𝒙#  is a “sequence”: e.g. text
§ 𝒙#  is a “graph”: e.g. protein structure



Neural Networks Specialized to Grid Data

• We will study a class of neural networks called convolutions that specialize 
to properties often present in grid data, particularly images.

Spectrogram encoding of audio Digital image

https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939https://en.wikipedia.org/wiki/Spectrogram

https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
https://en.wikipedia.org/wiki/Spectrogram


Images as 2D Arrays

What we see What a computer sees

Source: S. Narasimhan, S. Lazebnik

Computer vision:

How to extract 
meaning out of these
2D arrays?

Note: for color images, a stack of (typically 3) 2D arrays, each called a “channel”.



Color Images Are 3D Arrays with 2 Spatial Dimensions

https://dev.to/sandeepbalachandran/machine-learning-going-furthur-with-cnn-part-2-41km

RGB encoding
(Red, Green, Blue “channels”)

We will see: convenient to deal with the spatial dimensions separately, and there 
are still only two of those.

https://dev.to/sandeepbalachandran/machine-learning-going-furthur-with-cnn-part-2-41km


Source: S. Lazebnik

What Info can be Extracted from Images?



Source: S. Lazebnik

geometric 
information

What Info can be Extracted from Images?



Source: S. Lazebnik
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What Info can be Extracted from Images?



Source: XKCD

Vision is Deceptively Hard!

In the 1960s, Marvin Minsky assigned a 
couple of undergrads to spend the 
summer programming a computer to 
use a camera to identify objects in a 
scene. He figured they'd have the 
problem solved by the end of the 
summer.

Half a century later, we're still working 
on it.
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The Treachery of Images – Rene Magritte

Vision often involves making educated guesses.

“This is not a pipe”



ML in Computer Vision
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The old: Mid 1990’s – 2012

Image → hand-def. features → learned classifier

The very old: 1960’s - Mid 1990’s

Image → hand-def. features → hand-def. classifier



What Should Good Visual Representations Do?

𝐷-length 
feature 𝒙

Image

?



What Should Good Visual Representations Do?

What is a “good”
feature space?

?

cat

running

tongue

lawn

…Good features make useful tasks easy to perform.



What Should Good Visual Representations Do?

𝐷-length 
feature 𝒙

Image

?

How should we produce such good features?

ML 
model “Dog”



Visual Features Before Deep 
Learning



Most Feature Extraction Frameworks Pre-2012

• Step 1: Focus on “interest points” rather than all pixels
§ E.g. corner points, “difference of gaussians”, or 

even a uniform grid
• Step 2: Compute features at interest points.

§ E.g. “SIFT”, “HOG”, “SURF”, “GIST”, etc.
• Step 3: Convert to fixed-dimensional feature vector by 

measuring statistics of the features such as histograms
§ E.g. “Bag of Words”, “Spatial Pyramids”, etc.

…

Bag-of-Words histogram

Use your favorite ML model now!

See libraries like VLFeat and OpenCV



Successes of ML for Vision Pre-2012

Viola-Jones face detector
(with AdaBoost!)

~2000

https://github.com/alexdemartos/ViolaAndJones

Deformable Parts Model
object detection

(with SVMs!)
~2010

GIST
Scene retrieval

(with nearest neighbors!)
~2006

https://github.com/alexdemartos/ViolaAndJones


ML in Computer Vision
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The old: Mid 1990’s – 2012

Image → hand-def. features → learned classifier

The very old: 1960’s - Mid 1990’s

Image → hand-def. features → hand-def. classifier

The new: 2012 – ?

Image → jointly learned features + classifier with 
“deep” multi-layer neural networks



Representation Learning for 
Images
Convolutional Neural Networks



What is Different Now? 
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The old: Mid 90’s – 2012

Image → hand-def. features → learned classifier

The very old: 60’s - Mid 90’s

Image → hand-def. features → hand-def. classifier

The new: 2012 – ?

Image → jointly learned features + classifier

Answer: Representation learning



“Deep” Learning

• “Deep” multi-layer neural networks are representation learners. 
• Every layer improves upon its preceding layer, tailoring the representation 

to the task.

𝐷-length 
feature 𝒙

Image

“dog”



Impact of Deep Learning in Computer Vision
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But the neural networks you have seen so far won’t work well on images!



What’s special about images?

• Images are special. Why?
• Bad news: They are very high-dimensional, which makes all ML harder.
• Good news: We don’t have to treat images as just vectors of pixels. We 

know more about them, and can exploit that knowledge.
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Structure in Images

• 2D image structure
§ So far, we could shuffle features without changing the problem (e.g., 
𝛽$𝑥)

§ Not true for images! Location associations and spatial neighborhoods 
are meaningful



Structure in Images

• Translation invariance
§ Consider image classification (e.g., labels are cat, dog, etc.)
§ Invariance: If we translate an image, it does not change the category 

label

Source: Ott et al., Learning in the machine: To share or not to share?



Structure in Images

• Translation equivariance
§ Consider object detection (e.g., find the position of the cat in an image)
§ Equivariance: If we translate an image, the object is translated similarly

We will exploit this through image-specific operations in neural networks.



“Image”-Specific Operators/Layers
• We want to retain useful location associations, and exploit translation invariance and 

equivariance.

• Two key operations in neural networks for images:
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Convolution layers
(capture equivariance)

Pooling layers
(capture invariance)

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png


Convolutions Beyond Images
• Recall: convolutions try to gather useful location associations, and exploit translation 

invariance and equivariance.

• These properties are useful beyond just images. Need not even be 2-D grids.
§ E.g. detecting spikes in a time series of stock prices, or an audio stream. (1-D)

§ Also important to retain location associations
§ Local operations, invariance, equivariance.

§ Can also apply in higher dimensions. E.g. convolving over a 3D “grid” of voxels to 
detect objects.

34
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png


Convolution



Convolution Filters: Template Matching over an Image  
• Intuitively, convolutional filters search 

for local patterns that resemble the 
filters themselves.

• Suppose you are given a convolution 
filter like this. (later, we will learn filters)
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Input Feature Activation Map
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graphic credit: S. Lazebnik



Convolutional filtering in 1D

• Suppose your input 𝑥 is a 1-D sequence, such as a time sequence, e.g. the 
stock market: 𝒙 = [25000, 28000, 30000, 21000, 18000,… ] 
• Given a “kernel” sequence, e.g. 𝒌 = [−1, 1, −1]
• Convolution is defined by the following operation:

𝑦 𝑡 = 4
%&'

𝒌 )*

𝑘 𝜏 𝑥[𝑡 + 𝜏]

𝑦 0 = 𝑘 0 𝑥 0 + 𝑘 1 𝑥 1 + 𝑘 2 𝑥 2 = −25000 + 28000 − 30000
𝑦 1 = 𝑘 0 𝑥 1 + 𝑘 1 𝑥 2 + 𝑘 2 𝑥 3 = −28000 + 30000 − 21000
𝑦 2 = 𝑘 0 𝑥 2 + 𝑘 1 𝑥 3 + 𝑘 2 𝑥 4 = −30000 + 21000 − 18000

In neural networks, the weights 𝒌 
are learned. (Plus a bias)

Strictly “cross-correlation”, but 
we’ll call it “convolution”



Convolutional Filtering in 1D

38https://gitlab.com/brohrer/

https://gitlab.com/brohrer/


Convolutional Filtering in 1D

39https://gitlab.com/brohrer/

No good positive match, but good negative match?

https://gitlab.com/brohrer/


Convolutional Filtering in 1D

40https://gitlab.com/brohrer/

https://gitlab.com/brohrer/




Convolutional filtering in 2D

• 1-D convolution is defined by the following operation:

𝑦 𝑡 = 4
%&'

+ )*

𝑘 𝜏 𝑥[𝑡 + 𝜏]

• With a 2-D signal 𝒙 and 2-D ℎ×𝑤 kernel 𝒌, 2-D convolution is defined by 
the following operation:

𝑦 𝑠, 𝑡 = 4
%&'

,)*

4
-&'

.)*

𝑘 𝜏, 𝛾 𝑥[𝑠 + 𝜏, 𝑡 + 𝛾]

Again, in convolutional neural 
networks, the weights 𝒌 will be 
learned.



Convolutional filtering in 2D

𝑦 𝑠, 𝑡 = 4
%&'

,)*

4
-&'

.)*

𝑘 𝜏, 𝛾 𝑥[𝑠 + 𝜏, 𝑡 + 𝛾]

• To compute:
§ Slide kernel over image
§ Take the element-wise multiplication over the window and sum

Image: https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1


Example: Edge Detection via Convolution

https://aishack.in/tutorials/image-convolution-examples/

Example Edge Detection Kernels Result of Convolution with Horizontal Kernel

https://aishack.in/tutorials/image-convolution-examples/


Back To Our Example

graphic credit: S. Lazebnik



Back To Our Example

graphic credit: S. Lazebnik

output 0,0 = 6
!"#

$%&

6
'"#

$%&

7ilter 𝜏, 𝛾 ⋅ image 0 + 𝜏, 0 + 𝛾



Back To Our Example

graphic credit: S. Lazebnik

output 0,1 = 6
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7ilter 𝜏, 𝛾 ⋅ image 0 + 𝜏, 1 + 𝛾



Back To Our Example

graphic credit: S. Lazebnik

output 0,2 = 6
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7ilter 𝜏, 𝛾 ⋅ image 0 + 𝜏, 2 + 𝛾



Back To Our Example

graphic credit: S. Lazebnik

output 𝑖, 𝑗 = 6
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7ilter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾



Back To Our Example

graphic credit: S. Lazebnik

output 𝑖, 𝑗 = 6
!"#

$%&

6
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7ilter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾



Back To Our Example

graphic credit: S. Lazebnik

output 𝑖, 𝑗 = 6
!"#

$%&

6
'"#

$%&

7ilter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾



Convolutions Are Frugal
From fully connected layers to convolutions



Convolutional Layer: Local Connectivity

• # input units (neurons): 7
• # hidden units: 3
• Number of parameters (ignoring bias)

§ Global connectivity: 3 x 7 = 21
§ Local connectivity:   3 x 3 = 9

Incoming layer

Outgoing layer

Global connectivity Local connectivity

Slide credit: Jia-Bin Huang 53

Hence “fully connected” / “fc” layers.



Convolutional Layer: Weight Sharing

• # input units (neurons): 7
• # hidden units: 3
• Number of parameters (ignoring bias)

– Without weight sharing: 3 x 3 = 9
– With weight sharing :      3 x 1 = 3

w1

w2

w3

w4

w5

w6

w7

w8

w9

Without weight sharing With weight sharing

w1

w2

w3 w1

w2

w3

w1

w2

w3

Slide credit: Jia-Bin Huang 54

Incoming layer

Outgoing layer



From Convolutions to 
Convolutional Layers



Extending convolutions

• We have just discussed the connection between normal “fully connected” 
layers and convolutions.

• But convolutional layers in neural networks extend this a bit more (next 2 
slides):
§ They can handle multiple input channels (e.g. RGB channels in color 

image)
§ They can also handle multiple output channels
§ They can modify the inputs to maintain desired activation sizes



Convolutional Layer with >1 input “channels” / “maps”

Single input channel Multiple input channels

Channel 2

Channel 1

Filter weights Filter weights
Slide credit: Jia-Bin Huang 57

Incoming layer

Outgoing layer



Convolutional Layer with >1 output “channels” / “maps”

Single output map Multiple output maps

Filter weights

Map 1

Map 2

Filter 1 Filter 2

Filter weights
Slide credit: Jia-Bin Huang 58

Incoming layer

Outgoing layer


