
Announcements

Releases today:
• HW3
• Project descriptions!

Project Format 1/3
• There are 3 project directions (more next slide) set up by the course team.
• Each team must pick one of these directions.
• For each direction, a document will be up later today, explaining the

problem and “common minimum” components that each team must
execute. This will involve both data collection and model design.
§ Specification of the task and its performance metrics
§ Starter data (very small) to guide your data collection and model design
§ Starter ML model code to guide your data collection and model design

• Beyond the common minimum components, each team will craft their own
“further investigation” questions grounded in that direction and report
their progress on answering it.
• On Dec 16, each team will submit their collected data, their trained

model(s), and a project report (~5 pages, format TBA soon).

Project Format 2/3: Common Minimum Components

• For the common minimum components, the course team will, besides the
starter data and code, set up a leaderboard for teams to have a sense of
how other teams are performing.
• Project grade will be based on your project report (more next slide) and not

your position on the leaderboard, but:
§ Each team must submit at least one entry to the leaderboard
§ Some fraction of the project grade (e.g. 15%) will be based on

surpassing a minimum level of performance on the problem.
§ If you did well on the leaderboard test data AND your report does a

good job explaining how you achieved this, we may grant you bonus
points.

Project Format 3/3: Further Investigation Components

• Your report, besides explaining your approach to the common minimum
components, will also include a report of your “further investigations” (at
least 2). For each “investigation”, you will describe:
§ Your question and its motivation E.g. “does random hyperparameter

sampling perform better than grid search?”
§ Your research on prior work or course material related to the question,

and what you expect to be the answer before conducting your
investigation. E.g. search on google scholar

§ Methods for investigation.
§ Results of your investigation, and your updated beliefs about the

answer.
§ Limitations of your study / what you would have done with more time or

other resources.

CIS 4190/5190: Lec 14 Wed Oct 23,
2024

Convolutional Neural Networks Wrap-
Up

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

Convolutional Layer Summary

• Local connectivity
• Weight sharing
• Handling multiple input/output channels
• Retains location associations

6Image credit: A. Karpathy

filters = #output (activation) maps # input channels

Local connectivity
Weight sharing

Slide credit: Jia-Bin Huang

filter size,
stride

Zero-Padding

stride = 1, zero-padding = 1 stride = 2, zero-padding = 1

https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

Q: What if you had a different-sized kernel? E.g. 5x5? 4x4?

https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

Stride
Filter

https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

0.50 0.25 0.00

0.00 0.75 0.00

0.00 0.50 1.00

Output with stride 2
0

0.5

0

1

10. 1 0.5 0.5

Output with stride 1

The kernel size, amount of zero-padding, and stride, together determine the
output spatial dimensions

Can you spot the relationship between these 2 outputs?

https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

Convolution Filter Bank Demo

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

Convolution Filter Bank Demo

• Notes:
§ Multiple (3) input channels

§ Hence kernels with 3
channels

§ 2 kernels, hence 2 output
channels

§ One bias parameter for
each kernel

§ Stride 2, zero-padding 1
§ Kernel size 3x3

• Net #parameters in the bank:
§ (3×3×3 + 1)×2	 = 	56 http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

Channels as features in a position

• Filter responses at position form a vector representing a region
• Successive filter responses can be though of mapping positions from

input channel dimensional space to output channel dimensional
space.

Channel 1 Channel 2 Channel 3

Is Convolution a Linear Operation?

• Recall

w1

w2

w3 w1

w2

w3

w1

w2

w3

”Linear” or “fully connected layer”
𝑌 = 𝑊𝑋

Convolution

Convolution is just a linear layer with some weights set to 0,
and some other weights “shared”. So, yes, still linear!

Can we back-propagate through a convolution?

• Yes!
• A convolution is after all a special case of a linear operation 𝑌 = 𝑊𝑋, with

local connections and shared weights.
• Differentiable w.r.t. its inputs, as well as w.r.t. its weights.

Typical accompaniments to
convolutions inside CNNs
Pooling, Normalization, Activation Functions …

Convolutions inside a neural network

15

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000Example CNN
architecture:

The 2012 AlexNet!

inputs

outputs

“8 layers”, really “8 layer blocks”
“5 convolution blocks” followed

by 3 fully connected layers

More on AlexNet soon!
But first, what is a “convolution block”?

(and what are all the numbers in each layer?)

Typical accompaniments to “convolution layers”

16graphic credit: S. Lazebnik

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000Example CNN
architecture

inputs

outputs

Convolution
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Input Feature Map

.

.

.

Convolve → activation function → pool → normalize

17slide credit: S. Lazebnik

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Convolve → activation function → pool → normalize

18

Rectified Linear Unit (ReLU)

slide credit: S. Lazebnik

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Max pooling

Convolve → activation function → pool → normalize

19graphic credit: S. Lazebnik

Max-pooling: translation invariance.
Often applied with a stride.
No learnable parameters.

Convolution provides equivariance to shift
Pooling provides invariance to shift

Back to AlexNet

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000

Inputs (227x227x3)

outputs

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Feature Maps Feature Maps
After Contrast
Normalization

Convolve → activation function → pool → normalize

21graphic credit: S. Lazebnik

“Contrast normalization” highlights areas where the
feature maps change.

More of a historical note at this point than anything
else. Used to be a standard component in neural
networks. Not used in modern architectures.

Modern variants

• BatchNorm is very commonly used.
• Most common variants of a convolutional block:

§ Conv-BatchNorm-Maxpool-ReLU, or
§ Conv-BatchNorm-ReLU-Maxpool

• Sometimes even no Maxpool, to keep feature map
spatial dimensions large. Often in very deep
networks.

Input Image

Convolution
(Learned)

ReLU

Max-pooling

Feature maps

BatchNorm

Often, when people say “convolution layer”,
it is implicit that they mean a full
convolutional block with various layers
following the actual convolutional layer

Back to AlexNet

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000

inputs

outputs

Exercise: work through the rest of
the dimensions in this network!

Summary: Image-specific operations in neural nets

• Machinery to convert image matrices into vectors of reasonable
dimensions, retaining useful location associations. Two main workhorses:
§ Convolution layers – Location-independent processing. Shift

equivariance.
§ Convolutions produce “image”-like feature maps, which retain

associations with input pixels.
§ Pooling layers – Binning to make outputs insensitive to translation and

reduce dimensionality. Shift invariance.
§ A dog is a dog even if its image is shifted by a few pixels.

25Convolution layers Pooling layers

Convolution Filter Banks As
Pattern Detectors

A Convolution Exercise

Suppose we want to find out whether the
following image depicts Cartesian axes.

As a step towards this, we convolve the
image with two filters (no padding, stride
of 1).

Compute the output by hand.

A Convolution Exercise

A Convolution Exercise

A Convolution Exercise

A Convolution Exercise

A Convolution Exercise

Convolution Exercise Solution

Grayscale
image

Filters Output of
filters

Convolutional Exercise Solution

Grayscale
image

Filters Output of
filters

Output of
max-pool

Next, what happens if we run max-pooling on the filter outputs?

Pretty clear vertical line

Pretty clear horiz line
and

Example architectures

Architecture Design

• Compose layers until you have a feature representation of the input you want to use to
do linear prediction for whatever problem you have in mind (e.g., classification)

• Exact architectural choices are nearly always empirically driven

§ Lots of trial and error

§ Many choices may not be fully justified but work well enough that we accept them.

• Many choices we have learned work better over time, but these choices may not be

good for all settings

• Proposing new architecture is very risky!

§ No guarantee it will optimize well with current tools

Example architectures

37

Source: MSRA slides at ILSVRC15

~60M params

“Standard” scheme
[Conv-ReLU-pool?]
[Conv-ReLU-pool?]
[Conv-ReLU-pool?]

…
Fully connected

…
Fully connected

https://learnopencv.com/understanding-alexnet/

Q: Where are most of the 60M parameters?

http://research.microsoft.com/en-us/um/people/kahe/ilsvrc15/ilsvrc2015_deep_residual_learning_kaiminghe.pdf
https://learnopencv.com/understanding-alexnet/

Example architectures

38Source: MSRA slides at ILSVRC15

~60M params ~140M params ~5M params!

“Standard” scheme
[Conv-ReLU-pool?]
[Conv-ReLU-pool?]
[Conv-ReLU-pool?]

…
Fully connected

…
Fully connected

http://research.microsoft.com/en-us/um/people/kahe/ilsvrc15/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

Less computation in
forward pass than

VGGNet!

Example architectures

40Source: MSRA slides at ILSVRC15

~60M params ~140M params

~5M params

Back to 60M params

http://research.microsoft.com/en-us/um/people/kahe/ilsvrc15/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

Source: MSRA slides at ILSVRC15 41

http://research.microsoft.com/en-us/um/people/kahe/ilsvrc15/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

Residual Network

• Q: Why are deeper networks not always better?
• Hypothesis 1: Because of overfitting.

But the 56-layer
network is underfitting!

Image credit: He et al, Residual Nets, 2015

Residual Network

• Q: Why are deeper networks not always better?
• Hypothesis 2: Because of optimization issues with deeper networks.

Idea: Skip connections that facilitate
more direct feedback from the loss to
the weights.

Image credit: He et al, Residual Nets, 2015

Residual Network

Image credit: Fei-Fei Li, Justin Johnson, Serena Yeung

Two views of residual connections:
1. Providing shortcuts to gradients

on the backward pass.
2. Allowing each “residual block”

to fit the residual error function
𝐹(𝑥) 	= 	𝐻(𝑥) − 𝑥.	

Residual Network
• Stack lots of residual blocks.
• Zero-padded stride-1 3x3 convolutions + no max-pooling ⇒ maintains

feature map size to build very deep nets.
• Reduce dimensions through stride 2 once every 𝐾 blocks, increase

#channels.
Conv stride 2 + 2x filters

Image credit: He et al, Residual Nets, 2015

Avg pooling + a single fc
layer, no dropout.

Larger conv kernel
before residual blocks.

Residual block designs

• For deeper networks, improve efficiency through 1x1 convolutions.

Image credit: He et al, Residual Nets, 2015

Many other improvements since 2015! E.g. “ResNeXt”, “Identity Mappings”, “ConvNeXt” etc.

What do CNNs learn?
Visualizing and Understanding CNNs

Feature visualization

48Slide credit: Yann LeCun

Layer 1

49Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
Slide credit: Jia-Bin Huang

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 2

50Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
Slide credit: Jia-Bin Huang

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 3

51Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
Slide credit: Jia-Bin Huang

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 4 and 5

52Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
Slide credit: Jia-Bin Huang

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Network dissection

http://netdissect.csail.mit.edu/

http://netdissect.csail.mit.edu/

CNNs with small datasets

Can we reuse trained concepts?

Since CNN’s trained for ImageNet object category classification appear to
learn many apparently general features, why not reuse these models in some
way to perform new tasks?

Transfer learning with CNNs

56

Slide credit: Fei-Fei Li and Andrej Karpathy

What if your task doesn’t have Imagenet-sized data?

For tasks close to original task, can make do
with small datasets + feature extraction or
shallow finetuning.

For tasks far from original task, you will need
to use moderate-sized datasets + deeper
finetuning

Some sample applications

57

[G
irs

hi
ck

 e
t a

l.
C

VP
R

14
]

[L
on

g
et

 a
l.

C
VP

R
15

]
[T

os
he

v
et

 a
l.

C
VP

R
14

]

Object detection

Pose detection (regression)

Semantic segmentation

Examples courtesy Jia-Bin Huang

http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf
http://www.cs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
http://arxiv.org/pdf/1312.4659v3.pdf

Some sample applications

58

Similarity metric learning
[C

ho
pr

a
et

 a
l.

C
VP

R
05

]

Picture source

[D
os

ov
its

ki
y

et
 a

l.
C

VP
R

15
]

Image generation

[D
on

g
et

 a
l.

EC
C

V
20

14
]

Low-level image processing:
(superresolution, deblurring,

image quality etc.)

Examples courtesy Jia-Bin Huang

http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf
http://arxiv.org/pdf/1412.6537v2.pdf
http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf
http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepresolution.pdf

Game playing!

[S
ilv

er
 e

t a
l,

N
at

ur
e

‘1
6]

CNN + Reinforcement learning

[M
ni

h
et

 a
l,

N
at

ur
e’

 1
5]

59

http://www.nature.com/nature/journal/v529/n7587/pdf/nature16961.pdf
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

ConvNet Art!

60

See if you can tell
artists’ originals
from machine
style imitations at:
http://turing.deepa
rt.io/

Paper: Gatys et al, “Neural ... Style”, arXiv ‘15
Code (torch): https://github.com/jcjohnson/neural-style

http://turing.deepart.io/
http://turing.deepart.io/
http://arxiv.org/abs/1508.06576
https://github.com/jcjohnson/neural-style

Pytorch Training Loop

Pytorch Training Loop

Gradient step
Backpropagation

Loss computation
Runs forward pass model.forward(data)

Looping over mini-batches

Zero out all old gradients

Pytorch Training Loop

Load dataset

Define optimizer, base learning rate schedule etc.

Loop over epochs (full passes over data)
Minibatch SGD for one epoch

Update base learning rate

Pytorch Model

• To use your model (once it has been trained):

model.eval() # puts model in evaluation mode
label = model(input) # forward pass to compute
outputs

