CIS 4190/5190: Lec 18 Wed Nov 06,
2024

y@& Reinforcement Learning Part 2

(Discounted) Return
Return (discounted by deauIt) starting from time t

2 3
T TY Tiy1 TV Teg2 Ty 143 T
At At 1 At 42 Aty3

Suppose that:
* this trajectory was produced by following a policy
* 1 and the environment transitions P(s’|s, a) are both deterministic.

Value Function

Suppose that:
* this trajectory was produced by following a policy
* 1 and the environment transitions P(s’|s, a) are both deterministic.

Then this return is also the “value” of the first state according to the policy
(otherwise value is the expected return, i.e. averaged over many such trajectories)

Ve(s¢) = 1 TV Te+1 +V2 Tt+2 +V3 Tty3 T

At At+1 At+2 At+3

Demoing Bellman Equation for Deterministic System

(Policy and transitions are both deterministic)
Vi(sy) = 1t +Y Tep1 FVE Teio +Y3 Teps o

VT(St41) = Tesn TV T2 +V2 Tt+3 +V3 Tt+4

Bellman equation is “just” good bookkeeping.
Vi(sy) = 1 +y V™ (St41) duat J 5 PIng
Value is neither created nor destroyed.

Demoing Bellman Equation for Deterministic System

Vi(sy) = 1t +y V™ (Se41)

When policy is optimal, this produces the special case:

Ve (s) = Tt +y v (St+1)

ince ™ is optimal, it

V(st) = max [r; + yV* (5¢41)]« must maximize return
a .

g starting from any s;)

When non-deterministic, Bellman Equation for V™ simply becomes:

VT[(St) —]ESt+1 ~P(5’|5,a),at~n'(a|st) [rt T yVT[(St+1)]

Exercise: work through this same reasoning for Q value functions Q (s, a;).

Coming up next

* How to compute Q™ if we knew the full MDP (S,A,P,R,y)?
= “Q-policy and Q-value iteration”. (Also briefly V-value iteration) Not RL!

* How to learn Q™ from experience if we only had (S, 4,y) and didn’t know P, R?
= “Q learning”,

" One of the first RL algorithms that got successfully implemented in deep neural
networks

" Closely connected to the Bellman Equation for Q
= Still widely used in many domains

Finding Q™ & ™ in “known

environments”:
() Policy Iteration & Q Value lteration

Q-Policy Iteration (Known P and R)

Key Idea: To find QF, solve iteratively via dynamic programming

* Start with a random guess, e.g.,Q,(s,a) < 0 for all states s and actions a

* [terate (incrementing i, till convergence):

1. Policy Improvement: usually easy to do
" For all s: Update the guess for == e compatible with Q;

" m;(s) < argmax Q;(s, a)
a
2. Policy Evaluation:

" For all s, a: Update your guess for Q* to be compatible with m;:

t Qua(5,0) < QUi(5,0) ——

how to compute?

Dealing with Step 2: Q-Policy Evaluation

How do we calculate the Q™ (s, a) for some policy (s)?
* Recall, Bellman Equation gives us a rule that all Q functions must obey:

Q"(s,a) = Egps' sy [R(s,a,5") + yQ™ (s',m(s"))]

* |dea: convert the Bellman equation for Q™ (s, a) into an update rule

Q§ (s,a) < 0 (could also be initialized differently)
For all (s, a)

Q}T+1 (S' Cl) N IIE‘:S’~P(S’|S,a) [R (S, a, S’) T VQ;T (S" T[(S’))]

Lots of theory that explains why the “fixed point” that this recursive update
procedure converges to is indeed the correct Q™. We will skip this.

10

Putting it together: Q-Policy Iteration & Q-Value Iteration

e Start with a random guess, e.g.,Q,(s,a) < 0 for all states s and actions a

* [terate (incrementing i, till convergence):
1. Policy Improvement: (For all s)

= Compute the corresponding policy ;(s) <« argmax Q; (s, a)
a .
. . Can also run only a single
2. Policy Evaluation: (For all s, a) update: “Q value?teratiin”

" |[terate (incrementing j, till convergence?): . orjust “Q iteration”
TT; T
"Q; ‘(s,a) « Egr_pistisay[R(s,a,8") +)/Qj_‘l(s’,ni(s’))]

More concise expression for Q-value iteration:

Qis1(5,0) < Egr-p(stjsay [R(5,0,57) + ymaxQu(s’,) |

I Bellman Equation for
Q*(s,a) converted to an
update rule! "

Qisa(5,@) «) P(s'ls @) [R(s, @,5") +y maxQy(s',)]

Example of Q-lteration (by default Q-Value lteration)

A grid map with solid / open cells. Agent(‘s dot) moves between open
cells.

* From terminal states (4,3) and (4,2), any action ends the episode, and
results in a +1/-1 reward respectively.

* For each timestep outside terminal states , the agent pays a small “living”
cost (negative reward): —0.03
* The agent actions N, E, S, W correspond to North, East, South, West
= But the outcomes of actions are not deterministic!
* The dot obeys the commanded motion direction 80% of the time

= 10% of the time, the dot instead executes a different direction
90° off from the agent command. Another 10% of the time, -90°
off.

= E.g.if dot surrounded by open cells and executing action N, will
end up in the northern cell 80% of the time, in the eastern cell
10% of the time, and in the western cell 10% of the time.

* The dot stays put if it attempts to move into a solid cell or outside
the world. (Imagine the map is surrounded by solid cells)

* Goal: As always, maximize the sum of discounted future rewards within
an episode

Behind The Scenes: The Full Environment

&

- N w
[¢7]
N >
P
_|
N
w
B !

*
o
>1°0

80 S

e
0.14%» 0.1
o
®
o
s

Based on slide by Dan Klein

12

Q-lteration example
Store maxQ in each
cell for easy reffTe

ﬁ lemg cost O 0.9

Y

Qi (5,@) Z P(s'ls, @) [R(s a,s") +y|maxQ(s', @)

13

0.9

maxQ; (s’,a’)

0| 0.] 0
© 0 0
0 of.0 «fc 0
2

0.8x[0+0.9x1]

+ 0.1x[0 + 0]

+0.1x[0+0]
=0.72

1 2 3 4 14

Q-lteration example g Y

—

Qi (5,@) «) P(s'ls, @) [R(s,a,5") +¥|maxQy(s', @)

- (:) ,(,) : :
o o | =1
2
0.8x[0+0]
+ 0.1x[0+0.9x1]
+0.1x[0+0] 1

=0.09

- (:) ,(,) : :
o o | =1
2
0.8x[0+0]
+ 0.1x[0+0.9x1]
+0.1x[0+0] 1

=0.09

0.9

maxQ;(s’, @)

—

0.8x[0+0]
+ 0.1x[0+O0]
+0.1x[0+0]
=0

0.9

maxQ; (s’,a’)

—

Q-lteration example g Y

—

Qi (5,@) «) P(s'ls, @) [R(s,a,5") +¥|maxQy(s', @)

- (:) ,(,) : :
o o | =1
2
0.8x[0+0.9x-1]
+ 0.1x[0+0]
+0.1x[0+0] 1

=-0.72

" (:) ,(,) : ‘
o o .| =1
2
0.8x[0+0]
+ 0.1x[0+0]

+0.1x[0+0.9x-1] 1
=-0.09

0.9

maxQ;(s’, @)

—

Q-lteration example g Y

—

Qi (5,@) «) P(s'ls, @) [R(s,a,5") +¥|maxQy(s', @)

- (:) ,(,) : :
o o | =1
2
0.8x[0+0]
+ 0.1x[0+0.9x-1]
+0.1x[0+0] 1

=-0.09

Q-lteration example g Y

—

Qi (5,@) «) P(s'ls, @) [R(s,a,5") +¥|maxQy(s', @)

- (:) ,(,) : :
o o | =1
2
0.8x[0+0]
+ 0.1x[0+0]
+0.1x[0+0] 1

=0

Q-Iteration example & S)

—

Qi (5,@) «) P(s'ls, @) [R(s,a,5") +¥|maxQy(s', @)

0.0 0
o0 0o o | =1
0 0 0 o]0 0 o

Store maxQ in each

cell for easy reference2

Now we have Q4 (s, a)
for all (s, a)

. 0 :
Q-lteration example oy VA

L
—+
=
N
%)
Q
p—
T
A~
~\
0
o
Q
N
)
~
%)
Q
W
p—
+
§<
=
Q
<
L
~\
)
Q
=

S’
0 c|o 0 o[-072
\ 0 -0.09/ -
2 |+ 0 0 | =11 3
0 0 ofo 0 o[0

0.8x[0+0.9x1]
+ 0.1x[0+0.9x0.72]
+0.1x[0+0] 1
=0.7848

fé'é 0 /ozz% EAN
0.8x[0+0]
+ 0.1x[0+0.9x1]
+0.1x[0+0]
=0.09

And so on till
convergence...

—

maxQ; (s’,a’)

* Information propagates outward from terminal states

* Eventually all states have correct value estimates

24

Q-lteration example
(after 1000 sweeps over (s,a))

0 0.9
1 A

Qi+1(s,a) « E P(s'|s, a) [R(s, a,s') +y/maxQ;(s’, a’)
a
S’

25

Recap: Q-Value iteration

To find optimal Q value, given known P, R:

* Start with a random guess, e.g.,0,(s,a) < 0 for all states s and actions a
* Then repeat till convergence, for all s, a:

Qi+1(S: Cl) N II35'~P(S’|S,a) [R (S, a, S,) T yrrzla,lXQi(S', a’)]

(Bellman Eq for optimal Q, converted to update rule)

Two extensions:

1. Can also do this to find the optimal V value: called V value iteration, or
simply value iteration.

IV Value lteration

Finding V™ in “known environments”

IV-Value lteration

Fully analogous to the Q value iteration we have already seen.
Bellman says optimal value functions V*(s) should obey:

V*(s) = maxz P(s'|s,a)|R(s,a,s") + yV*(s)]

s'es
Convert to an update rule!

Algorithm:
e Start with V,(s) = O for all states s
* lterate the Bellman update until convergence, sweeping over all states s:

Viiq(s) < max z P(s'|s,a)|R(s,a,s") +yV;(s)]

s'es

Example: I/- Value Iteration

1=0.9, living cost=0

Example MDP

Vii1(s) « max Z P(s'|s,a)[R(s,a,s") + yV;(s")]

s'es

+1

Start with V/,(s) = 0

Base

d

O [-1
O[O0 |O

on example by Dan Klein

29

Example: I/- Value Iteration

1=0.9, living cost=0

Example MDP

+1

Vii1(s) « max 2 P(s'|s,a)[R(s,a,s") + yV;(s")]

V, V,
0 0 +1 3 +1
0 -1 2 -1
0 0 0 1
1 2 4 1 2 3 4

V,({(4,2)) « —1

Base

d

on example by Dan Klein

30

Example: I/- Value Iteration

Vii1(s) « max Z P(s'|s,a)[R(s,a,s") + yV;(s")]

Optimal action ‘ V,

s'es

Example MDP
Rewards given when in \
terminal state |\; +1
] _ 1
1=0.9, living cost=0,
noise=0.2
I I I
1 2 3 4

&«

V,
will be “E” (east)
31 0 31 0
2 O 2 O
{0 0 0 0 1 0 0] 0 0]
V,((3,3)) « ZS,ESP(S'|(3,3), E)[r((3,3),E,s") + 0.9V;(s")]
+ 0.1{0 + 0.9%0] = 0.72

- 0.8[0 + 0.9x1] +/0.1[0 + 0.9%0]

Based on example by Dan Klein 31

Example: I/- Value Iteration
Vii1(s) « max Z P(s'|s,a)[R(s,a,s") + yV;(s")]

s'es

Example MDP V, V;

Rewards given when in N

terminal state |\; +1 3 O O 072 +1 3

1=0.9, living cost=0,
noise=0.2 1 O O O O 1 O O O O
| | |
1 2 3 4 1 2 3 4 1 2 3 4

Eventually all states have correct V™ estimates.
What is the relationship between V*(s) and Q*(s,a)?

Answer: V*(s) = maxQ*(s,a)
a

Based on example by Dan Klein 32

Your Very First RL Algorithm:
() Learning

Replacing known transition function P and known reward function R
with samples from experience

Recap: Q Value Iteration

To find optimal Q value, given known P, R:

* Start with a random guess, e.g.,0,(s,a) < 0 for all states s and actions a
* Then repeat till convergence, for all s, a:
Qi+1(S: Cl) N II35'~P(S’|S,a) [R (S, a, S,) + yrrzla,lei(S’, a,)]

(Bellman Eq for optimal Q, converted to update rule)

e TWO extensions:

1. Can also do this to find the optimal V value: called V value iteration, or
simply value iteration.

2. How about in the absence of known P, R ? (i.e., the reinforcement
learning setting)

Q Learning

Q-value iteration: Q;,(s,a) « Y, P(s'|s,a) [R(s, a,s’) +y maxQ;(s’, a')]
a

How to extend this to when the functions P(s’|s,a) and R(s,a,s") are
unknown and only revealed gradually through experience?

Note: Every time you take action a from state s, you get one sample from

the unknown P(s’|s,a) and the corresponding reward R(s,a,s’)

36

E

B

Samples of the full Transition / Reward functior.]

For example, the full transition function P(s’|s, a) might look like:

-MWWWWWWW

(1,1), N 0.1
(1,1), E 0.1 0.1 0 0.8 0 0 0 0 0 0 0 0
(1,1),S 0.9 0 0 0.1 0 0 0 0 0 0 0 0

In RL, if you perform action “N” from state (1,1), you might find out that you
have ended up back at (1,1).

- Until you try it, you have no knowledge at all about P(s’|s = (1,1),a = N)
- Even after you try it, you only get a single sample.

Can’treallydo Q;;,(s,a) «)., P(s'|s,a) [R(S, a,s') +y maxQ; (s’ a’)] as in
a
Q value iteration, because we don’t know P(s’|s,a) and R(s,a,s") for all s’!

37

Solution: “Q Learning”

Q-value iteration: Q;11(s, @) < Eg _p(s/s.q) [R(S, a,s’) + ymaxQ;(s’, a')]
) a’

Idea: Treat the single sample you get as a rough estimate of the expectation,

and apply an incremental update to reduce the “Bellman error”:
 Execute a single action a from state s and observe s’ and R:
sample = R + ymax Q4 (s',a’)
a

* Now, compare this sample to the LHS, and apply the incremental update:
Q(5,@) « Qota(s,@) + & (R +y max Qoia(s', @) = Qoia(s, @)
! J

\
|
Bellman error

Thus, we can now get the optimal Q from the agent’s trial-and-error
experience. This is called “Q-Learning”. Q iteration + 1-sample-based
incremental update.

38

0.1 0.9

-Learning examp| /
Q g eXd p € Step Q(s,a)<—Q(S,a)+c;/(R(S,a,S')+VHL5}XQ(S';CL')—Q(S:Q))

Suppose we start at this cell, attempt to move north, and end up at same cell

CurrentQ=0.09 ----

2
Sample R + ymaxQ =
0+0.9x0.78 = 0.702
New Q = 1

0.09+0.1X(0.702-0.09)

=0.1512 And so on till
convergence... 1 2 3 4 39

Q-Learning example

. Q(s,a) « Q(s,a) + a|R(s,a,s") + ymaxQ(s',a’) — Q(s,a)
(after 100,000 actions) (2)

Q Learning works! Recovers the true Q*, even with unknown P, R.

Exploration and Exploitation

How to Act During Q-Learning: “Off-policy” vs “On-Policy”

e|Execute a single action alfrom state s and observe s’ and R:
sample = R(s,a,s’') + ymaxQ* (s’,a’)
a

* So, the incremental TD update is:
Q(s,@) « Q(s,@) +a (R(s,a,s") + y maxQ(s',@") - Q(s, @))
a’

3]\ v J
Bellman error

This is called “Q-Learning”.

Note that we have said nothing about which actions to sample.

* You can act any way you want, and as long as you “explore” the environment
well, Q-Learning will eventually converge to the optimal Q" (s, a).

* This is not true for all RL approaches: many rely on executing actions from the
current best policy. Those are “on-policy” approaches.

Exploration vs Exploitation

* What happens if you execute only your current-best policy all the time?
" Might not explore enough to discover other solutions.
" For example, you might never discover a shortcut if you only stick to a
known route to a target.
* What happens if you only execute random actions all the time?
" Wasteful. You mainly care about states and actions encountered by the
optimal policy.
" For example, if you keep exploring the city randomly, it will take a really
long time for you to learn any meaningful route to your target.

Exploration vs. Exploitation Tradeoff

Based on slide by Dan Klein 43

Some Simple Schemes for Balancing Explore-Exploit

* € —greedy:
= At every state,
= With small probability €, perform a random action
» Otherwise, follow current best a* = argmax,[Q (s, a)]
" Can anneal € over time

" |[ntuition: should explore more when you know very little about the
city. After having lots of experience navigating it, there isn’t much
value to exploration any more.

* Track Visitation Counts:

" Maintain a running count of the number of times N (s, a) that you have
tried executing a from state s.

» Select a* = argmax,[Q(s,a) + 1/N(s, a)], inflating the return of states
that you have not visited.

Q-Learning and More in HW4

* In HW4, you will implement Q-Learning.

* Also, you will see an algorithm called “behavior cloning” through which
sequential decision making problems can be made to look like supervised
learning problems.

" Suppose that you had an “expert” who could label each state with the
optimal action ...

" Not always possible, and has many issues.
" When possible, often works surprisingly well.

From here on out: not covered in class

* This material is provided only for your reference, and we will not actively
test it (unless it is taught through homework or in a future lecture).

* Deep Q Learning
* Real-World Applications Of RL

From Tabular to Deep Q Learning

High-dimensional states example: Pacman

* Let’s say we discover through
experience that this state is bad:

* In naive Q-learning, we know nothing
about this state or its Q states:

 Or even about this one!

Slide by Dan Klein

Q-Learning

* In many real situations, we cannot possibly learn about every single
state+action!

" Too many state-action pairs to visit them all in training
" Too many state-action pairs to hold the Q-tables in memory

* Instead, we want to generalize:
" Learn about some small number of training Q-states from experience
" Generalize that experience to new, similar Q-states

" This is a fundamental idea in machine learning, and we see it over and
over again

Based on slide by Dan Klein

Feature-Based Representations

 Solution: describe a state using a vector of features

" Features are functions from states to real numbers (often 0/1) that
capture important properties of the state

= Example features: R . - Comprar vion
= Distance to closest ghost TN e
" Distance to closest dot _
= Number of ghosts il R
= 1/ (dist to dot)? AN e st s
" [s Pacman in a tunnel? (0/1) —
... etc. -

" Can also describe a g-state (s, a) with features
= e.g. action moves closer to food

As we now do in computer vision/NLP, can we avoid engineering these features?

Based on slide by Dan Klein

A Neural Network to Predict Q Trom “"Raw™ State
Input

Predict Q-values with a deep neural network om |
S :
o H

Convglution Convglution Fully cgnnected Fully connected

qb(S a)
¢(S az)

QS O

* Input: the state, e.g. an image lzg °

e Output: Q-values of various actions o]

= O B O O
2arsjeje vy
[d BN BN BN BN BY BA BS 2~ €
BREREEAGRARARARR!

* Learning:
gradient descent™ with the squared Bellman error loss:
((R +ymax @y (s’ a’)) — Qp (s, a))

= Vi
As always, the policy action is the one with the highest predicted Q-value

51

[]
D e e p Q_ | e a r n I n g V I Convolution Convolution Fully connected Fully connecte d

\ e mle i i EQ(sa)
s ¢ (5, a2)

QO

Doesi-o o 84
5 oo]
1. take some action a; and observe (s;, a;,s., ;) 49
oo | == \=

arsjefeviyg>
CLEEFEEREL]

2. y; =1; +7maxy ng (Sflzla a,’,/)
d Sq,84
3. ¢+ ¢ — « Q¢C(l¢) (Qg (si;a;) — y4)

d 2
= o (Qp — i)
Note: we pretend that y; is a constant while computing the gradient, to resemble regression

Incremental update step — gradient descent™ on the squared Bellman error loss!

Closely connected to the tabular Q learning update. Hint: if you replace the
neural network with a Q table, its parameters ¢ are just Q value entries?

* Execute a single action a from state s and observe s’ and R:
sample = R +y max Qyq (s',a’)
a

* Now, compare this sample to the LHS, and apply the incremental update:
Q(s,a) « Qoua(s,a) +a (R +y max Qowa(s",a") = Qora(s, a))
\)

Y
Bellman error

Based on slide bv Sergev Levine

Problems with Deep Q-Learning v1

@ 1. take some action a; and observe (s;,a;,s., ;)
d Y
2. 6 ¢ — a2 Q) (s;,a:) — [y + y maxa Qy (5], a)))

Pl N N NS

1. sequential states are strongly correlated (not i.i.d.\

Problems:

So consecutive Q updates drive the network to overfit to !
recently encountered states and forget previous experiences

Based on slide by Sergey Levine

54

Addressing Correlations: Experience Replay

* Q-Learning is “off-policy”: we don’t say anything about the specific actions
that need to be executed, and we don’t need the transitions to be in

sequence. Replay Buffer

Repiay Buffer
ey
5y

* Maintain a “replay buffer” of previous experiences

e Perform Q-updates based on a

sample from the replay buffer FIFO or Priority Queue

* Advantages:
= Breaks correlations between consecutive samples
= Each experience step may influence multiple gradient updates

Based on slide by Sergey Levine 55

Deep Q Learning v2 (with replay buffer D)

Deep Q Learning v1
> 1. take some action a; and observe (s;,a;,s., ;)
1 2. p— ¢ — a%ﬁbfa‘) (Q¢ (si,a;) — [r; + ymaxa Qg (s;,ag)])

Deep Q Learning v2
E 1. collect dataset {(s;,a;,s;,r;)} using some policy, add it to D

2. Loop K times, do:
3. Sample a batch of (s;,a;,s.,r;)’s from D

4o g-ay, (Qu (50:20) — [ri + 7o Qs (51,0

K = 1is common, though larger K may sometimes be more efficient

)) ’) /—\
(s,a,s ’r)>

Q-learning
I I 0\:\. (off-policy)
< |

\—/
m(als) (e.g., e-greedy)

Based on slide by Sergey Levine 56

Problems with Deep Q-Learning v1

@ 1. take some action a; and observe (s;,a;,s., ;)
d 7y
2. ¢ ¢—aE2)(Q (s;,) — [ri + v maxa Qs (s}, a))])

Problems:
1. sequential states are strongly correlated (not i.i.d.)

2. Target value is always changing!

Based on slide by Sergey Levine

57

Problem: Moving Target for Q-regression

@ 1. take some action a; and observe (s;,a;,s;, ;)
d Y
2. ¢ ¢~ ateE2) (Q (si,) — [+ maxa Qq (5], a))
|

Y
no gradient through target value

)

Problem: Instability (e.g., rapid changes) in Q(-) can cause it to diverge

* Q-learning is not gradient descent on any fixed objective!

. . . 5
Solution: use two nets to provide stability (qu(S’) = (7 Y max Qu (s a,)))
* The Q-network is updated regularly a

\) \)
1

|
e The target network is an older version of the Q- computed via computed via
network, updated occasionally Q-network target network

Based on slide by Sergey Levine 58

Deep Q I_ea rn|ng V3 DeepQLearninng

1. collect dataset {(s;, a;, s}, 7;)} using some policy, add it to D
= 2. Loop K times, do:
AH< 3. sample a batch of (s;,a;,s],r;)’s from D

T 4 g s—ay, @ (g, (s, 8,) — [+ y maxe Qg (5], a))])

J—

Deep Q Learning v3

~> 1. save target network parameters: O < @

2. collect dataset {(s;,ay, s, 7“,,,)} using some policy, add it to D
3 sample a batch (s;,a;,s,r;) from D
=

4 b ¢—ay, Melad (Q0 (55>a5) — [+ 7 maxa Qu (51, a)])

\ J
|

targets don’t change in inner loop!

uolISssai3al
pasiAIadns

This is the “classic” deep Q Learning algorithm from 2015!*
*(usually K=1)

Based on slide by Sergey Levine 59

DQN on Atari Games

Image Sources:
https://towardsdatascience.com/tutorial-double-deep-g-learning-with-dueling-network-architectures-4c1b3fb7f756

https://deepmind.com/blog/going-beyond-average-reinforcement-learning/
https://jaromiru.com/2016/11/07/lets-make-a-dgn-double-learning-and-prioritized-experience-replay/

60

https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/

DQN on Atari Games

= = 1

https://www.youtube.com/watch?v=rQIShnTz1kU

https://www.youtube.com/watch?v=rQIShnTz1kU

DQN for Continuous Control (DDPG)

est Bed: Video

13 14 15 16 17 18 19 20 21 22 23 24

Vs
9

| B |
> <

-
L

e

ames and Board Games

[EEICILTY S 0ogle DeepMind
< -4

LR P . DU e Challenge Match
TS L 4 S 8-15March 2016
.‘.';_'l.'_]:l'ii!ﬁ 19 C
RABE 515
£ r.-:-.:t"?.-l é/
LSS LIS

(] e e Scey

EXPERIENCE GT SOPHY IN

RACE . |
TOGETHER - GT Sophy (2023)

AlphaGo (2016).

63

Robotics

Robotics

FINGER PIVOTING SLIDING FINGER GAITING

Robustness Test

Perturbation Rejection

Olpiet il Bricis) (2eake) Reinforcement Learning for Robust Parameterized

Locomotion Control of Bipedal Robots, 2022

More RL for Robotics

Guiness world record in 100 meters by biped robots (Oregon State University)

Learned quadrupedal locomotion in challenging environments (ETH Zurich)

Autonomous Navigation of Stratospheric Balloons (Google Al), blog (was real, just Google canceled the whole project.. sadly..)

Not yet perching (article), but soon? Just for inspiration..

Video games; car racing in video games, competing with humans

e Vision-based autonomous drone racing (video, UZH RPG)

Commanding robots using natural language to perform tasks (SayCan project, Google)

behavioral cloning/imitation learning (not RL) is doing well with transformers in the kitchen (Google)

Yet it is not enough to learn to drive well

Quadruped learns to walk in the park in 20 minutes, model-free (UC Berkeley)

o More of this
Still, dexterous manipulation is not easy.. (Berkeley, Meta, UW)
Visual Navigation (Berkeley)

In the need for resets (Berkeley)

Credit: Csaba Szepasvari

https://today.oregonstate.edu/news/bipedal-robot-developed-oregon-state-achieves-guinness-world-record-100-meters
https://www.youtube.com/@AgilityRobotics/videos
https://www.youtube.com/watch?v=9j2a1oAHDL8
https://www.nature.com/articles/s41586-020-2939-8.epdf?sharing_token=JYZ0ZlvEivoTq9RkGfWPQtRgN0jAjWel9jnR3ZoTv0Mh-6OgaxBwChMnw6EOI9v07nMOMJGBruSSDc8BFPfwkG1QQ0R-p9CwTuKA6ZO41aQ8e-Y-ffoWrsFX1cztOZfL5cL1mwXL8qU58Plz4GAzu_SLyawhPWS5QV6GieUEDig%3D
https://ai.googleblog.com/2022/02/the-balloon-learning-environment.html
https://www.youtube.com/watch?v=Kd04quryVPI
https://www.nature.com/articles/s41467-022-35356-5
https://www.wired.com/story/sony-ai-drives-race-car-champ/
https://www.gran-turismo.com/us/gran-turismo-sophy/race-together/
https://www.youtube.com/watch?v=nPlGR83bC0Q
https://say-can.github.io/
https://robotics-transformer.github.io/
https://arxiv.org/abs/2212.11419
https://sites.google.com/berkeley.edu/walk-in-the-park
https://sites.google.com/berkeley.edu/fine-tuning-locomotion
https://sites.google.com/view/dexterous-avail/
https://sites.google.com/view/revind
https://architsharma97.github.io/earl_benchmark/overview.html

Subtractive Manufacturing

Microscopy
(steering a microscope to separate molecules)
A D

Bond broken-., _~Formed

.
| = Neural
Q@ @ @ Q G network

Q;_s(s)

C
50 Episode 1
Y Count
g\: 401 ounts (So» @, 14, 84)
= (85785, x-S
g 30< 1 "2 2)
g (2, @, 13, S3)
3 20
0‘_.) |}
2 10]
=]
€ |
R R R R R TR R Sg\p/)i?n:::g;/t Experience
Tip height z (A) 2

https://www.science.org/doi/10.1126/sciadv.abb6987

https://www.science.org/doi/10.1126/sciadv.abb6987

Briefly explain chatGPT using a metaphor that
would resonate with an audience of stock-
market investors and avoiding Al jargon.

One way to explain chatGPT to stock-
market investors is to compare it to a
financial advisor who uses past
performance data and market trends to
make predictions about future
investments. Just like a skilled financial
advisor, chatGPT uses large amounts of
training data to generate intelligent and
informed responses to questions,
providing valuable insights and

suggestions to users.

Finetuning Conversational Agents

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain gravity.

Moon is natural
satellite of... the moon..

U

Explain the moon

landing to a 6 year old

0 o
o o

Explain war..

People went to

> 4

.
Q

0-0-0-0

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

»

Write a story
about frogs

https://openai.com/research/instruction-following

https://openai.com/research/instruction-following

e Like ChatGPT, can also use RL to finetune other
models to maximize some performance score.

Aside: Why would these models not have been
trained directly to maximize the performance
scores in the first place?

(a) Optimize mAP: 39 — 54, results in a much high recall and
learns box prediction confidences.

(b) Optimize PQ: 43.1 — 46.1, removes many incoherent predic-
tions, especially for small-scale objects.

(c) Optimize “colorfulness” score: 0.41 — 1.79, improves color
diversity and saturation.

Figure 1. By tuning a strong, pretrained model with a reward that
relates to the task, we can significantly improve the model’s align-
ment with the intended usage.

https://arxiv.org/pdf/2302.08242.pdf

https://arxiv.org/pdf/2302.08242.pdf

Web Assistants

Web navigation
(e.g. navigating a flight-booking website to make a purchase)

Number of passenger
om
Deal of the Day Addeess
Gaming workstaton Addeoss
Gt £ hodary’
e
-n '
Payment
Croct Card
Debit Card Frst Name
Cortrue

Last Name

First Name

Full rame

Paymaent

Crodt Card
Dedat Card

From

Remembert =
Stay logged in
Enter Capicha

(a) Early training

(b) Mid training

Gur et al 2021, Environment Generation for Zero-Shot Compositional Reinforcement Learning

(c) Late training

(d) Test

Real-world applications using RL: Already working

* Applications to algorithms:
" Video compression on Youtube using nuzero (DeepMind)
" Faster matrix multiplication (blog, article) (DeepMind)
" Faster std::sort in the LLVM compiler toolchain, background:, the new
part (DeepMind)
" Chip design applied to Google TPUs (Google Al)

e Industrial automation:

" Cooling the interior of large commercial buildings (DeepMind),
(Vector&Telus, prelim)

" Amazon “deep” inventory management

Credit: Csaba Szepasvari

https://www.deepmind.com/blog/muzeros-first-step-from-research-into-the-real-world
https://www.nature.com/articles/d41586-022-03166-w
https://www.nature.com/articles/s41586-022-05172-4
https://danlark.org/2022/04/20/changing-stdsort-at-googles-scale-and-beyond
https://reviews.llvm.org/D118029
https://reviews.llvm.org/D118029
https://www.nature.com/articles/s41586-021-03544-w
https://arxiv.org/abs/2211.07357
https://www.telus.com/en/about/news-and-events/media-releases/using-ai-for-good-telus-and-vector-institute-partner-to-reduce-climate-impacts-from-data-centres
https://arxiv.org/abs/2210.03137

Real-world applications using RL: In the works

e Control: Nuclear fusion (DeepMind)

e Education (2021 paper)
* Healthcare (2020 survey)

* Power grids: Reinforcement learning for demand response: A review of
algorithms and modeling technigues José R. Vazquez-Canteli, Z. Nagy

 Recommender systems: https://github.com/google-research/recsim
» Automated stock trading: https://github.com/Al4Finance-LLC/FinRL-Library

* And many other “real-world” applications
= https://arxiv.org/abs/1904.12901
= https://arxiv.org/abs/2202.11296

RL is not yet “just working”, but there is hope. Several important open

problems with potential for impact in large numbers of applications!
Credit: Csaba Szepasvari

https://www.nature.com/articles/s41586-021-04301-9
https://arxiv.org/pdf/2107.08828.pdf
https://arxiv.org/abs/1908.08796
https://www.semanticscholar.org/paper/648ea87fe7f99ca8ea5090cb1ba40242299ef4c4
https://www.semanticscholar.org/paper/648ea87fe7f99ca8ea5090cb1ba40242299ef4c4
https://github.com/google-research/recsim
https://github.com/AI4Finance-LLC/FinRL-Library
https://arxiv.org/abs/1904.12901
https://arxiv.org/abs/2202.11296

Initial applications of reinforcement learning span most, if not all, industries.

@ Optimizing product development cycles @ Optimizing complex operations @ Informing next best action for

(Al-assisted design)

Industry

Advanced electronics
and semiconductors

Agriculture

Aerospace and
defense

Automotive

Financial services

Mining

Oil and gas

Pharmaceuticals

Retail

Telecom

Transport and
logistics

each customer

Sample reinforcement learning applications

@ Optimize silicon and chip design to increase performance and reduce manufacturing costs
@ Optimize fabrication manufacturing process for improved yield and throughput

@ Solve scheduling and production allocation challenges to increase yield
. Optimize network and warehouse logistics for reduced waste and costs

® Apply advanced pricing and promotion to improve product margins

o Optimize engineering design processes to reduce time to market for new systems and
improve quality

[Optimize design processes to shorten development cycle for new cars and features and

improve quality
@ Deploy advanced predictive maintenance to prevent rare failures and unplanned outages

@ Deliver real-time production monitoring and controls to increase manufacturing yield

@ Apply real-time trading and pricing strategies for greater agility and revenue
@ Optimize ATM replenishment and allocation strategies to reduce costs and improve the
customer experience

. Deliver advanced personalization capabilities that adapt promotions, offers, and
recommendations daily for increased customer satisfaction and sales

. Optimize design process so teams can explore a greater range of mine designs for
improving mine yield

@ Useintelligent process controls for managing power generation and bore milling to increase
yield and reduce costs

@ Apply holistic logistics scheduling to optimize mine-to-shipping operations and reduce costs

@ Enable real-time well monitoring and precision drilling for increased yield

@ Optimize tanker routing to reduce costs and ensure on-time delivery

@ Enable advanced predictive maintenance to prevent rare equipment failures and unplanned
outages

@ Optimize drug discovery, identifying molecules of interest faster to reduce the time and
cost of research and bring new therapies to market faster

@ Automate chemistry, manufacturing, and controls (CMC) to maximize batch yield and
quality

=] Optimize biological methods to reach peak production output

@ Optimize routing, logistics network planning, and warehouse operations to reduce costs
and keep shelves stocked

@ Implement advanced inventory modeling and digitize supply-chain planning to prevent
out-of-stocks and waste

@ Deliver advanced personalization capabilities that adapt promotions, offers, and recommen-
dations daily for increased customer satisfaction and sales

. Optimize network layout to maximize coverage and minimize power consumption

@ Manage networks in real time to optimize service quality and reduce downtime

@ Apply advanced personalization to increase cross-sell and upsell revenue

@ Optimize routing, logistics network planning, and warehouse op:
costs and improve customer satisfaction

associated costs

[]
@ Optimize inbound and outbound delivery networks to minimize s M C K I n S ey

Reinforcement Learning at Work

How top companies are using this breed of Al to solve tough problems.

Company

Royal
Bank of
Canada

Netflix

Spotify

JPMorgan
Chase

Google

DiDi

Application

Trade execution
platform for
multiple
strategies

Test schedules
for business
partner devices

Recommendation
engine

Financial
derivatives risk
and pricing
calculations

Data center
cooling

Order
dispatching

Sector

Financial
services

Technology

Entertainment

Financial

services

Technology

Ride hailing

Inputs

200-plus market-
related data
inputs

Historical test
and device
performance
information

Previous songs
liked/disliked/not
played

Historical market
data

Temperature/air
pressure

Number of idle
vehicles, number
of orders,
location,
destination

Actions

Sell, buy,
hold
stocks

Which
test to do
next

Which
songs to
putin
your
playlist

Price and
sell a
financial
product

Turnon
fan; add
water to
air unit

Match
driver to
passenger

Note: Details for use cases can be found in published papers, but we could not verify if they are used in

production applications.

Objective

To trade as
close as
possible to
VWAP, a
common
price metric

Minimize
device
failure

Maximize
user
listening
time

Maximize
future cash
flows of an
investment
portfolio

Control
temperature
and reduce
energy
usage

Minimize
pickup time
and
maximize
revenue

HBR

traffic signal VRP,AGV smart grid scheduling
order matching inventory power mgmt process ctrl
auto driving disruptions nuclear fusion maintenance

pricing, trading supply recommender
portfolio opt. ot kst chain el manufacture advertisement
risk mgmt e-commerce
policy design customer mgmt
finance business
economics management
reinforcement learning
computer science
P englneering

systems

resource mgmt maths, physics

neural arch. ames robotics education healthcare | __Chemistry, bio
computer vision . psych., neural sci.
NLP optimal ctrl, OR

ML/RL/Al Atari, Go, poker perception recommendation ~DTRs ©conomic sectors

applications Starcraft planning personalization =~ mobile music, drawing
software content navigation adaptation testing «dance, poetry
hardware design, testing locomotion sequencing scheduling SiM.. digital twins
networks gamification sim-to-real motivation epidemic metaverse

Credit: Yuxi Li

