Lecture 19: Ensembles (Part 1)

CIS 4190/5190
Fall 2024

Announcements

* Projects teams
* Img2GPS: 22 teams
* News source classification: 38 teams
* Audio classification: 8 teams

* HW 2 grades released
* HW 4 due on Nov 20

 Midterm 2 scheduled for 12/9

e Cumulative
e Similar to midterm 1 in terms of exam time, location, #questions, cheat sheet.

Decision Tree Shortcomings

days with fever >= 2?

child age > 3?

prescribe
macrolides

Decision tree example from: Martignon and Monti. (2010).
Conditions for risk assessment as a topic for probabilistic
education. Proceedings of the Eighth International Conference
on Teaching Statistics (ICOTS8).

Decision Tree Shortcomings

* Hard to manage bias-variance tradeoff
* Small depth = High bias, low variance
 Large depth = Small bias, high variance

Post Pruning . e o
|
of e 1_%_ __
© r
def PostPruneTree(T, Zirain, Zval): E ° | o
for each internal node N of T': h . : o
Ty < Replace (T, N, LeafNode(Mode(Ztrain[N]))) | _._ _._._| o
gy < Loss(T, Z,41) — Loss(Ty, Zya1) | R

days with fever
Ny < arg max gy
N

if 'gNO > 0:

days with fever > 2°?
return PostPruneTree(Ty, Zirain, Zyal)

else: / \

return ’’ child age > 3? child age > 1?

prescribe no prescribe
macrolides macrolides macrolides

no
macrolides

Post Pruning

def PostPruneTree(T, Z: 4in, Zval):

for each internal node N of T':

Ty, < Replace (T, N, LeafNOde(MOde(Ztrain[N])))

gy < Loss(T,Z,,.1) — Loss(Ty, Z41)
Ny « arg max gy

N
if 'gNO > 0:

return PostPruneTree(Ty, Zirain, Zyal)

else:

return 7’

A
|
[_ O
° | @
| O
3 o |
© Fr— - =
RS, I O
(@]
O
| O
0.0: ®

days with fever

days with fever > 2°?

/

child age = 3?

prescribe
macrolides

no
macrolides

no
macrolides

Decision Tree Shortcomings

* Hard to manage bias-variance tradeoff
* Small depth = High bias, low variance
 Large depth = Small bias, high variance

* Can we manage this tradeoff in a more principled way?

* |ldea: Can we use model combination to control the trade-off more
gracefully?

General mechanism for reducing variance in a, almost always, model agnostic way

Ensemble Learning

* Step 1: Learn a set of “base” models f3, ..., fx

* Step 2: Construct model F(x) that combines predictions of f4, ..., f%

Ensemble Design Decisions

* How to learn the base models?
* Main goal: establish diversity

e How to combine the learned base models?

Combining Learned Base Models

* Regression: Average predictions F(x) = %Z{-‘zlfi(x)

* Works well if the base models have similar performance

f1

Tk

Combining Learned Base Models

* Classification: Majority vote F(x) = 1 (é‘zlfi(x) = g) (for binary)

* Can also average probabilities for classification

f1

Tk

Combining Learned Base Models

e Can use weighted average:
K
F(x) = Z.Bi - fi(x)
i=1

* Can fit weights using linear regression on second training set

* More generally, can fit a second layer model

F(x) = gp(fi (), ..., fi ()

Combining Learned Base Models

* Second model as “mixture of experts”:
K
FGO =) 900+ fi(0)
i=1

* Second stage model predicts weights over “experts” f;(x)

Combining Learned Base Models

* Second model as “mixture of experts”:
* Special case: g(x) is one-hot
* Advantage: Only need to run g(x) and f(,)(x)

f1
X F(x) = fi-(x)
fr

g > i =g(x)

Example: Netflix Movie Recommendations

e Goal: Predict how a user will rate a movie based on:

* The user’s ratings for other movies
e Other users’ ratings for this movie (and others)

* Netflix Prize (2007-2009): S1 million for the first team to do 10%
better than the existing Netflix recommendation system

e Winner: BellKor’s Pragmatic Chaos
* An ensemble of 800+ rating systems

Ensemble Design Decisions

e How to learn the base models?

e How to combine the learned base models?

Learning Base Models

» Successful ensembles require diversity
* Different model families
 Different training data
e Different features
e Different hyperparameters

* Intuition: Models should make independent mistakes

Learning Base Models

* Intuition: Models should make independent mistakes

AX BY BY BY
%l 1 % x %é)] 1 %] 1

133331 0.84
4 4 1) =

Learning Base Models

* Intuition: Models should make independent mistakes

ﬁiﬂf@
gﬁ

F acc > lask - o

Bagging

e Bagging: Randomize training data (“Boostrap Aggregating”)

* Random examples: Subsample examples {(x,y)} (obtain X € R™ *d)

* Meta-strategy that can build ensembles from arbitrary base learners

Bootstrap

* Subsample examples {(x, y)} with replacement (obtain X € R"*%)

1 n
e Excludes (1 — ;) of the training examples

» Separately in each of the replicates

1
* Asn — oo, excludes = o~ 36.8% examples

* Has good statistical properties

Randomizing Learning Algorithms

@,@@@

Original
Training Data

Bootstrap Replicates
of the Training Data

Random Forests

* Train many decision trees and average them!
* Large depth = High variance, low bias
* Averaging many decision trees - average away “irrelevant” variance

* Very powerful model family in practice

Random Forests

* Ensemble of decision trees using bagging
* Typically use simple average

* Intuition:
* Large decision trees are good nonlinear models, but high variance

 Random forests average over many decision trees to reduce variance without
increasing bias

Random Forests

* Tweak 1: Randomize features in learning algorithm

* At DT node splitting step, subsample = \Vd features
* Allows each tree to use all features, but not at every node

* Aside: If a few features are highly predictive, then they will be selected in
many trees, causing the base models to be highly correlated

* Tweak 2: Train unpruned decision trees

* Ensures base models have higher capacity
* Intuition: Skipping pruning increases variance

Ensemble Learning

Bagging based Ensembles

» Step 1: Create bootstrap replicates of the original training dataset

* Step 2: Train a classifier for each replicate

 Step 3 (Optional): Use held-out validation set to weight models
e Can just use average predictions

Boosting

* Can we turn weak learning algorithms into strong ones?
* Assume we have a very high bias model, can we make it better?

* Provably learns for base models achieving any error rate > 0.5

* In the context of tree, assume very short trees (depth 3-6).

AdaBoost (Freund & Schapire 1997)

* Like bagging, meta-algorithm that turns base models into ensemble
* Provably learns for base models achieving any error rate > 0.5

* Uses different training example weights (instead of different
subsamples or different features) to introduce diversity

* |In particular, upweights currently incorrectly predicted examples

* Base models should satisfy the following:
 High-bias/low-capacity (e.g., depth-limited decision trees, linear classifiers)
* Able to incorporate sample weights during learning
 Specific to classification (discuss general losses later)

AdaBoost (Freund & Schapire 1997)

* Input
* Training dataset /
* Learning algorithm Train(Z, w) that can handle weights w
* Hyperparameter T indicating number of models to train

* Output
e Ensemble of models F(x) = X1_. B, - /()

AdaBoost Weighting Strategy

* |teratively learn the ensemble one by one based on past performance

* On each iteration:
* Misclassified examples are upweighted
e Correctly classified are downweighted

* |f an example is repeatedly misclassified, it will eventually be upweighted
so much that it is correctly classified

 Emphasizes “hardest” parts of the input space
* Instances with highest weight are often outliers

AdaBoost

size represents weight w;

1
W1 —

) (wy,; weight for (x;,7,))

forteﬁ

ﬁt _ln
Wiy X Wt

NoO AN P

T}

fi < Train (Z ,W¢)

Er < El‘l‘or(ft,Z, We)
1-— €t

€t

return ' (x) = Slgn(Z =1 Bt - [t (X))

AdaBoost

wy (=,) (wy,; weight for (x;, y))

fort € {1, .., T}
fi < Traln(Z ,W¢)
er « Error(f;, Z, we)

ﬁt —1n166t
t
Wiepqi € W . e~ Peyifilxd (for all i)

return F (x) = sign(X¢=y B¢ * f(x))

NOoO s e

AdaBoost

focus on linear classifiers f;

1 1 .
Wy « (—, ""5) (wq ; weight for (x;,y;))

n
fort e {1 T}

f; « Train(Z, w;)

N U Rwp e

€; « EITOT([;, Z, W)

1 1—€
ﬁt «— _ln L
2

€t
Wep1i X Wy - e~ Beyife(xi) (for all i)

return F (x) = sign(X¢=y B¢ * f(x))

AdaBoost

1
wi (2, ...,7) (wy,; weight for (x;,)
fort € {1, .., T}

fr « Traln(Z W)
€ « Error(ft,Z W)

NO |V AR e

B, becomes larger as| |
e; becomes smaller

AdaBoost

1
wy (=,) (wy,; weight for (x;, y))

fort € {1, .., T}
fi < Traln(Z ,W¢)
€t < Error(ft,Z, W)

ﬁt _ln

Wep1i X Wy - e~ Bryife(xi) (for all §)

NO |V AR e

return F(x) = mgn}&;llﬁt T (%))
Use convention y; € {—1, +1}

If correct (v; = f.(x;)) then multiply by e =Pt f=1
If incorrect (v; # f,(x;)) then multiply by e”t

AdaBoost

1. wy « (1) (wq ; weight for (x;,y;))
2. forte{l,..,T}

3. ;< Traln(Z ,W¢)

4, € « Error(ft,Z, W)

5. B e In—"

6. Wiy & th e~ Beyife(xi) (for all i)
/.

return F (x) = sign(X¢=y B¢ * f(x))

AdaBoost

1 .
Wy « (1, ""5) (wq ; weight for (x;,y;))

n

fort e {1 T}
f; « Train(Z, w;)

N U Rwp e

€; « EITOT([;, Z, W)
1 1_Et

ﬁt — _ln
2 Et

Wep1i X Wy - e‘ﬁt'?i'ft(xi) (for all i)
return ['(x) = sign(Qs—1 B; * [: (X))

AdaBoost

Wep1i X Wy - e~ Bryife(xi) (for all §)

1. w, « (l) (wq ; weight for (x;,y;))
2. forte{l,..,T}
3. ;< Traln(Z ,W¢)
4, e; « Error(f;, Z,w;)
5. ,Bt _lnl -
€T
6.
/.

return F(X) = Slgn(Z’II;:l Br - : (X))

AdaBoost

1. wy « (1) (wq ; weight for (x;,y;))
2. forte{l,..,T}

3. ;< Traln(Z ,W¢)

4, € « Error(ft,Z, W)

5. B e In—"

6. Wiy & th e~ Beyife(xi) (for all i)
/.

return F(x) = sign(X¢=q B¢ * f(x))

AdaBoost

1 .
Wy « (1, ""5) (wq ; weight for (x;,y;))

n

fort e {1 T}
f; « Train(Z, w;)

N U Rwp e

€; « EITOT([;, Z, W)
1 1_Et

ﬁt — _ln
2 Et

Wep1i X Wy - e‘ﬁt'?i'ft(xi) (for all i)
return ['(x) = sign(Qs—1 B; * [: (X))

AdaBoost

1
W, < (—) (wq ; weight for (x;,y;))

fort € {1,...,T}
fr « Traln(Z , W)
€t & Error(ft,Z, W)

1 1—-€¢
L < ln -

WHLL X Wy - e~ Bryife(xi) (for all §)

NO |V AR e

return F(X) = Slgn(Z’II;:l Br - : (X))

AdaBoost

1. wy « (1) (wq ; weight for (x;,y;))
2. forte{l,..,T}

3. ;< Traln(Z ,W¢)

4, € « Error(ft,Z, W)

5. B e In—"

6. Wiy & th e~ Beyife(xi) (for all i)
/.

return F (x) = sign(X¢=y B¢ * f(x))

AdaBoost

1
wi (=, =) (i, weight for (x;, y,))

fort € {1,..,T}
[t < Traln(Z , W)
€t & Error(ft,Z, W)

t
Wt+1l X Wy ; . e~ Peyifilxd (for all i)

return F (x) = sign(X¢=y B¢ * f(x))

NOoO s e

Under certain assumptions, training error _—"" t=T
goes to zero in O(logn) iterations

AdaBoost

1
wy (=,) (wy,; weight for (x;, y))

fort € {1, .., T}
fi < Traln(Z We)
€ « Error(ft,Z W;)

ﬁt — ln
A,

—_ 0.4 W, ;- p_ﬁt'yl"ft(xi) (fnrn)

Npooprwn e

return F(x) = sign(X¢=q B¢ * f(x))

T

final model is average of base models
weighted by their performance

AdaBoost Weighting Strategy

* On each iteration:

* Misclassified examples are upweighted
* Correctly classified are downweighted

 If an example is repeatedly misclassified, it will eventually be
upweighted so much that it is correctly classified

* Emphasizes “hardest” parts of the input space
* Instances with highest weight are often outliers

Aside: Learning with Weighted Examples

* Many algorithms can directly incorporate weights into the loss

 For maximum likelihood estimation:
n
055 Z,w) =) wy-logpg(vi |)
i=1

* Alternatively, can subsample the data proportional to weights w;

AdaBoost Summary

* Strengths:
* Fast and simple to implement
* No hyperparameters (except for T)
* Very few assumptions on base models

* Weaknesses:
* Can be susceptible to noise/outliers when there is insufficient data
* No way to parallelize
* Small gains over complex base models
 Specific to classification!

AdaBoost and Overfitting

e Basic ML theory predicts AdaBoost always overfits as T — oo
* Hypothesis keeps growing more complex!
* In practice, AdaBoost often does not overfit

20-

;. AdaBoost on OCR data with
;_Test

C4.5 as the base learner

—h.
2.9

percent error
—h

o

Q...

10 100 1000

rounds of boosting

	Slide 1: Lecture 19: Ensembles (Part 1)
	Slide 2: Announcements
	Slide 3: Decision Tree Shortcomings
	Slide 4: Decision Tree Shortcomings
	Slide 5: Post Pruning
	Slide 6: Post Pruning
	Slide 7: Decision Tree Shortcomings
	Slide 8: Ensemble Learning
	Slide 9: Ensemble Design Decisions
	Slide 10: Combining Learned Base Models
	Slide 11: Combining Learned Base Models
	Slide 12: Combining Learned Base Models
	Slide 13: Combining Learned Base Models
	Slide 14: Combining Learned Base Models
	Slide 15: Example: Netflix Movie Recommendations
	Slide 16: Ensemble Design Decisions
	Slide 17: Learning Base Models
	Slide 18: Learning Base Models
	Slide 19: Learning Base Models
	Slide 20: Bagging
	Slide 21: Bootstrap
	Slide 22: Randomizing Learning Algorithms
	Slide 23: Random Forests
	Slide 25: Random Forests
	Slide 26: Random Forests
	Slide 27: Ensemble Learning
	Slide 28: Bagging based Ensembles
	Slide 29: Boosting
	Slide 30: AdaBoost (Freund & Schapire 1997)
	Slide 31: AdaBoost (Freund & Schapire 1997)
	Slide 32: AdaBoost Weighting Strategy
	Slide 33: AdaBoost
	Slide 34: AdaBoost
	Slide 35: AdaBoost
	Slide 36: AdaBoost
	Slide 37: AdaBoost
	Slide 38: AdaBoost
	Slide 39: AdaBoost
	Slide 40: AdaBoost
	Slide 41: AdaBoost
	Slide 42: AdaBoost
	Slide 43: AdaBoost
	Slide 44: AdaBoost
	Slide 45: AdaBoost
	Slide 46: AdaBoost
	Slide 47: AdaBoost Weighting Strategy
	Slide 48: Aside: Learning with Weighted Examples
	Slide 49: AdaBoost Summary
	Slide 50: AdaBoost and Overfitting

