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Announcements

• Projects teams
• Img2GPS: 22 teams

• News source classification: 38 teams

• Audio classification: 8 teams

• HW 2 grades released

• HW 4 due on Nov 20

• Midterm 2 scheduled for 12/9
• Cumulative

• Similar to midterm 1 in terms of exam time, location, #questions, cheat sheet.



Decision Tree Shortcomings

# days with fever >= 2?

child age > 3? no
macrolides

no
macrolides

prescribe
macrolides

FT

FT

Decision tree example from: Martignon and Monti. (2010). 
Conditions for risk assessment as a topic for probabilistic 
education. Proceedings of the Eighth International Conference 
on Teaching Statistics (ICOTS8).



Decision Tree Shortcomings

• Hard to manage bias-variance tradeoff
• Small depth → High bias, low variance

• Large depth → Small bias, high variance



𝐝𝐞𝐟 PostPruneTree 𝑇, 𝑍train, 𝑍val : 

 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 internal node 𝑁 of 𝑇:

  𝑇𝑁 ← Replace 𝑇, 𝑁, LeafNode Mode 𝑍train 𝑁

  𝑔𝑁 ← Loss 𝑇, 𝑍val − Loss 𝑇𝑁, 𝑍val

 𝑁0 ← arg max
𝑁

𝑔𝑁

 𝐢𝐟 𝑔𝑁0
> 0:

  𝐫𝐞𝐭𝐮𝐫𝐧 PostPruneTree 𝑇𝑁, 𝑍train, 𝑍val

 𝐞𝐥𝐬𝐞:

   𝐫𝐞𝐭𝐮𝐫𝐧 𝑇

Post Pruning

# days with fever ≥ 2?

child age ≥ 3?

no
macrolides

prescribe
macrolides

FT

FT

child age ≥ 1?

prescribe
macrolides

no
macrolides

FT

days with fever

ch
ild

 a
ge



Post Pruning

# days with fever ≥ 2?

child age ≥ 3?

no
macrolides

prescribe
macrolides

FT

FT

days with fever

ch
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ge

no
macrolides

𝐝𝐞𝐟 PostPruneTree 𝑇, 𝑍train, 𝑍val : 

 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 internal node 𝑁 of 𝑇:

  𝑇𝑁 ← Replace 𝑇, 𝑁, LeafNode Mode 𝑍train 𝑁

  𝑔𝑁 ← Loss 𝑇, 𝑍val − Loss 𝑇𝑁, 𝑍val

 𝑁0 ← arg max
𝑁

𝑔𝑁

 𝐢𝐟 𝑔𝑁0
> 0:

  𝐫𝐞𝐭𝐮𝐫𝐧 PostPruneTree 𝑇𝑁, 𝑍train, 𝑍val

 𝐞𝐥𝐬𝐞:

   𝐫𝐞𝐭𝐮𝐫𝐧 𝑇



Decision Tree Shortcomings

• Hard to manage bias-variance tradeoff
• Small depth → High bias, low variance

• Large depth → Small bias, high variance

• Can we manage this tradeoff in a more principled way?

• Idea: Can we use model combination to control the trade-off more 
gracefully?

General mechanism for reducing variance in a, almost always, model agnostic way



Ensemble Learning

• Step 1: Learn a set of “base” models 𝑓1, … , 𝑓𝑘

• Step 2: Construct model 𝐹 𝑥  that combines predictions of 𝑓1, … , 𝑓𝑘



Ensemble Design Decisions

• How to learn the base models?
• Main goal: establish diversity

• How to combine the learned base models?



Combining Learned Base Models

• Regression: Average predictions 𝐹 𝑥 =
1

𝑘
σ𝑖=1

𝑘 𝑓𝑖 𝑥

• Works well if the base models have similar performance

𝑥 𝐹(𝑥)

𝑓1

…

𝑓𝑘

+



Combining Learned Base Models

• Classification: Majority vote 𝐹 𝑥 = 1 σ𝑖=1
𝑘 𝑓𝑖 𝑥 ≥

𝑘

2
 (for binary)

• Can also average probabilities for classification

𝑥 𝐹(𝑥)

𝑓1

…

𝑓𝑘

+



Combining Learned Base Models

• Can use weighted average:

𝐹 𝑥 = ෍

𝑖=1

𝑘

𝛽𝑖 ⋅ 𝑓𝑖 𝑥

• Can fit weights using linear regression on second training set

• More generally, can fit a second layer model

𝐹 𝑥 = 𝑔𝛽 𝑓1 𝑥 , … , 𝑓𝑘 𝑥



Combining Learned Base Models

• Second model as “mixture of experts”:

𝐹 𝑥 = ෍

𝑖=1

𝑘

𝑔 𝑥 𝑖 ⋅ 𝑓𝑖 𝑥

• Second stage model predicts weights over “experts” 𝑓𝑖 𝑥



Combining Learned Base Models

• Second model as “mixture of experts”:
• Special case: 𝑔 𝑥  is one-hot

• Advantage: Only need to run 𝑔 𝑥  and 𝑓𝑔 𝑥 𝑥

𝑥

𝑓1

…

𝑓𝑘

𝑔

𝐹 𝑥 = 𝑓𝑖 𝑥

𝑖 = 𝑔 𝑥



Example: Netflix Movie Recommendations

• Goal: Predict how a user will rate a movie based on:
• The user’s ratings for other movies

• Other users’ ratings for this movie (and others)

• Netflix Prize (2007-2009): $1 million for the first team to do 10% 
better than the existing Netflix recommendation system

• Winner: BellKor’s Pragmatic Chaos
• An ensemble of 800+ rating systems



Ensemble Design Decisions

• How to learn the base models?

• How to combine the learned base models?



Learning Base Models

• Successful ensembles require diversity
• Different model families

• Different training data

• Different features

• Different hyperparameters

• Intuition: Models should make independent mistakes



Learning Base Models

• Intuition: Models should make independent mistakes
𝑥1 𝑥2 𝑥3 𝑥4

acc =
3

4

acc =
3

4

acc =
3

4

acc = 1 − 1 −
3

4

3

− 3 ⋅
3

4
⋅ 1 −

3

4

2

≈ 0.84𝐹



Learning Base Models

• Intuition: Models should make independent mistakes
𝑥1 𝑥2 𝑥3 𝑥4

acc =
3

4

acc =
3

4

acc =
3

4

𝐹 acc → 1 as 𝑘 → ∞ 



Bagging

• Bagging: Randomize training data (“Boostrap Aggregating”)

• Random examples: Subsample examples 𝑥, 𝑦  (obtain 𝑋 ∈ ℝ𝑛′×𝑑)

• Meta-strategy that can build ensembles from arbitrary base learners



Bootstrap

• Subsample examples 𝑥, 𝑦  with replacement (obtain 𝑋 ∈ ℝ𝑛×𝑑)

• Excludes 1 −
1

𝑛

𝑛
 of the training examples

• Separately in each of the replicates

• As 𝑛 → ∞, excludes →
1

𝑒
≈ 36.8% examples

• Has good statistical properties



Randomizing Learning Algorithms

...

Original
Training Data

Bootstrap Replicates
of the Training Data



Random Forests

• Train many decision trees and average them!
• Large depth → High variance, low bias

• Averaging many decision trees → average away “irrelevant” variance

• Very powerful model family in practice



Random Forests

• Ensemble of decision trees using bagging
• Typically use simple average

• Intuition:
• Large decision trees are good nonlinear models, but high variance

• Random forests average over many decision trees to reduce variance without 
increasing bias



Random Forests

• Tweak 1: Randomize features in learning algorithm

• At DT node splitting step, subsample ≈ 𝑑 features

• Allows each tree to use all features, but not at every node

• Aside: If a few features are highly predictive, then they will be selected in 
many trees, causing the base models to be highly correlated

• Tweak 2: Train unpruned decision trees
• Ensures base models have higher capacity

• Intuition: Skipping pruning increases variance



Ensemble Learning

Original
Training Data

...

𝛽1 𝛽2 𝛽𝑘

...



Bagging based Ensembles

• Step 1: Create bootstrap replicates of the original training dataset

• Step 2: Train a classifier for each replicate

• Step 3 (Optional): Use held-out validation set to weight models
• Can just use average predictions



Boosting

• Can we turn weak learning algorithms into strong ones?

• Assume we have a very high bias model, can we make it better?

• Provably learns for base models achieving any error rate > 0.5

• In the context of tree, assume very short trees (depth 3-6).



AdaBoost (Freund & Schapire 1997)

• Like bagging, meta-algorithm that turns base models into ensemble
• Provably learns for base models achieving any error rate > 0.5

• Uses different training example weights (instead of different 
subsamples or different features) to introduce diversity
• In particular, upweights currently incorrectly predicted examples

• Base models should satisfy the following:
• High-bias/low-capacity (e.g., depth-limited decision trees, linear classifiers)

• Able to incorporate sample weights during learning

• Specific to classification (discuss general losses later)



AdaBoost (Freund & Schapire 1997)

• Input
• Training dataset 𝑍

• Learning algorithm Train 𝑍, 𝑤  that can handle weights 𝑤

• Hyperparameter 𝑇 indicating number of models to train

• Output
• Ensemble of models 𝐹 𝑥 = σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡 𝑥



AdaBoost Weighting Strategy

• Iteratively learn the ensemble one by one based on past performance

• On each iteration:
• Misclassified examples are upweighted
• Correctly classified are downweighted

• If an example is repeatedly misclassified, it will eventually be upweighted 
so much that it is correctly classified

• Emphasizes “hardest” parts of the input space
• Instances with highest weight are often outliers



AdaBoost

1.  𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖 )

2.  for 𝑡 ∈ 1, … , 𝑇
3.      𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4.      𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5.      𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6.      𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

size represents weight 𝑤𝑖



AdaBoost

1.  𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖 )

2.  for 𝑡 ∈ 1, … , 𝑇
3.      𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4.      𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5.      𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6.      𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))



AdaBoost

1.  𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖 )

2.  for 𝑡 ∈ 1, … , 𝑇
3.      𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4.      𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5.      𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6.      𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+  –

focus on linear classifiers 𝑓𝑡 

𝑡 = 1



AdaBoost

1.  𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖 )

2.  for 𝑡 ∈ 1, … , 𝑇
3.      𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4.      𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5.      𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6.      𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+  –

𝑡 = 1

𝛽𝑡 becomes larger as 
𝜖𝑡 becomes smaller



AdaBoost

1.  𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖 )

2.  for 𝑡 ∈ 1, … , 𝑇
3.      𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4.      𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5.      𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6.      𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+  –

𝑡 = 1

Use convention 𝑦𝑖 ∈ −1, +1

If correct (𝑦𝑖 = 𝑓𝑡 𝑥𝑖 ) then multiply by 𝑒−𝛽𝑡

If incorrect (𝑦𝑖 ≠ 𝑓𝑡 𝑥𝑖 ) then multiply by 𝑒𝛽𝑡



AdaBoost

1.  𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖 )

2.  for 𝑡 ∈ 1, … , 𝑇
3.      𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4.      𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5.      𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6.      𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+  –

𝑡 = 1



AdaBoost

1.  𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖 )

2.  for 𝑡 ∈ 1, … , 𝑇
3.      𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4.      𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5.      𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6.      𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+  –
+   –

𝑡 = 2



AdaBoost

1.  𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖 )

2.  for 𝑡 ∈ 1, … , 𝑇
3.      𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4.      𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5.      𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6.      𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+  –
+   –

𝑡 = 2



AdaBoost

1.  𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖 )

2.  for 𝑡 ∈ 1, … , 𝑇
3.      𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4.      𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5.      𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6.      𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+  –
+   –

𝑡 = 2



AdaBoost

1.  𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖 )

2.  for 𝑡 ∈ 1, … , 𝑇
3.      𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4.      𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5.      𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6.      𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+  –

+  –

+   –

𝑡 = 3



AdaBoost

1.  𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖 )

2.  for 𝑡 ∈ 1, … , 𝑇
3.      𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4.      𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5.      𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6.      𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+  –

+  –

+   –

𝑡 = 3



AdaBoost

1.  𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖 )

2.  for 𝑡 ∈ 1, … , 𝑇
3.      𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4.      𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5.      𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6.      𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+  –

+  –

+   –

𝑡 = 3



AdaBoost

1.  𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖 )

2.  for 𝑡 ∈ 1, … , 𝑇
3.      𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4.      𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5.      𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6.      𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+  

+ 

+ 

+  
+ 

+  

+  + 

+ 

+ + 

𝑡 = 𝑇Under certain assumptions, training error 
goes to zero in 𝑂 log 𝑛  iterations



AdaBoost

1.  𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖 )

2.  for 𝑡 ∈ 1, … , 𝑇
3.      𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4.      𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5.      𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6.      𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖  (for all 𝑖)
7.  return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+  

+ 

+ 

+  
+ 

+  

+  + 

+ 

+ + 

final model is average of base models 
weighted by their performance



AdaBoost Weighting Strategy

• On each iteration:
• Misclassified examples are upweighted

• Correctly classified are downweighted

• If an example is repeatedly misclassified, it will eventually be 
upweighted so much that it is correctly classified

• Emphasizes “hardest” parts of the input space
• Instances with highest weight are often outliers



Aside: Learning with Weighted Examples

• Many algorithms can directly incorporate weights into the loss

• For maximum likelihood estimation:

ℓ 𝛽; 𝑍, 𝑤 = ෍

𝑖=1

𝑛

𝑤𝑖 ⋅ log 𝑝𝛽 𝑦𝑖 𝑥𝑖

• Alternatively, can subsample the data proportional to weights 𝑤𝑖



AdaBoost Summary

• Strengths:
• Fast and simple to implement

• No hyperparameters (except for 𝑇)

• Very few assumptions on base models

• Weaknesses:
• Can be susceptible to noise/outliers when there is insufficient data

• No way to parallelize

• Small gains over complex base models

• Specific to classification!



AdaBoost and Overfitting

• Basic ML theory predicts AdaBoost always overfits as 𝑇 → ∞
• Hypothesis keeps growing more complex!

• In practice, AdaBoost often does not overfit

Train

Test
AdaBoost on OCR data with 

C4.5 as the base learner
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