Lecture 19: Ensembles (Part 1)

CIS 4190/5190 Fall 2024

Announcements

- Projects teams
	- Img2GPS: 22 teams
	- News source classification: 38 teams
	- Audio classification: 8 teams
- HW 2 grades released
- HW 4 due on Nov 20
- Midterm 2 scheduled for 12/9
	- Cumulative
	- Similar to midterm 1 in terms of exam time, location, #questions, cheat sheet.

Decision Tree Shortcomings

Decision tree example from: Martignon and Monti. (2010). Conditions for risk assessment as a topic for probabilistic education. *Proceedings of the Eighth International Conference on Teaching Statistics* (ICOTS8).

Decision Tree Shortcomings

- Hard to manage bias-variance tradeoff
	- Small depth \rightarrow High bias, low variance
	- Large depth \rightarrow Small bias, high variance

Post Pruning

def PostPruneTree(*T*, Z_{train} , Z_{val}):

for each internal node N of T : $T_N \leftarrow \text{Replace}(T, N, \text{LeafNode}(\text{Mode}(Z_{\text{train}}[N]))$ $g_N \leftarrow \text{Loss}(T, Z_{\text{val}}) - \text{Loss}(T_N, Z_{\text{val}})$ $N_0 \leftarrow \argmax g_N$ \boldsymbol{N} if $g_{N_0} > 0$: **return** PostPruneTree(T_N , Z_{train} , Z_{val}) else:

return T

Post Pruning

def PostPruneTree(*T*, Z_{train} , Z_{val}):

for each internal node N of T : $T_N \leftarrow \text{Replace}(T, N, \text{LeafNode}(\text{Mode}(Z_{\text{train}}[N]))\right)$ $g_N \leftarrow \text{Loss}(T, Z_{\text{val}}) - \text{Loss}(T_N, Z_{\text{val}})$ $N_0 \leftarrow \argmax g_N$ \boldsymbol{N} if $g_{N_0} > 0$: **return** PostPruneTree(T_N , Z_{train} , Z_{val}) else:

return T

Decision Tree Shortcomings

- Hard to manage bias-variance tradeoff
	- Small depth \rightarrow High bias, low variance
	- Large depth \rightarrow Small bias, high variance
- Can we manage this tradeoff in a more principled way?
- **Idea: Can we use model combination to control the trade-off more gracefully?**

General mechanism for reducing variance in a, almost always, model agnostic way

Ensemble Learning

- **Step 1:** Learn a set of "base" models $f_1, ..., f_k$
- **Step 2:** Construct model $F(x)$ that combines predictions of $f_1, ..., f_k$

Ensemble Design Decisions

- How to learn the base models?
	- Main goal: establish diversity
- How to combine the learned base models?

- **Regression:** Average predictions $F(x) =$ 1 $\frac{1}{k}\sum_{i=1}^{k}f_i(x)$
	- Works well if the base models have similar performance

- Classification: Majority vote $F(x) = 1$ $\left(\sum_{i=1}^k f_i(x) \geq 1 \right)$ \boldsymbol{k} 2 (for binary)
	- Can also average probabilities for classification

• Can use weighted average:

$$
F(x) = \sum_{i=1}^{k} \beta_i \cdot f_i(x)
$$

- Can fit weights using linear regression on second training set
- More generally, can fit a second layer model

$$
F(x) = g_{\beta}(f_1(x), \dots, f_k(x))
$$

• Second model as "mixture of experts":

$$
F(x) = \sum_{i=1}^{k} g(x)_i \cdot f_i(x)
$$

• Second stage model predicts weights over "experts" $f_i(x)$

- Second model as "mixture of experts":
	- **Special case:** $g(x)$ is one-hot
	- **Advantage:** Only need to run $g(x)$ and $f_{g(x)}(x)$

Example: Netflix Movie Recommendations

- **Goal:** Predict how a user will rate a movie based on:
	- The user's ratings for other movies
	- Other users' ratings for this movie (and others)
- **Netflix Prize (2007-2009):** \$1 million for the first team to do 10% better than the existing Netflix recommendation system
- **Winner:** BellKor's Pragmatic Chaos
	- An ensemble of 800+ rating systems

Ensemble Design Decisions

- How to learn the base models?
- How to combine the learned base models?

Learning Base Models

- Successful ensembles require **diversity**
	- Different model families
	- Different training data
	- Different features
	- Different hyperparameters
- **Intuition:** Models should make **independent** mistakes

Learning Base Models

• **Intuition:** Models should make **independent** mistakes

Learning Base Models

• **Intuition:** Models should make **independent** mistakes

Bagging

- **Bagging:** Randomize training data ("Boostrap Aggregating")
	- Random examples: Subsample examples $\{(x, y)\}$ (obtain $X \in \mathbb{R}^{n' \times d}$)
- Meta-strategy that can build ensembles from arbitrary base learners

Bootstrap

• Subsample examples $\{(x, y)\}$ with replacement (obtain $X \in \mathbb{R}^{n \times d}$)

• Excludes
$$
\left(1-\frac{1}{n}\right)^n
$$
 of the training examples

• Separately in each of the replicates

• As
$$
n \to \infty
$$
, excludes $\rightarrow \frac{1}{e} \approx 36.8\%$ examples

• Has good statistical properties

Randomizing Learning Algorithms

Random Forests

- Train many decision trees and average them!
	- Large depth \rightarrow High variance, low bias
	- Averaging many decision trees \rightarrow average away "irrelevant" variance
- Very powerful model family in practice

Random Forests

- Ensemble of decision trees using bagging
	- Typically use simple average

• **Intuition:**

- Large decision trees are good nonlinear models, but high variance
- Random forests average over many decision trees to reduce variance without increasing bias

Random Forests

- **Tweak 1:** Randomize features in learning algorithm
	- At DT node splitting step, subsample $\approx \sqrt{d}$ features
	- Allows each tree to use all features, but not at every node
	- **Aside:** If a few features are highly predictive, then they will be selected in many trees, causing the base models to be highly correlated
- **Tweak 2:** Train **unpruned** decision trees
	- Ensures base models have higher capacity
	- **Intuition:** Skipping pruning increases variance

Ensemble Learning

Bagging based Ensembles

- **Step 1:** Create bootstrap replicates of the original training dataset
- **Step 2:** Train a classifier for each replicate
- **Step 3 (Optional):** Use held-out validation set to weight models
	- Can just use average predictions

Boosting

- Can we turn weak learning algorithms into strong ones?
- Assume we have a very high bias model, can we make it better?
- **Provably learns** for base models achieving any error rate > 0.5
- In the context of tree, assume very short trees (depth 3-6).

AdaBoost (Freund & Schapire 1997)

- Like bagging, meta-algorithm that turns base models into ensemble
	- **Provably learns** for base models achieving any error rate > 0.5
- Uses **different training example weights** (instead of different subsamples or different features) to introduce diversity
	- In particular, **upweights** currently incorrectly predicted examples
- Base models should satisfy the following:
	- High-bias/low-capacity (e.g., depth-limited decision trees, linear classifiers)
	- Able to incorporate sample weights during learning
	- **Specific to classification (discuss general losses later)**

AdaBoost (Freund & Schapire 1997)

• **Input**

- Training dataset Z
- Learning algorithm $Train(Z, w)$ that can handle weights w
- Hyperparameter T indicating number of models to train

• **Output**

• Ensemble of models $F(x) = \sum_{t=1}^{T} \beta_t \cdot f_t(x)$

AdaBoost Weighting Strategy

- Iteratively learn the ensemble one by one based on past performance
- On each iteration:
	- Misclassified examples are upweighted
	- Correctly classified are downweighted
- If an example is repeatedly misclassified, it will eventually be upweighted so much that it is correctly classified
- Emphasizes "hardest" parts of the input space
	- Instances with highest weight are often outliers

1.
$$
w_1 \leftarrow (\frac{1}{n}, ..., \frac{1}{n}) (w_{1,i} \text{ weight for } (x_i, y_i))
$$

\n2. **for** $t \in \{1, ..., T\}$
\n3. $f_t \leftarrow \text{Train}(Z, w_t)$
\n4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
\n5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_t}{\epsilon_t}$
\n6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)}$ (for all *i*)
\n7. **return** $F(x) = \text{sign}(\sum_{t=1}^{T} \beta_t \cdot f_t(x))$

AdaBoost focus on linear classifiers + – 1 1 1. ¹ ← , … , (1, weight for ,) 2. **for** ∈ 1, … , 3. ← Train , 4. ← Error , , 1 ln 1− 5. ← 2 − ⋅ ⋅ (for all) 6. +1, ∝ , ⋅ 7. **return** = sign(σ=1 ⋅ ())

$$
t = 1
$$

1.
$$
w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))
$$

\n2. **for** $t \in \{1, \dots, T\}$
\n3. $f_t \leftarrow \text{Train}(Z, w_t)$
\n4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
\n5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
\n6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)}$ (for all *i*)
\n7. **return** $F(x) = \text{sign}(\sum_{t=1}^{T} \beta_t \cdot f_t(x))$
\nUse convention $y_i \in \{-1, +1\}$
\nIf correct $(y_i = f_t(x_i))$ then multiply by $e^{-\beta_t}$
\nIf incorrect $(y_i \neq f_t(x_i))$ then multiply by e^{β_t}

1.
$$
w_1 \leftarrow (\frac{1}{n}, ..., \frac{1}{n}) (w_{1,i} \text{ weight for } (x_i, y_i))
$$

\n2. **for** $t \in \{1, ..., T\}$
\n3. $f_t \leftarrow \text{Train}(Z, w_t)$
\n4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
\n5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_t}{\epsilon_t}$
\n6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)}$ (for all *i*)
\n7. **return** $F(x) = \text{sign}(\sum_{t=1}^{T} \beta_t \cdot f_t(x))$

$$
t = 1
$$

1.
$$
w_1 \leftarrow (\frac{1}{n}, ..., \frac{1}{n}) (w_{1,i} \text{ weight for } (x_i, y_i))
$$

\n2. **for** $t \in \{1, ..., T\}$
\n3. $f_t \leftarrow \text{Train}(Z, w_t)$
\n4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
\n5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
\n6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t y_i f_t(x_i)}$ (for all i)
\n7. **return** $F(x) = \text{sign}(\sum_{t=1}^{T} \beta_t \cdot f_t(x))$

$$
t = 2
$$

1.
$$
w_1 \leftarrow (\frac{1}{n}, ..., \frac{1}{n}) (w_{1,i} \text{ weight for } (x_i, y_i))
$$

\n2. **for** $t \in \{1, ..., T\}$
\n3. $f_t \leftarrow \text{Train}(Z, w_t)$
\n4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
\n5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
\n6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t y_i f_t(x_i)}$ (for all *i*)
\n7. **return** $F(x) = \text{sign}(\sum_{t=1}^{T} \beta_t \cdot f_t(x))$

$$
t = 2
$$

1.
$$
w_1 \leftarrow (\frac{1}{n}, ..., \frac{1}{n}) (w_{1,i} \text{ weight for } (x_i, y_i))
$$

\n2. **for** $t \in \{1, ..., T\}$
\n3. $f_t \leftarrow \text{Train}(Z, w_t)$
\n4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
\n5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_t}{\epsilon_t}$
\n6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)}$ (for all *i*)
\n7. **return** $F(x) = \text{sign}(\sum_{t=1}^{T} \beta_t \cdot f_t(x))$

$$
t = 2
$$

1.
$$
w_1 \leftarrow (\frac{1}{n}, ..., \frac{1}{n}) (w_{1,i} \text{ weight for } (x_i, y_i))
$$

\n2. **for** $t \in \{1, ..., T\}$
\n3. $f_t \leftarrow \text{Train}(Z, w_t)$
\n4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
\n5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
\n6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t y_i f_t(x_i)}$ (for all *i*)
\n7. **return** $F(x) = \text{sign}(\sum_{t=1}^{T} \beta_t \cdot f_t(x))$

$$
t=3
$$

1.
$$
w_1 \leftarrow (\frac{1}{n}, ..., \frac{1}{n}) (w_{1,i} \text{ weight for } (x_i, y_i))
$$

\n2. **for** $t \in \{1, ..., T\}$
\n3. $f_t \leftarrow \text{Train}(Z, w_t)$
\n4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
\n5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
\n6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t y_i f_t(x_i)}$ (for all *i*)
\n7. **return** $F(x) = \text{sign}(\sum_{t=1}^{T} \beta_t \cdot f_t(x))$

$$
t=3
$$

1.
$$
w_1 \leftarrow (\frac{1}{n}, ..., \frac{1}{n}) (w_{1,i} \text{ weight for } (x_i, y_i))
$$

\n2. **for** $t \in \{1, ..., T\}$
\n3. $f_t \leftarrow \text{Train}(Z, w_t)$
\n4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
\n5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
\n6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)}$ (for all i)
\n7. **return** $F(x) = \text{sign}(\sum_{t=1}^{T} \beta_t \cdot f_t(x))$

$$
t=3
$$

1.
$$
w_1 \leftarrow (\frac{1}{n}, ..., \frac{1}{n}) (w_{1,i} \text{ weight for } (x_i, y_i))
$$

\n2. **for** $t \in \{1, ..., T\}$
\n3. $f_t \leftarrow \text{Train}(Z, w_t)$
\n4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
\n5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
\n6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)}$ (for all i)
\n7. **return** $F(x) = \text{sign}(\sum_{t=1}^{T} \beta_t \cdot f_t(x))$

Under certain assumptions, training error $t = T$ goes to zero in $O(\log n)$ iterations

1.
$$
w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))
$$

\n2. **for** $t \in \{1, \dots, T\}$
\n3.
$$
f_t \leftarrow \text{Train}(Z, w_t)
$$

\n4.
$$
\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)
$$

\n5.
$$
\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}
$$

\n6.
$$
w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)
$$

\n7. **return** $F(x) = \text{sign}(\sum_{t=1}^{T} \beta_t \cdot f_t(x))$

final model is average of base models weighted by their performance

AdaBoost Weighting Strategy

- On each iteration:
	- Misclassified examples are upweighted
	- Correctly classified are downweighted
- If an example is repeatedly misclassified, it will eventually be upweighted so much that it is correctly classified
- Emphasizes "hardest" parts of the input space
	- Instances with highest weight are often outliers

Aside: Learning with Weighted Examples

- Many algorithms can directly incorporate weights into the loss
- For maximum likelihood estimation:

$$
\ell(\beta; Z, w) = \sum_{i=1}^{n} w_i \cdot \log p_{\beta}(y_i \mid x_i)
$$

• Alternatively, can subsample the data proportional to weights w_i

AdaBoost Summary

• **Strengths:**

- Fast and simple to implement
- No hyperparameters (except for T)
- Very few assumptions on base models

• **Weaknesses:**

- Can be susceptible to noise/outliers when there is insufficient data
- No way to parallelize
- Small gains over complex base models
- **Specific to classification!**

AdaBoost and Overfitting

- Basic ML theory predicts AdaBoost always overfits as $T \to \infty$
	- Hypothesis keeps growing more complex!
	- In practice, AdaBoost often does not overfit

