Lecture 19: Ensembles (Part 1)

CIS 4190/5190
Fall 2024



Announcements

* Projects teams
* Img2GPS: 22 teams
* News source classification: 38 teams
* Audio classification: 8 teams

* HW 2 grades released
* HW 4 due on Nov 20

 Midterm 2 scheduled for 12/9

e Cumulative
e Similar to midterm 1 in terms of exam time, location, #questions, cheat sheet.



Decision Tree Shortcomings

# days with fever >= 2?

child age > 3?

prescribe
macrolides

Decision tree example from: Martignon and Monti. (2010).
Conditions for risk assessment as a topic for probabilistic
education. Proceedings of the Eighth International Conference
on Teaching Statistics (ICOTS8).



Decision Tree Shortcomings

* Hard to manage bias-variance tradeoff
* Small depth = High bias, low variance
 Large depth = Small bias, high variance
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# days with fever > 2°?
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Post Pruning

def PostPruneTree(T, Z: 4in, Zval):

for each internal node N of T':

Ty, < Replace (T, N, LeafNOde(MOde(Ztrain[N])))

gy < Loss(T,Z,,.1) — Loss(Ty, Z41)
Ny « arg max gy

N
if 'gNO > 0:
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Decision Tree Shortcomings

* Hard to manage bias-variance tradeoff
* Small depth = High bias, low variance
 Large depth = Small bias, high variance

* Can we manage this tradeoff in a more principled way?

* |ldea: Can we use model combination to control the trade-off more
gracefully?

General mechanism for reducing variance in a, almost always, model agnostic way




Ensemble Learning

* Step 1: Learn a set of “base” models f3, ..., fx

* Step 2: Construct model F(x) that combines predictions of f4, ..., f%



Ensemble Design Decisions

* How to learn the base models?
* Main goal: establish diversity

e How to combine the learned base models?




Combining Learned Base Models

* Regression: Average predictions F(x) = %Z{-‘zlfi(x)

* Works well if the base models have similar performance

f1

Tk



Combining Learned Base Models

* Classification: Majority vote F(x) = 1 ( é‘zlfi(x) = g) (for binary)

* Can also average probabilities for classification

f1

Tk



Combining Learned Base Models

e Can use weighted average:
K
F(x) = Z.Bi - fi(x)
i=1

* Can fit weights using linear regression on second training set

* More generally, can fit a second layer model

F(x) = gp(fi (), ..., fi ()



Combining Learned Base Models

* Second model as “mixture of experts”:
K
FGO = ) 900+ fi(0)
i=1

* Second stage model predicts weights over “experts” f;(x)



Combining Learned Base Models

* Second model as “mixture of experts”:
* Special case: g(x) is one-hot
* Advantage: Only need to run g(x) and f(,)(x)

f1
X F(x) = fi-(x)
fr

g > i =g(x)




Example: Netflix Movie Recommendations

e Goal: Predict how a user will rate a movie based on:

* The user’s ratings for other movies
e Other users’ ratings for this movie (and others)

* Netflix Prize (2007-2009): S1 million for the first team to do 10%
better than the existing Netflix recommendation system

e Winner: BellKor’s Pragmatic Chaos
* An ensemble of 800+ rating systems




Ensemble Design Decisions

e How to learn the base models?

e How to combine the learned base models?



Learning Base Models

» Successful ensembles require diversity
* Different model families
 Different training data
e Different features
e Different hyperparameters

* Intuition: Models should make independent mistakes



Learning Base Models

* Intuition: Models should make independent mistakes
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Learning Base Models

* Intuition: Models should make independent mistakes
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Bagging

e Bagging: Randomize training data (“Boostrap Aggregating”)

* Random examples: Subsample examples {(x,y)} (obtain X € R™ *d)

* Meta-strategy that can build ensembles from arbitrary base learners



Bootstrap

* Subsample examples {(x, y)} with replacement (obtain X € R"*%)

1 n
e Excludes (1 — ;) of the training examples

» Separately in each of the replicates

1
* Asn — oo, excludes = o~ 36.8% examples

* Has good statistical properties



Randomizing Learning Algorithms

@,@@@

Original
Training Data

Bootstrap Replicates
of the Training Data



Random Forests

* Train many decision trees and average them!
* Large depth = High variance, low bias
* Averaging many decision trees - average away “irrelevant” variance

* Very powerful model family in practice



Random Forests

* Ensemble of decision trees using bagging
* Typically use simple average

* Intuition:
* Large decision trees are good nonlinear models, but high variance

 Random forests average over many decision trees to reduce variance without
increasing bias



Random Forests

* Tweak 1: Randomize features in learning algorithm

* At DT node splitting step, subsample = \Vd features
* Allows each tree to use all features, but not at every node

* Aside: If a few features are highly predictive, then they will be selected in
many trees, causing the base models to be highly correlated

* Tweak 2: Train unpruned decision trees

* Ensures base models have higher capacity
* Intuition: Skipping pruning increases variance



Ensemble Learning




Bagging based Ensembles

» Step 1: Create bootstrap replicates of the original training dataset

* Step 2: Train a classifier for each replicate

 Step 3 (Optional): Use held-out validation set to weight models
e Can just use average predictions




Boosting

* Can we turn weak learning algorithms into strong ones?
* Assume we have a very high bias model, can we make it better?

* Provably learns for base models achieving any error rate > 0.5

* In the context of tree, assume very short trees (depth 3-6).



AdaBoost (Freund & Schapire 1997)

* Like bagging, meta-algorithm that turns base models into ensemble
* Provably learns for base models achieving any error rate > 0.5

* Uses different training example weights (instead of different
subsamples or different features) to introduce diversity

* |In particular, upweights currently incorrectly predicted examples

* Base models should satisfy the following:
 High-bias/low-capacity (e.g., depth-limited decision trees, linear classifiers)
* Able to incorporate sample weights during learning
 Specific to classification (discuss general losses later)



AdaBoost (Freund & Schapire 1997)

* Input
* Training dataset /
* Learning algorithm Train(Z, w) that can handle weights w
* Hyperparameter T indicating number of models to train

* Output
e Ensemble of models F(x) = X1_. B, - /()



AdaBoost Weighting Strategy

* |teratively learn the ensemble one by one based on past performance

* On each iteration:
* Misclassified examples are upweighted
e Correctly classified are downweighted

* |f an example is repeatedly misclassified, it will eventually be upweighted
so much that it is correctly classified

 Emphasizes “hardest” parts of the input space
* Instances with highest weight are often outliers



AdaBoost

size represents weight w;

1
W1 —

) (wy,; weight for (x;,7,))

forteﬁ

ﬁt _ln
Wiy X Wt

NoO AN P

T}

fi < Train (Z ,W¢)

Er < El‘l‘or(ft,Z, We)
1-— €t

€t

return ' (x) = Slgn(Z =1 Bt - [t (X))



AdaBoost

wy (=, ) (wy,; weight for (x;, y))

fort € {1, .., T}
fi < Traln(Z ,W¢)
er « Error(f;, Z, we)

ﬁt —1n166t
t
Wiepqi € W . e~ Peyifilxd (for all i)

return F (x) = sign(X¢=y B¢ * f(x))

NOoO s e



AdaBoost

focus on linear classifiers f;

1 1 .
Wy « (—, ""5) (wq ; weight for (x;,y;))

n
fort e {1 T}

f; « Train(Z, w;)

N U Rwp e

€; « EITOT([;, Z, W)

1 1—€
ﬁt «— _ln L
2

€t
Wep1i X Wy - e~ Beyife(xi) (for all i)

return F (x) = sign(X¢=y B¢ * f(x))




AdaBoost

1
wi (2, ...,7) (wy,; weight for (x;, )
fort € {1, .., T}

fr « Traln(Z W)
€ « Error(ft,Z W)

NO |V AR e

B, becomes larger as| |
e; becomes smaller




AdaBoost

1
wy (=, ) (wy,; weight for (x;, y))

fort € {1, .., T}
fi < Traln(Z ,W¢)
€t < Error(ft,Z, W)

ﬁt _ln

Wep1i X Wy - e~ Bryife(xi) (for all §)

NO |V AR e

return F(x) = mgn}&;llﬁt T (%))
Use convention y; € {—1, +1}

If correct (v; = f.(x;)) then multiply by e =Pt f=1
If incorrect (v; # f,(x;)) then multiply by e”t




AdaBoost

1. wy « (1 ) (wq ; weight for (x;,y;))
2. forte{l,..,T}

3. ;< Traln(Z ,W¢)

4, € « Error(ft,Z, W)

5. B e In—"

6. Wiy & th e~ Beyife(xi) (for all i)
/.

return F (x) = sign(X¢=y B¢ * f(x))



AdaBoost

1 .
Wy « (1, ""5) (wq ; weight for (x;,y;))

n
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AdaBoost

Wep1i X Wy - e~ Bryife(xi) (for all §)
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return F(X) = Slgn(Z’II;:l Br - : (X))




AdaBoost
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AdaBoost

1 .
Wy « (1, ""5) (wq ; weight for (x;,y;))

n

fort e {1 T}
f; « Train(Z, w;)
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AdaBoost

1
W, < (— ) (wq ; weight for (x;,y;))

fort € {1,...,T}
fr « Traln(Z , W)
€t & Error(ft,Z, W)

1 1—-€¢
L < ln -
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return F(X) = Slgn(Z’II;:l Br - : (X))




AdaBoost

1. wy « (1 ) (wq ; weight for (x;,y;))
2. forte{l,..,T}

3. ;< Traln(Z ,W¢)

4, € « Error(ft,Z, W)

5. B e In—"

6. Wiy & th e~ Beyife(xi) (for all i)
/.

return F (x) = sign(X¢=y B¢ * f(x))



AdaBoost

1
wi (=, =) (i, weight for (x;, y,))

fort € {1,..,T}
[t < Traln(Z , W)
€t & Error(ft,Z, W)

t
Wt+1l X Wy ; . e~ Peyifilxd (for all i)

return F (x) = sign(X¢=y B¢ * f(x))

NOoO s e

Under certain assumptions, training error _—"" t=T
goes to zero in O(logn) iterations



AdaBoost

1
wy (=, ) (wy,; weight for (x;, y))

fort € {1, .., T}
fi < Traln(Z We)
€ « Error(ft,Z W;)

ﬁt — ln
A,

—_ 0.4 W, ;- p_ﬁt'yl"ft(xi) (fnrn )

Npooprwn e

return F(x) = sign(X¢=q B¢ * f(x))

T

final model is average of base models
weighted by their performance



AdaBoost Weighting Strategy

* On each iteration:

* Misclassified examples are upweighted
* Correctly classified are downweighted

 If an example is repeatedly misclassified, it will eventually be
upweighted so much that it is correctly classified

* Emphasizes “hardest” parts of the input space
* Instances with highest weight are often outliers



Aside: Learning with Weighted Examples

* Many algorithms can directly incorporate weights into the loss

 For maximum likelihood estimation:
n
055 Z,w) = ) wy-logpg(vi | )
i=1

* Alternatively, can subsample the data proportional to weights w;



AdaBoost Summary

* Strengths:
* Fast and simple to implement
* No hyperparameters (except for T)
* Very few assumptions on base models

* Weaknesses:
* Can be susceptible to noise/outliers when there is insufficient data
* No way to parallelize
* Small gains over complex base models
 Specific to classification!



AdaBoost and Overfitting

e Basic ML theory predicts AdaBoost always overfits as T — oo
* Hypothesis keeps growing more complex!
* In practice, AdaBoost often does not overfit

20-

;. AdaBoost on OCR data with
;_Test

C4.5 as the base learner

—h.
2.9

percent error
—h

o

Q...

10 100 1000

rounds of boosting
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