
Lecture 19: Ensembles (Part 1)

CIS 4190/5190

Fall 2024

Announcements

• Projects teams
• Img2GPS: 22 teams

• News source classification: 38 teams

• Audio classification: 8 teams

• HW 2 grades released

• HW 4 due on Nov 20

• Midterm 2 scheduled for 12/9
• Cumulative

• Similar to midterm 1 in terms of exam time, location, #questions, cheat sheet.

Decision Tree Shortcomings

days with fever >= 2?

child age > 3? no
macrolides

no
macrolides

prescribe
macrolides

FT

FT

Decision tree example from: Martignon and Monti. (2010).
Conditions for risk assessment as a topic for probabilistic
education. Proceedings of the Eighth International Conference
on Teaching Statistics (ICOTS8).

Decision Tree Shortcomings

• Hard to manage bias-variance tradeoff
• Small depth → High bias, low variance

• Large depth → Small bias, high variance

𝐝𝐞𝐟 PostPruneTree 𝑇, 𝑍train, 𝑍val :

 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 internal node 𝑁 of 𝑇:

 𝑇𝑁 ← Replace 𝑇, 𝑁, LeafNode Mode 𝑍train 𝑁

 𝑔𝑁 ← Loss 𝑇, 𝑍val − Loss 𝑇𝑁, 𝑍val

 𝑁0 ← arg max
𝑁

𝑔𝑁

 𝐢𝐟 𝑔𝑁0
> 0:

 𝐫𝐞𝐭𝐮𝐫𝐧 PostPruneTree 𝑇𝑁, 𝑍train, 𝑍val

 𝐞𝐥𝐬𝐞:

 𝐫𝐞𝐭𝐮𝐫𝐧 𝑇

Post Pruning

days with fever ≥ 2?

child age ≥ 3?

no
macrolides

prescribe
macrolides

FT

FT

child age ≥ 1?

prescribe
macrolides

no
macrolides

FT

days with fever

ch
ild

 a
ge

Post Pruning

days with fever ≥ 2?

child age ≥ 3?

no
macrolides

prescribe
macrolides

FT

FT

days with fever

ch
ild

 a
ge

no
macrolides

𝐝𝐞𝐟 PostPruneTree 𝑇, 𝑍train, 𝑍val :

 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 internal node 𝑁 of 𝑇:

 𝑇𝑁 ← Replace 𝑇, 𝑁, LeafNode Mode 𝑍train 𝑁

 𝑔𝑁 ← Loss 𝑇, 𝑍val − Loss 𝑇𝑁, 𝑍val

 𝑁0 ← arg max
𝑁

𝑔𝑁

 𝐢𝐟 𝑔𝑁0
> 0:

 𝐫𝐞𝐭𝐮𝐫𝐧 PostPruneTree 𝑇𝑁, 𝑍train, 𝑍val

 𝐞𝐥𝐬𝐞:

 𝐫𝐞𝐭𝐮𝐫𝐧 𝑇

Decision Tree Shortcomings

• Hard to manage bias-variance tradeoff
• Small depth → High bias, low variance

• Large depth → Small bias, high variance

• Can we manage this tradeoff in a more principled way?

• Idea: Can we use model combination to control the trade-off more
gracefully?

General mechanism for reducing variance in a, almost always, model agnostic way

Ensemble Learning

• Step 1: Learn a set of “base” models 𝑓1, … , 𝑓𝑘

• Step 2: Construct model 𝐹 𝑥 that combines predictions of 𝑓1, … , 𝑓𝑘

Ensemble Design Decisions

• How to learn the base models?
• Main goal: establish diversity

• How to combine the learned base models?

Combining Learned Base Models

• Regression: Average predictions 𝐹 𝑥 =
1

𝑘
σ𝑖=1

𝑘 𝑓𝑖 𝑥

• Works well if the base models have similar performance

𝑥 𝐹(𝑥)

𝑓1

…

𝑓𝑘

+

Combining Learned Base Models

• Classification: Majority vote 𝐹 𝑥 = 1 σ𝑖=1
𝑘 𝑓𝑖 𝑥 ≥

𝑘

2
 (for binary)

• Can also average probabilities for classification

𝑥 𝐹(𝑥)

𝑓1

…

𝑓𝑘

+

Combining Learned Base Models

• Can use weighted average:

𝐹 𝑥 = ෍

𝑖=1

𝑘

𝛽𝑖 ⋅ 𝑓𝑖 𝑥

• Can fit weights using linear regression on second training set

• More generally, can fit a second layer model

𝐹 𝑥 = 𝑔𝛽 𝑓1 𝑥 , … , 𝑓𝑘 𝑥

Combining Learned Base Models

• Second model as “mixture of experts”:

𝐹 𝑥 = ෍

𝑖=1

𝑘

𝑔 𝑥 𝑖 ⋅ 𝑓𝑖 𝑥

• Second stage model predicts weights over “experts” 𝑓𝑖 𝑥

Combining Learned Base Models

• Second model as “mixture of experts”:
• Special case: 𝑔 𝑥 is one-hot

• Advantage: Only need to run 𝑔 𝑥 and 𝑓𝑔 𝑥 𝑥

𝑥

𝑓1

…

𝑓𝑘

𝑔

𝐹 𝑥 = 𝑓𝑖 𝑥

𝑖 = 𝑔 𝑥

Example: Netflix Movie Recommendations

• Goal: Predict how a user will rate a movie based on:
• The user’s ratings for other movies

• Other users’ ratings for this movie (and others)

• Netflix Prize (2007-2009): $1 million for the first team to do 10%
better than the existing Netflix recommendation system

• Winner: BellKor’s Pragmatic Chaos
• An ensemble of 800+ rating systems

Ensemble Design Decisions

• How to learn the base models?

• How to combine the learned base models?

Learning Base Models

• Successful ensembles require diversity
• Different model families

• Different training data

• Different features

• Different hyperparameters

• Intuition: Models should make independent mistakes

Learning Base Models

• Intuition: Models should make independent mistakes
𝑥1 𝑥2 𝑥3 𝑥4

acc =
3

4

acc =
3

4

acc =
3

4

acc = 1 − 1 −
3

4

3

− 3 ⋅
3

4
⋅ 1 −

3

4

2

≈ 0.84𝐹

Learning Base Models

• Intuition: Models should make independent mistakes
𝑥1 𝑥2 𝑥3 𝑥4

acc =
3

4

acc =
3

4

acc =
3

4

𝐹 acc → 1 as 𝑘 → ∞

Bagging

• Bagging: Randomize training data (“Boostrap Aggregating”)

• Random examples: Subsample examples 𝑥, 𝑦 (obtain 𝑋 ∈ ℝ𝑛′×𝑑)

• Meta-strategy that can build ensembles from arbitrary base learners

Bootstrap

• Subsample examples 𝑥, 𝑦 with replacement (obtain 𝑋 ∈ ℝ𝑛×𝑑)

• Excludes 1 −
1

𝑛

𝑛
 of the training examples

• Separately in each of the replicates

• As 𝑛 → ∞, excludes →
1

𝑒
≈ 36.8% examples

• Has good statistical properties

Randomizing Learning Algorithms

...

Original
Training Data

Bootstrap Replicates
of the Training Data

Random Forests

• Train many decision trees and average them!
• Large depth → High variance, low bias

• Averaging many decision trees → average away “irrelevant” variance

• Very powerful model family in practice

Random Forests

• Ensemble of decision trees using bagging
• Typically use simple average

• Intuition:
• Large decision trees are good nonlinear models, but high variance

• Random forests average over many decision trees to reduce variance without
increasing bias

Random Forests

• Tweak 1: Randomize features in learning algorithm

• At DT node splitting step, subsample ≈ 𝑑 features

• Allows each tree to use all features, but not at every node

• Aside: If a few features are highly predictive, then they will be selected in
many trees, causing the base models to be highly correlated

• Tweak 2: Train unpruned decision trees
• Ensures base models have higher capacity

• Intuition: Skipping pruning increases variance

Ensemble Learning

Original
Training Data

...

𝛽1 𝛽2 𝛽𝑘

...

Bagging based Ensembles

• Step 1: Create bootstrap replicates of the original training dataset

• Step 2: Train a classifier for each replicate

• Step 3 (Optional): Use held-out validation set to weight models
• Can just use average predictions

Boosting

• Can we turn weak learning algorithms into strong ones?

• Assume we have a very high bias model, can we make it better?

• Provably learns for base models achieving any error rate > 0.5

• In the context of tree, assume very short trees (depth 3-6).

AdaBoost (Freund & Schapire 1997)

• Like bagging, meta-algorithm that turns base models into ensemble
• Provably learns for base models achieving any error rate > 0.5

• Uses different training example weights (instead of different
subsamples or different features) to introduce diversity
• In particular, upweights currently incorrectly predicted examples

• Base models should satisfy the following:
• High-bias/low-capacity (e.g., depth-limited decision trees, linear classifiers)

• Able to incorporate sample weights during learning

• Specific to classification (discuss general losses later)

AdaBoost (Freund & Schapire 1997)

• Input
• Training dataset 𝑍

• Learning algorithm Train 𝑍, 𝑤 that can handle weights 𝑤

• Hyperparameter 𝑇 indicating number of models to train

• Output
• Ensemble of models 𝐹 𝑥 = σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡 𝑥

AdaBoost Weighting Strategy

• Iteratively learn the ensemble one by one based on past performance

• On each iteration:
• Misclassified examples are upweighted
• Correctly classified are downweighted

• If an example is repeatedly misclassified, it will eventually be upweighted
so much that it is correctly classified

• Emphasizes “hardest” parts of the input space
• Instances with highest weight are often outliers

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

size represents weight 𝑤𝑖

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+ –

focus on linear classifiers 𝑓𝑡

𝑡 = 1

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+ –

𝑡 = 1

𝛽𝑡 becomes larger as
𝜖𝑡 becomes smaller

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+ –

𝑡 = 1

Use convention 𝑦𝑖 ∈ −1, +1

If correct (𝑦𝑖 = 𝑓𝑡 𝑥𝑖) then multiply by 𝑒−𝛽𝑡

If incorrect (𝑦𝑖 ≠ 𝑓𝑡 𝑥𝑖) then multiply by 𝑒𝛽𝑡

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+ –

𝑡 = 1

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+ –
+ –

𝑡 = 2

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+ –
+ –

𝑡 = 2

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+ –
+ –

𝑡 = 2

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+ –

+ –

+ –

𝑡 = 3

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+ –

+ –

+ –

𝑡 = 3

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+ –

+ –

+ –

𝑡 = 3

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+

+

+

+
+

+

+ +

+

+ +

𝑡 = 𝑇Under certain assumptions, training error
goes to zero in 𝑂 log 𝑛 iterations

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+

+

+

+
+

+

+ +

+

+ +

final model is average of base models
weighted by their performance

AdaBoost Weighting Strategy

• On each iteration:
• Misclassified examples are upweighted

• Correctly classified are downweighted

• If an example is repeatedly misclassified, it will eventually be
upweighted so much that it is correctly classified

• Emphasizes “hardest” parts of the input space
• Instances with highest weight are often outliers

Aside: Learning with Weighted Examples

• Many algorithms can directly incorporate weights into the loss

• For maximum likelihood estimation:

ℓ 𝛽; 𝑍, 𝑤 = ෍

𝑖=1

𝑛

𝑤𝑖 ⋅ log 𝑝𝛽 𝑦𝑖 𝑥𝑖

• Alternatively, can subsample the data proportional to weights 𝑤𝑖

AdaBoost Summary

• Strengths:
• Fast and simple to implement

• No hyperparameters (except for 𝑇)

• Very few assumptions on base models

• Weaknesses:
• Can be susceptible to noise/outliers when there is insufficient data

• No way to parallelize

• Small gains over complex base models

• Specific to classification!

AdaBoost and Overfitting

• Basic ML theory predicts AdaBoost always overfits as 𝑇 → ∞
• Hypothesis keeps growing more complex!

• In practice, AdaBoost often does not overfit

Train

Test
AdaBoost on OCR data with

C4.5 as the base learner

	Slide 1: Lecture 19: Ensembles (Part 1)
	Slide 2: Announcements
	Slide 3: Decision Tree Shortcomings
	Slide 4: Decision Tree Shortcomings
	Slide 5: Post Pruning
	Slide 6: Post Pruning
	Slide 7: Decision Tree Shortcomings
	Slide 8: Ensemble Learning
	Slide 9: Ensemble Design Decisions
	Slide 10: Combining Learned Base Models
	Slide 11: Combining Learned Base Models
	Slide 12: Combining Learned Base Models
	Slide 13: Combining Learned Base Models
	Slide 14: Combining Learned Base Models
	Slide 15: Example: Netflix Movie Recommendations
	Slide 16: Ensemble Design Decisions
	Slide 17: Learning Base Models
	Slide 18: Learning Base Models
	Slide 19: Learning Base Models
	Slide 20: Bagging
	Slide 21: Bootstrap
	Slide 22: Randomizing Learning Algorithms
	Slide 23: Random Forests
	Slide 25: Random Forests
	Slide 26: Random Forests
	Slide 27: Ensemble Learning
	Slide 28: Bagging based Ensembles
	Slide 29: Boosting
	Slide 30: AdaBoost (Freund & Schapire 1997)
	Slide 31: AdaBoost (Freund & Schapire 1997)
	Slide 32: AdaBoost Weighting Strategy
	Slide 33: AdaBoost
	Slide 34: AdaBoost
	Slide 35: AdaBoost
	Slide 36: AdaBoost
	Slide 37: AdaBoost
	Slide 38: AdaBoost
	Slide 39: AdaBoost
	Slide 40: AdaBoost
	Slide 41: AdaBoost
	Slide 42: AdaBoost
	Slide 43: AdaBoost
	Slide 44: AdaBoost
	Slide 45: AdaBoost
	Slide 46: AdaBoost
	Slide 47: AdaBoost Weighting Strategy
	Slide 48: Aside: Learning with Weighted Examples
	Slide 49: AdaBoost Summary
	Slide 50: AdaBoost and Overfitting

