

CIS 4190/5190: Lec 21 Mon Nov 18, 2024

Introduction to ML for Recommendations (And Graph Neural Networks)

What media to consume prime video DISNER+ NETFLIX **Ú**MUSIC hulu YouTube pandora

Image: <u>https://medium.com/@PhilAutelitano/pitching-your-idea-to-netflix-and-hulu-its-like-a-book-people-1e173430d0c</u>

What news you see

Image: http://www.sapientis.co.za/services/profile-collage/

What products to buy

Who to date

Image: http://www.sapientis.co.za/services/profile-collage/

00

3. 5

13

12

6

Real Impact

Recommendations account for:

- 75% of movies watched on Netflix ¹
- 60% YouTube video clicks ²
- 35% of Amazon sales ¹

Approximately 40% of committed relationships begin online ³

Sources:

- 1. McKinsey & Company (Oct 2013): <u>https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers</u> [Note: non-authoritative source; estimates only]
- 2. J. Davidson, et al. (2010). The YouTube video recommendation system. Proc. of the 4th ACM Conference on Recommender systems (RecSys). doi.org/10.1145/1864708.1864770
- 3. M. Rosenfeld, et al. (2019). Disintermediating your friends: How online dating in the United States displaces other ways of meeting. Proc. National Academy of Sciences 116(36).

Stores Group Products Based on Consumer Buying Habits

Products that are commonly purchased together are displayed together

Website Advertisements are Based on Our Online Activity

Users are tracked across websites to build consumer profiles

JICE W SILL

wildblue.

1

Collaborative Filtering

Popularity-Based Recommendations

- Just recommend whatever is currently popular
- Simple and often quite effective

- This uses no information at all about the user!
 - Could improve by tailoring to the user: e.g. their geographical location, age, etc.

11

The Recommendation Problem

Predict a user's rating for an item that they have not yet tried

Collaborative Filtering Steps

Measuring User-Item Utilities

Utilities can be based on:

- Explicit rating
- Implicit rating
 - Inferred from user activity
 - e.g., User stops watching movie after 15 minutes
 - e.g., User repeatedly clicks on a particular dating profile

Elizabeth, choose 3 you like.

It will help us find TV shows & movies you'll love! Click the ones you like!

CONTINUE

For now, we are <u>not</u> considering user or item attributes/content e.g. genres and cast of movies/TV shows

Obtaining User Feedback

Challenges with Measuring Utility

Ratings can be misleading

- Sometimes users more likely to rate if experience is especially good or bad
- Users may have different scales
 - Can normalize user ratings, but their "scaling" might not even be linear.
- May need to consider credibility of individual raters (history of ratings)
- Bot farms may skew results through adversarial behavior

Reordered from class to improve flow

Handling Time-Varying Preferences

Aspects of recommendations change over time:

- User preferences change
- Popularity of items change

Potential solution: weight more recent measurements over the past

- Could use an exponentially weighted moving average
 - Decay old utilities. For example:
 - If user u has not newly rated item i at time $t: x_{u,i}^{t+1} \leftarrow 0.95 x_{u,i}^{t}$
 - (Otherwise, set $x_{u,i}$ to the new rating, of course.)

Reordered from class to improve flow mage: https://finalfashion.ca/the

User-Item Utility Matrix

			the office	MANDALORIAN	CRIMINAL	The Good Place		
		Gossip Girl	The Office	The Mandalorian	Criminal Minds	The Good Place	Grey's Anatomy	•••
İ	Grace	4	5	4	1	5	3	•••
İ	Eric	1	4	5	1	5	3	•••
İ	Haren	5	5	5	1	3	4	•••
İ	Sai	1	2	5	4	3	5	•••
İ	Siyan	3	1	1	3	4	5	•••
İ	Nikhil	2	3	4	2	2	2	•••
İ	Felix	1	1	1	5	2	2	•••

User-Item Utility Matrix

			the office	MANDALORIAN	CRIMINAL	The Good Place	BREY'S ALLANDY Data Service		
		Gossip Girl	The Office	The Mandalorian	Criminal Minds	The Good Place	Grey's Anatomy	•••	
İ	Grace	4	5	4	1	5	3	•••	Xu
İ	Eric	1	4	5	1	5	3		7
İ	Haren	5	5	5					
İ	Sai	1	2	5	Let x _u be	e the item	utilities for	' use	r <i>u</i>
İ	Siyan	3	1	1	3	4	5	•••	
İ	Nikhil	2	3	4	2	2	2	•••	
İ	Felix	1	1	1	5	2	2	•••	

But of course, we don't have all the ratings. We will return to this soon!

Collaborative Filtering

- Given:
 - User-Item Utility Matrix $X_{u,i} = \begin{cases} rating_{u,i} & \text{if user}_u \text{ rated product}_i \\ N/A & \text{otherwise} \end{cases}$
 - Assume fixed set of n users and m products
 - Not given any information about the products!
- **Problem:** Predict what $X_{u,i}$ would be if it is observed
 - Not quite supervised or unsupervised learning!

Collaborative Filtering Steps

Correlations Between Users

		gossip oir	the office	HANDALORIAN	CRIMINAL	The Good Place		
		Gossip Girl	The Office	The Mandalorian	Criminal Minds	The Good Place	Grey's Anatomy	•••
	Grace	4	5	4	1	5	3	
I	Eric	1	4	5	1	5	3	•••
1	Haren	5	5	5	1	3	4	
•	Sai	1	2	5	4	3	5	•••
•	Siyan	3	1	1	3	4	5	•••
•	Nikhil	2	3	4	2	2	2	
ŧ	Felix	1	1	1	5	2	2	•••

Correlations Between Users

			the office	UTAL MAKE MANDALORIAN	CRIMINAL	The Good Place		
Dissimilar us Gu Er Ha Sa Si Ni Fe	r users	Gossip Girl	The Office	The Mandalorian	Criminal Minds	The Good Place	Grey's Anatomy	•••
	Grace	4	5	4	1	5	3	
	Eric	1	4	5	1	5	3	•••
	Haren	5	5	5	1	3	4	•••
	Sai	1	2	5	4	3	5	
Ť.	Siyan	3	1	1	3	4	5	•••
1	Nikhil	2	3	4	2	2	2	•••
•	'Felix	1	1	1	5	2	2	

Collaborative Filtering

User-Item Utility Matrix

	Gossip Girl	The Office	The Mandalorian	Criminal Minds	The Good Place	Grey's Anatomy	•••
Grace	4	5	4	1	5	3	
Eric	1	4	5	1	5	3	
Haren	5	5	5	1	3	4	
Sai	1	2	5	4	3	5	
Siyan	3	1	1	3	4	5	
Nikhil	2	3	4	2	2	2	
Felix	1	1	1	5	2	2	

We could then predict unknown item utilities for Grace based on other similar users

Open issues:

- Choice of distance metric
- Dealing with sparse data
- How to combine known user utilities to do the prediction

User Distances

Distance Metrics: Measuring Similarity Between Users

There are many ways to measure user similarity:

Euclidean similarity

Pros:

- Cosine similarity
- Pearson correlation

- Straightforward to use as a similarity metric \circ Euclidean similarity: $similarity(user_u, user_v) = \frac{1}{1 + ||x_u - x_v||_2} \in (0, 1]$
 - Cosine similarity:

similarity
$$(user_u, user_v) = \frac{\boldsymbol{x}_u \cdot \boldsymbol{x}_v}{\|\boldsymbol{x}_u\| \|\boldsymbol{x}_v\|} \in [0, 1]$$

Cons:

Assumes utilities are calibrated across users

 i.e., some users might give overall higher ratings
 than others

Distance Metrics: Measuring Similarity Between Users

There are many ways to measure user similarity:

 ρ

- Euclidean similarity
- Cosine similarity
- Pearson correlation

Measures the linear correlation between two users' utilities; value $\in [-1,1]$

• Recall, this is formally defined as:

$$= \frac{\operatorname{covariance}(\boldsymbol{x}_u, \boldsymbol{x}_v)}{\operatorname{stdev}(\boldsymbol{x}_u) \times \operatorname{stdev}(\boldsymbol{x}_v)} = \frac{E[(x_{ui} - \bar{x}_u)(x_{vi} - \bar{x}_v)]}{\operatorname{stdev}(\boldsymbol{x}_u) \times \operatorname{stdev}(\boldsymbol{x}_v)}$$

Distance Metrics: Measuring Similarity Between Users

There are many ways to measure user similarity:

- Euclidean similarity
- Cosine similarity
- Pearson correlation

Pearson correlation coefficient ρ is:

- 1 if there is a perfect linear relationship with pos. slope
- 0 if no linear relationship exists
- -1 if perfect linear relationship with neg. slope

Measures the linear correlation between two users' utilities; value $\in [-1,1]$

- Measuring correlations between users' utilities allows it to handle different scale calibrations
- Related to the slope (+/-) and quality of linear
 regression fit to the paired points

The Utility Matrix is Sparse

The Utility Matrix is Sparse

The goal of collaborative filtering is to predict values for blanks in the utility matrix

Measuring User Similarity with Sparse Utility Data

Nearest-Neighbor Collaborative Filtering

Collaborative Filtering Steps

Nearest-Neighbor Collaborative Filtering

- A type of user-to-user collaborative filtering
- Very simple, yet effective

Idea: predict utility of item *i* based on the mostsimilar users who recorded a utility for that item

- Let $\mathcal N$ be the neighborhood set: the most similar users to user u who have rated i
- Let w_{uv} be a weight $\in [0,1]$ based on the similarity of users u and v

• Predict user *u*'s utility for item *i* as $\hat{x}_{ui} = \overline{x}_u + \sigma_u \left(\sum_{v \in \mathcal{N}} \frac{(x_{vi} - \overline{x}_v)}{\sigma_v} \times \frac{w_{uv}}{\sum_{v' \in \mathcal{N}} w_{uv'}} \right)$ Offset to this user's this user's mean-center normalize weights to sum to 1

Nearest-Neighbor Collaborative Filtering

Ways to select the neighborhood set \mathcal{N} :

- Based on a threshold of similarity
- Choose top-k neighbors by similarity
- Cluster users (e.g. using k-means clustering), and choose the entire cluster

Combining utilities:

- Mean-centering
- Standardize by user's stdev

 $k = 3 \rightarrow \text{orange}$

Matrix Factorization-Based Collaborative Filtering

Matrix Factorization-Based Collaborative Filtering

Matrix Factorization-Based Collaborative Filtering

Determining the factors:

- Just factorize the user-item utility matrix *U* directly via singular value decomposition (SVD)?
 - This will only work if we knew the full matrix, which we don't
- A better way is to fit the model with regularization

$$\min_{q^*, p^*} \sum_{x_{ui} \in U} (x_{ui} - q_i^T p_u)^2 + \sum_i ||q_i||_2^2 + \sum_u ||p_u||_2^2$$

- Solve via stochastic gradient descent or alternating least squares
- For details, see:
 - Koren, et al. (2009) Matrix factorization techniques for recommender systems. Computer 42 (8), ACM. <u>https://datajobs.com/data-science-repo/Recommender-Systems-%5BNetflix%5D.pdf</u>

Injecting Prior Knowledge About Items (and Users)

Pros & Cons of The Methods So Far

Advantages:

- No domain knowledge needed
 - Item details are irrelevant, only user behavior matters
- Heterogeneous preferences
 - Captures that users may have diverse preferences

Disadvantages:

- Suffers when data is sparse
 - Cannot generalize across items
 - Does not consider item content, and so cannot generalize to similar items
 - e.g. New items have no user feedback, and so the system cannot make

recommendations for them

Cannot generalize across users

"Content-Based Methods"

- Vanilla collaborative filtering doesn't consider user or item attributes/content
- Content-based methods can do:

Incorporating User / Item Knowledge

Steps:

- 1. Content analysis: Characterize item as feature vector
 - e.g., TF-IDF features of description, image features, etc.
- 2. Profile learning: Characterize user as feature vector
 - e.g., demographic details, or true/predicted ratings for representative items
- 3. Filtering module: Learns a classification/regression model for predicting user's utility for an item
 - Train model on items each user has rated
- Q: What happens with a new item or new user?

Hybrid Approaches

Hybrid Recommenders

Idea: Combine multiple recommenders to improve performance

Combining separate recommenders

- Can use any ensemble technique: linear weighting, stacking, etc.
- Recall the Netflix prize winner was a blend of over 800+ recommenders

Adding content-based aspects to collaborative models

 e.g., content-based user profiles to help build collaborator neighborhoods

Adding collaborative-based aspects to content-based models

Models combining content and collaboration

Hybrid Recommenders

Most systems that we use nowadays are hybrid recommenders:

- Shows other similar users are watching
 Shows similar to others the user has rated/viewed

amazon.com • Items other similar users have purchased

Items that are similar to user's past purchases

- Profiles that other similar users have liked/viewed
 Profiles selected based on user's personal preferences

Graph Neural Networks for Recommender Systems

User-Item Bipartite Graph in Recommender Systems

Wu et al 2022, Graph Neural Networks in Recommender Systems: A Survey

GNNs in Collaborative Filtering

Fig. 2. The overall framework of GNN in user-item collaborative filtering.

Wu et al 2022, Graph Neural Networks in Recommender Systems: A Survey

A Detour into GNNs (not necessarily for Recommendation Systems)

Graph Analysis

- Graphs are ubiquitous
 - Social networks
 - Proteins
 - Chemical compounds
 - Program dependence graph

What Are Graph Neural Networks? | NVIDIA Blogs

Notations

- An attributed graph G = (V, E)
 - V: vertex set
 - E: edge set
 - A: adjacency matrix
 - $X \in R^{d_0 \times |V|}$: feature matrix for all the nodes
 - N(v): neighbors of node v
 - h_v^l : Representation vector of node v at Layer l
 - Note $h_v^0 = x_v$
 - $H^l \in R^{d_l \times |V|}$: representation matrix

One layer of a GNN

• For a node v at layer t

$$h_{v}^{(l)} = f\left(\underline{h_{v}^{(l-1)}}, \left\{\underline{h_{u}^{(l-1)}} | u \in \mathcal{N}(v)\right\}\right)$$

representation vector from previous layer for node v

representation vectors from previous layer for node v's neighbors

- Two key things that must happen in f(.):
 - Aggregation: combine all neighbor features into one new feature for the neighborhood $n_v^{(t)}$
 - Update: Combine current central node feature at previous layer + aggregated feature of the neighborhood above

Wu et al 2022, Graph Neural Networks in Recommender Systems: A Survey Based on slides by Yizhou Sun, UCLA

Common Choices for Aggregation

$$\begin{array}{l} \text{Aggregation: } n_v^{(l-1)} = Aggregator_{l-1}\left(\left\{h_u^{(l-1)}, \forall u \in \mathcal{N}_v\right\}\right) \\ \bullet \text{ Mean: } n_v^{(l-1)} = \sum_{u \in \mathcal{N}(v)} \frac{h_u^{(l-1)}}{|\mathcal{N}(v)|} \end{array}$$

• Modified Mean ("graph convolutions"): $n_v^{(l-1)} = \sum_{u \in \mathcal{N}(v)} \frac{h_u^{(l-1)}}{\sqrt{|\mathcal{N}(v)||\mathcal{N}(u)|}}$

• Attention mechanisms: :
$$n_v^{(l-1)} = \sum_{u \in \mathcal{N}(v)} \alpha_{vu} h_u^{(l-1)}$$

α_{vu} are weights computed by attention

Wu et al 2022, Graph Neural Networks in Recommender Systems: A Survey Based on slides by Yizhou Sun, UCLA

Common Choices for Update

Update
$$h_v^{(l)} = Updater_l\left(h_v^{(l-1)}, n_v^{(l-1)}\right)$$

Often a simple linear layer + non-linear activation function e.g. $h_v^{(l)} = \delta \left(W^{(l-1)} . concat \left(h_v^{(l-1)} , n_v^{(l-1)} \right) + b^{(l-1)} \right)$

Compare with CNN

- Recall CNN
 - Regular graph
- GNN
 - Extend to irregular graph structure 0 1 1 0

Convolved Feature

0

0

0

Image

"Graph Convolutions"

Graph convolutional neural networks - Matthew N. Bernstein

Understanding the Building Blocks of Graph Neural Networks (Intro) | by Giuseppe Futia | Towards Data Science

A toy example of 2-layer GCN on a 4-node graph

• Computation graph

Based on slides by Yizhou Sun, UCLA

GNNs in Recommender Systems?

User-Item Bipartite Graph in Recommender Systems

Wu et al 2022, Graph Neural Networks in Recommender Systems: A Survey

GNNs in Collaborative Filtering

Wu et al 2022, Graph Neural Networks in Recommender Systems: A Survey