

CIS 4190/5190: Lec 22 Wed Nov 19,

i ‘ 2024

Reinforcement Learning: Review +
Part 3

Recap

* Q-Learning: We can modify Q-value iteration when P and R are unknown:
" Treat each sample from the distribution as a coarse proxy for the mean
" Make updates incremental

 Execute a single action a from state s and observe s’ and R:
sample = R + y max Qg4 (s, a’)
a

* Now, compare this sample to the LHS, and apply the incremental update:
Q(s,a) « Qpua(s,a) + (R +y max Qota(s’,a’) — Qo1a(s, a))

\ J
Y
Bellman error

" Qutput is a table of Q functions: for any state s and action a, the entry in
the tableis Q" (s, a)

Questions?

he Q table

(1,1) 0.49 0.41 0.44 0.45
(1,2) 0.57 0.51 0.46 0.51
(1,3) 0.59 0.64 0.53 0.57

From Tabular to Deep Q Learning

High-dimensional states example: Pacman

* Let’s say we discover through
experience that this state is bad:

* In naive Q-learning, we know nothing
about this state or its Q states:

 Or even about this one!

Slide by Dan Klein

Q-Learning

* In many real situations, we cannot possibly learn about every single
state+action!

" Too many state-action pairs to visit them all in training
" Too many state-action pairs to hold the Q-tables in memory

* Instead, we want to generalize:
" Learn about some small number of training Q-states from experience
" Generalize that experience to new, similar Q-states

" This is a fundamental idea in machine learning, and we see it over and
over again

Based on slide by Dan Klein

Feature-Based Representations

 Solution: describe a state using a vector of features

" Features are functions from states to real numbers (often 0/1) that
capture important properties of the state

" Example featureS:) ML in Computer Vision
u Dlstance to Closest ghost The very old: 1960's - Mid 1990’s

» Distance to closest dot
" Number of ghosts

- The old: Mid 1990’ - 2012

} ,y!;,: Image - hand-def. features -> learned classifier

= 1 /(dist to dot)? F AN e o i
= [s Pacman in a tunnel? (0/1) —
... etc.

* Can also describe a g-state (s, a) with features
= e.g. action moves closer to food

As we now do in computer vision/NLP, can we avoid engineering these features?

Based on slide by Dan Klein 8

oooooooooooooooooooooooooooooooooo
< v oon

Predict Q-values with a deep neural network o

> = = 5 f
B e =i e @ !
o | B\ = : .

* Output: Q-values of various actions b |\

Q O
<
~\
&
Q
=
\—/

¢(S az)

* Input: the state, e.g. an image

ANRAAARAAN z
4 B4 BN B BN EE BN BS 7» <« >1E
CCTECTECTT LT

* Learning:
gradient descent™ with the squared Bellman error loss:
((R +ymax Qy (s’ a’)) — @y (s, a))

= Vi
As always, the policy action is the one with the highest predicted Q-value

Deep Q-Learning vl

N

1. take some action a; and observe (s;, a;,s., ;)

2. y; =1; +7maxy qu (Sflzla aflz,)
d Si,4
3. ¢+ ¢ — « Q¢c(z¢) (Qg (si;a;) — y4)

d
= (Qg — yi)z

| : = Qs(s,aq)
o8 M [s A
1 = 0p(s,az)
S oE W ‘e
! :
B-oom-0: e 3*.
1 . [l
=8 E\"
q
] [o

Note: we pretend that y; is a constant while computing the gradient, to resemble regression

Incremental update step — gradient descent™ on the squared Bellman error loss!

Closely connected to the tabular Q learning update. Hint: if you replace the
neural network with a Q table, its parameters ¢ are just Q value entries?

C

Execute a single action a from state s and observe s’ and R:
sample = R +y max Qyq (s',a’)
a

Now, compare this sample to the LHS, and apply the incremental update:
Q(s5,@) < Qota(s5,@) + @ (R +y max Qoua(s’, @) = Qorals, @))
\)

Y
Bellman error

Based on slide bv Sergev Levine

Problems with Deep Q-Learning v1

@ 1. take some action a; and observe (s;,a;,s., ;)
d Y
2. 6 ¢ — a2 Q) (s;,a:) — [y + y maxa Qy (5], a))

Pl NV N NS

1. sequential states are strongly correlated (not i.i.d.\

Problems:

So consecutive Q updates drive the network to overfit to !
recently encountered states and forget previous experiences

Based on slide by Sergey Levine

11

Addressing Correlations: Experience Replay

* Q-Learning is “off-policy”: we don’t say anything about the specific actions
that need to be executed, and we don’t need the transitions to be in

sequence. Replay Buffer

Repiay Buffer
ey
5y

* Maintain a “replay buffer” of previous experiences

* Perform Q-updates based on a

sample from the replay buffer FIFO or Priority Queue

* Advantages:
= Breaks correlations between consecutive samples
= Each experience step may influence multiple gradient updates

Based on slide by Sergey Levine 12

Deep Q Learning v2 (with replay buffer D)

Deep Q Learning v1
<> 1. take some action a; and observe (s;,a;,s., ;)
- 9 ¢<—¢—QW(Q¢ (Si,az‘) — [Tz"*")’maxa' Qqﬁ (S;,a;)])

Deep Q Learning v2
E 1. collect dataset {(s;,a;,s;,r;)} using some policy, add it to D

2. Loop K times, do:
3. Sample a batch of (s;,a;,s.,r;)’s from D

Lo o—ay, M (Qu (50:22) — [ri + o Qs (51,20

K = 1is common, though larger K may sometimes be more efficient

s,as’,r
() replay buffer

Q-learning
f I '\:\. (off-policy)
< |

m(als) (e.g., e-greedy)

Based on slide by Sergey Levine 13

Problems with Deep Q-Learning v1

@ 1. take some action a; and observe (s;,a;,s., ;)
d 1 yAg
2. 6 ¢— aE2)(Q (s;,a,) — [ri + ymaxa Qs (s}, a))])

Problems:
1. sequential statesare strongly correlated (not i.i.d.)

2. Targetvalue y; = 1; + ¥ max Q4 (s;, a;) is always

a’
changing, even for the same s;, a;! .

Based on slide by Sergey Levine

14

Problem: Moving Target for Q-regression

@ 1. take some action a; and observe (s;,a;,s., ;)
d Y
2. ¢ ¢~ at2eE2) (Q (si,) — [+ maxa Qq (5], a))
\

Y
no gradient through target value

)

Problem: Instability (e.g., rapid changes) in Q(-) can cause it to diverge

* Q-learning is not gradient descent on any fixed objective!

. . .)
Solution: use two nets to provide stability (qu(S’ @) — (ri + Y max Qu (s a,)))
 The Q-network is updated regularly a

1
* The target network is an older version of the Q- computed via computed via
network, updated occasionally Q-network target network

Based on slide by Sergey Levine 15

Deep Q I_ea rn|ng V3 DeepQLearninng

= 1. collect dataset {(s;, a;, s}, 7;)} using some policy, add it to D
= 2. Loop K times, do:
I\H(3. sample a batch of (s;, a;, s}, r;)’s from D

e A 4. ¢ — ¢ — az dQ s (s a)(Q¢ (Si,afi) — [7‘7;—|—'ymaxa/ Q¢ (s;,a;)])

Deep Q Learning v3

~> 1. save target network parameters: ¢’ < ¢
2. collect dataset {(s;,a;,s,, r,,,)} using some policy, add it to D
N 3. sample a batch (s;,a;,s.,r;) from D

K
- 4 ¢ ¢—ay, WMol <@¢ (si,a;) — [ri + v maxa Qg (s}, a})])

\ J
|

targets don’t change in inner loop!

uolIssai3al
pasiAIadns

This is the “classic” deep Q Learning algorithm from 2015!*
*(usually K=1)

Based on slide by Sergey Levine 16

Imitation Learning Through Behavior Cloning

Solving sequential decision making problems with supervised learning!

Imitation of Televised Models by Infants

Andrew N. Meltzoff
University of Washington

Supervised learning of Action Policies?

* Given the current “state” s, make a decision j = maxmgy(als).
y

" Supervision => labels for “good” decisions that maximize future rewards.

" So, we’'d like to have some dataset of (state s, good decision a) pairs.
Then we could try running supervised learning just as always.

Behavior Cloning (BC)

observed states

S1, Sz, +--y SH training
a4, ap, ..., Ay
actions data

observed state s;

h 13 13 13
N 5 - =1~ N = L 3 — 4= =

| =X - e |13 -~ T\ |13 —i=r 13
5 - 27 3 L= 3 3 _ -

384 384 256

Stride\| ¢ | Pooling pooling
24
of 4

convolutional network

256 ax.
Max Max poolin

g

supervised
learning

4096

4096

100C¢

policy
g (aslse)

action a;

Behavior Cloning Objective Function

Supervised maximum-likelihood objective to train a function that maps from
expert sensory inputs to expert actions

Loss = ——Z zlogﬂe(ald& t)
i=1 \t=1

Demonstration data Expert actions

Could minimize by following the gradient:

NZ ZVB 108 g (@ 151.)

]

’_/ | Likelihood gradient:
trajectorles time “Change the policy to
make these actions
more likely”.

Does this work?

Clean Restroom
(teleop)

10x speed
Mobile Aloha, Stanford

Wipe Wine

(autonomous)

Use Cabinets
(autonomous)

. (lift a 3 Ibs pot)
Real-time

Real-time

Typically requires a large number of demonstrations (a few 100s) to learn well.
Mobile Aloha, Stanford

Exhibit A: Zero-Shot Policies From Web Human Videos

Training

Could we learn general skill policies
without specific reference to any one robot, scene, objects?

Shi et al 2024, (under review)

“Off-The-Shelf” Imitation From Web Human Videos Alo

Step 3: Deploying Human Arm Policies on Robot Arms*

Fang et al, AnyGrasp, T-RO 2022
Bahl et al, VRB, CVPR 2023

Vertical Hinge Vertical Hinge

Skill Slide Opening Slide Closing Opening Closing

Object [Drawer

;‘.

Rollout

“Off-The-Shelf” Imitation From Web Human Videos Alo

Step 3: Deploy Human Arm Policies on Robot Arms*

- : : : . Vertical Hinge Vertical Hinge
(C Slide Opening Slide Closing Opening Closing
—
Y
(V)
Skill Pouring Pouring Stirring Stirring

Object [Water Into Sink] [Pasta Into Pot] [Food in Pot] [Pasta In Water]

Rollout

“Off-The-Shelf” Imitation From Web Human Videos Alo

Step 3: Deploy Human Arm Policies on Robot Arms*

> : : : :
- : : : . Vertical Hinge Vertical Hinge
(C Slide Opening Slide Closing Opening Closing
—
— Pouring Stirring
=~
(V)

Skill Picking Picking Placing Placing

Object { Can J { Banana J { Cup J { Pasta Into Drawer J

Rollout

“Off-The-Shelf” Imitation From Web Human Videos Alo

Step 3: Retargeting Human Arm Policies to Robot Arms*

- : : : . Vertical Hinge Vertical Hinge
(C Slide Opening Slide Closing Opening Closing
—
= Pouring Stirring Picking Placing
=
(V)
Skill Cutting Cutting Pouring Cutting
: Salt Into Pan Cake
Object { Tofu J { Banana J { (Unseen) J { (Unseen)

NOTE:

* The following slides weren’t covered in class and won’t be tested unless
covered in a future lecture / homeworks.

* They are being included here just for reference.

Key Issue with BC: Distributional Shift

The policy is trained on demonstration data that is different from the data it encounters in the world.

: - = training trajectory
= = g expected trajectory

The cloned policy is imperfect; this leads to “compounding” errors, and the agent soon encounters
unfamiliar states, leading to failure.

Note how these errors arise from ignoring the the sequential, interconnected
nature of the task. Past decisions influence future states!

Active Behavior Cloning: DAGGER

A general trick for handling distributional shift: requery expert on new states
encountered by the initial cloned policy upon execution, then retrain.

1. Train mg(a;|s;) from expert data D = {s4, a4, ..., Sy, An}
2. Run my(a;|s;) to get dataset D, = {s{*Y, ..., s;i°"
3. Ask expert to label each state in D,; with actions a;¢"

4. Aggregate: D « D UD,

Assumes it is okay to keep asking the expert all through the training process.
“Queryable experts”. Might not always be practical.

Ross et al, DAGGER, 2011

Aside: Distribution Shift More Broadly

o« When supervised ML systems are deployed, it is common for the
distribution to shift.

o E.g. when a new spam classifier is deployed on gmail, spammers might notice that
their old spamming techniques are not working, and innovate to break the new
spam classifier.

o One strategy to fix this is continuous data aggregation, like in DAGGER.

o E.g., Allow users to mark new emails that slip through the filter as spam. Add these
to the training data, and retrain the spam classifier from time to time.

Lesson: ML systems are often deployed in sequential decision making
settings without realizing it: later inputs may be influenced in some complex
way by older decisions of the ML system. Warrants caution!

Other Ways to Do Imitation

o BC might not generalize beyond demonstrations. Instead learn explicitly
about the “reward” function that the demonstrator is trying to maximize?

o This is called “inverse reinforcement learning”

Would you conclude that this
agent likes / dislikes:

- Blue squares?

White squares?

Orange squares?

Red squares?

Green square?

Knowing the reward could
inform more generalizable
imitation, e.g. starting from a
different location than expert

BC Operates Per-Timestep, Not Aware of Future Impacts

e Suppose you try to imitate driving. The imitator is not perfect, and you
either:

" Are slower by 5 mph than the expert behavior on a highway, or

" Are off by 5 mph as you start your car in your garage (e.g. moving
forward at 4 mph, instead of backing out at 1 mph).

= BC objective might value both errors similarly, but one is much worse!

BC objective, by simply mimicking the immediate expert actions, is
not aware of any future impacts of an agent’s actions.

Compare to RL which tries to explicitly optimize)., 1.

Imitation vs RL

* Imitation is often very useful. In most cases where you have access to clean
expert demonstrations, you should aim to use it through some kind of
imitation. But there are limitations.

* Compared to RL, BC usually takes the short-term myopic view:

" The BC loss is only per-timestep deviations from the expert actions.
" |t does not account for the impacts of current actions on the future.
* More broadly, imitation is limited to mimicking experts and cannot discover

new solutions. What about solving new problems, like controlling a new
robot, or beating the world’s best Go player? RL is your best bet.

* There are also ways to naturally combine imitation and RL (beyond the
scope of this class).

