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Introduction

Generative modeling: “What | understand, | can create”

Slide courtesy: Stefano Ermon



Statistical Generative Models

A statistical generative model is a probability distribution Py (x)
" Data: samples (e.g., images of bedrooms)

" Prior knowledge: parametric form (e.g., Gaussian?), loss function
(e.g., maximum likelihood?), optimization algorithm, etc.

A probability
distribution |=—=> scalar probability Pg(x)
Pg(x)

It is generative because samplin!gfr,om Py (x) generates new images
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Building a simulator for the data generating process

Pg (X) ——— Data

Slide courtesy: Stefano Ermon



Building a simulator for the data generating process

Control signals —— Pg(x) ——> New datapoints
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Building a simulator for the data generating process

Control signals —— ——> New datapoints
Pg(x)

Potential datapoints —— —— Probability values
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Building a simulator for the data generating process

Control signals —— ——> New datapoints

Pg(x)
=Statistical model

Potential datapoints —— —— Probability values
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Building a simulator for the data generating process

Control signals —— ——> New datapoints

Pg(x)
=Statistical model

=G ti del
Potential datapoints —— eherativemotet Probability values
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Building a simulator for the data generating process

Control signals —— (7 ———> New datapoints
@

Potential datapoints —— ——— Probability values

Generative model Py (x)
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We Have Already Seen
Generative Models In Disguise!



Potential datapoints —— —— Probability values

Generative model Py (x)

We want parameters 6 such that model Py (x) assigns high probabilities to
samples from the training data distribution, and low values to samples that
are not in the data distribution.

Slide courtesy: Stefano Ermon



Fit data distribution to data

0eM

Model family

Slide courtesy: Stefano Ermon



A Simple Generative Model: Fit A Gaussian Density

Suppose we are modeling a dataset D = {x4, x,, X3, ..., X, }, X; € R?
Suppose we select the gaussian family as our model class:
Po(x) =N(x;u=0,2=0,)
Then we could fit parameters 8, and 6, to as:
0% = arg max 1_[ Pg(x;) = arg max z log Py (x;)

i=1..n i=1..n

This is a “maximum likelihood” objective!

These work out to:
0, = mean({xq, ...,x,}), 0, = covariance({x, ..., x,,})

Q: Can you show this to be true?



https://www.geeksforgeeks.org/visualizing-the-bivariate-gaussian-distribution-in-python/

Modeling More Complex Data Distributions?
Dataset 1

Clustering with Scikit with GIFs - dashee87.github.io



https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/

Recap: K-Means Clustering

Optimizer: K-means finds a local optimum of
“Alternating Minimization” the following objective function:
“Sum of squared distances”
K-Means (K, X) loss function
e Randomly choose K cluster
center locations (centroids)
e Loop until convergence, do: arg min Z Z lx — pxll3
e Assign each point to the cluster =1 x€S5
of the closest centroid where S = {51, .., Sk} are sets
* Re-estimate the cluster corresponding to disjoint clusters,
Ce;t"r?e'ilst'gagaeghogutshérdata and the clusters together include
43518 all samples.




Recap: K-Means Clustering Convergence

KMeans Iteration: Total Within Cluster Sum of Squares:

250k
200k }
= 150k |
100k |

S0k

0 2 4 6 8 10
Kmeans Iterations
https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/



https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/

From K-Means to GMMs



K-Means on Non-Spherical Clusters?

Feature 1

_4 | | | | |

-6 -4 -2 0 2
Feature O
https://amueller.github.io/aml/03-unsupervised-learning/02-clustering-mixture-models.html



“Gaussian Mixture Models”
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Gaussian Mixture Models

* The generative process works as:
= Sample a “latent” z~pg(z) = a categorical distribution over 1, 2, ..., K

= Then sample x~pg (x|z = k) = N (x; us, =)

* The resulting distribution is a “mixture of Gaussians”, whose likelihood is:
Po(x) = z Pe(2)pg(x|z) = z po(z = k)N (x; ug,Zg)

Permits a k—means like “alternating optimization
I procedure”, called “Expectation maximization”
TASAY which approximates the maximum likelihood fit.

Q: What is the form of the likelihood function that

K-Means approximately maximizes?




K-Means — Gaussian Mixture Models

KMeans Iteration: EM lteration:

Clustering with Scikit with GIFs - dashee87.github.io



https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/

GMMs applied to non-spherical clusters
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From GMMs to Variational
Autoencoders



What About Much More
Complex Distributions?

Images, text, audio, etc.?




From GMMs to Variational Autoencoders (VAEs)

* Sample a latent z~N (0, I).

* Then sample x~py(x|z) =
N (x; ug(z),29(2)), where ug(-)
and Xg(-) are deep neural
networks!

" |[n particular, typically one
neural network maps an input z
to output ;-1 4,0j=1,.,q fOr
all data dimensions j

A mixture of infinitely many
gaussians!

GMMs VAEs




From GMMs to Variational Autoencoders (VAEs)

* Sample a latent z~N (0, I).

* Then sample x~py(x|z) =

N(x; ne(2),2g(2)), where g (+)
and Xg(-) are deep neural
networks!

" |[n particular, typically one
neural network maps an input z
to output ;-1 4,0j=1,.,q fOr
all data dimensions j

po() = | Po(@IN (x: 0 (2), 29 () dz

Z

GMMs VAEs




Computing the likelihood Pg(x) under a VAE

pp(x) = j Po(DPo(x12)dz X Exmnigorn(z [P0 (2)po (x12)

Integrating over all z is hard. We can approximate by averaging pg(z)pg(x|z) over some
randomly sampled z4, z5, ..., Zy

1
po() ~ 2 > Pp(z)py(x12)

In reality for high-dimensional problems like generating images, pg(x|z;) is tiny for almost
all values of z, so sampling like this is doomed to fail (requires millions of samples to be a

good approximation to pg(x)).

Would be awfully useful to have access to the distribution p(z|x) of latents corresponding
to a data point x. Then we could just sample z;s from it. But we don’t ...



he

Evidence Lower Bound To Log Likelihood

i o8 di (Z) distribution = e hecradopes Q oo e
l
_ L E l Pe( |x i) _ Kullback-Leibler
08 Po (.X' l) q(z) |108 "~ divergence
log p9 (x ) DKL (ql (Z) | | p@ (Z | xl )) ;Wikipedia, the free encyclopedia
Y Y In mathematical statistics, the Kullback-Leibler (KL)
. . .. . divergence (also called relative entropy and I-
Log likelihood  Positive quantity avergence’ ), denaled D (P | @). 1o 2 e o
statistical distance: a measure of how one reference
robability distribution P is different from a second
LO g | | ke | | h 00 d 2 E L B O E;obabilitill distribution Q.23 Mathematically, it is defined
(=ELBO for q;(2) = pg(z|x;) Dra (P 11@) = Y- Pte) o )

If we maximize this ELBO jointly over 8 and all the g;(+)s, then:
each g; () would naturally approximate the posterior pg(z|x;)!
(Can you see why?)



Expanding the ELBO objective

po (x;, 2)
ELBO = Eq,(z [1 (Z)

pe (2)pg xLIZ)]

log

| Dpo (Z)
= Eq,2) |log (D) + Eg; ) llog pg (x|2)]
l

= —Di.1(q:(2)||ps (Z)) + Eq, () [log pe (x;]2)]

K K )
| |

KL divergence from prior “reconstruction loss”




“Amortized” Variational Inference

* Note that we were optimizing over not just the neural network parameters
0, but also over a separate distribution g;(z) for each training point!

* If q;(2) is even a simple distribution like a diagonal covariance gaussian, this
means 2d parameters for each sample (assuming d-dimensional latents)

* If we train over lots of high-dimensional data points (e.g. images), typically
requiring large latent dimension d), this becomes a problem.

* A simple solution is “amortized” inference. Rather than a look-up table
q;(z) that looks up the appropriate distribution for each training sample i,
we use a heural network with new parameters ¢ to perform this mapping

qi(z) < q¢(z|x;)



Final Form of VAE Often set to V' (0, I)

——
VAE training loss: 2., cp — Dk, (CIgb (z|x;)||pe (Z)) + IFq¢(z|xi)}[108 po (x|z)]
Y
Often approximated with

Reconstructed  ONE Sample during SGD

input

Input <o Ideally they are identical. ------------------ >

X~ x

Sampling new x only

Bottleneck! requires the decoder.
Encoder Decoder
X Z x'
A Po Evaluating P(x) for a
sample? Use the ELBO,

An compressed low dimensional

representation of the input. same as u Sed | N tra | N | ng

objective.

From Autoencoder to Beta-VAE | Lil'Log



https://lilianweng.github.io/posts/2018-08-12-vae/

Lots of models springing from / connected to VAEs

* “Conditional” VAEs (where rather than modeling p(x), we are modeling

p(x|y), e.g. to generate an image conditioned on a text input describing
the image)

* “Vector Quantized” VAEs (where the latent is restricted to be one of a
discrete set of vectors)

* “Diffusion Models” (where there is not one but many levels of latents: z; —
z, = -+ = zr = x, and there is a very specific kind of posterior p(z;|x)
produced by adding noise to x.)



Autoregressive models e.g. the GPT family

Autoregressive models recursively generate the next item (e.g. a word in a
generated sentence), conditioned on the previous output(s):

p(x — [xl'xZJ "'Jxk]) — 1_[ p(xi|x<i)
i=1,....k

(" DECODER
p

Feed Forward Neural Network ‘

Masked Self-Attention
30% 50% 18%
2 robot
-

[TTT]

U

| DECODER ‘
\‘ -

EEEE

<S> a robot must obey the orders given




Applications!



he rest of this slide deck was not covered in class

* These slides are provided here for your reference. They will not be tested
unless covered in a later lecture / homework, and are colored differently to
indicate this.



Data generation in the real world

- e Generate
Pl Generative model
of realistic images

C Generate

“Ace of Pentacles” =——> N —>

Slide courtesy: Stefano Ermon

Generative model

of paintings

F
3 - L Tf\ ’,‘”—g
e e ﬁ" - "
| ]
- A
-/,_ g - -

Stroke paintings to realistic images
[Meng, He, Song, et al., ICLR 2022]

https://chainbreakers.kath.io @RiversHaveWings



https://chainbreakers.kath.io/

Solving inverse problems with generative models

/= Generate
‘ > N é

Generative model
of medical images

Medical image reconstruction
[Song et al., ICLR 2022]

Slide courtesy: Stefano Ermon



Outlier detection with generative models

probability
ME ?ﬂi Generative model

of traffic signs

Outlier detection
[Song et al., ICLR 2018]

Slide courtesy: Stefano Ermon



Progress in Generative Models of Images -- GANs
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2018
lan Goodfellow, 2019

Slide courtesy: Stefano Ermon
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Progress in Generative Models of Images — Diftusion
Models

Ve J
Slide cour? s%/egtef’a%%O c;:rrE]igrs]ed Generative Modeling through Stochastic Differential Equations, 2021



Text2lmage Diffusion Models

User input:

An astronaut riding a horse

Slide courtesy: Stefano Ermon



Text2lmage Diffusion Models

User input:

A perfect Italian meal

Slide courtesy: Stefano Ermon



Text2lmage Diffusion Models

User input:

o RRTF A RAR, YEEERFIRATE AR

A teddy bear, wearing a costume, is standing in front of
the Hall of Supreme Harmony and singing Beijing opera

Slide courtesy: Stefano Ermon



Dalle3

A minimap diorama of a cafe adorned with indoor plants. Wooden
beams crisscross above, and a cold brew station stands out with tiny
bottles and glasses

Slide courtesy: Stefano Ermon



Progress in Inverse Problems

P(high resolution | low resolution) P(full image| mask)
_ e

Liu al, 2018




Progress in Inverse Problems

User input:

Slide courtesy: Stefano Ermon



Progress in Inverse Problems

Stroke-based Editing

Stroke Painting to Image

Slide courtesy: Stefano Ermon



Progress in Inverse Problems

Input Image Edited Image InputImage ~ Edited Image Input Image Edited Image

m

“A bird spreading wings”

“A photo of an open box” BTN photo of a su;tlng dog” - “A ohlldren s drawing of a Wa,terfa.ll”

Kawar et al., 2023

Slide courtesy: Stefano Ermon
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Diffusion Text2Speech

Generative model of speech signals

Betker, Better speech synthesis through scaling 2023
Slide courtesy: Stefano Ermon



Audio Super Resolution

Conditional generative model P(high-res signal | low-res audio signal)

Low res signal

Freguency
Freguency
Freguency

High res audio signal

[ - S i
3 45 50 55 B0 65 70 75 BO 85
Frame Frame Frame

Kuleshov et al., 2017

Slide courtesy: Stefano Ermon



Custom prompt

To get an A+ in deep generative models, students have to

Completion

To get an A+ in deep generative models, students have to be willing to work
with problems that are a whole lot more interesting than, say, the ones that
most students work on in class. If you're a great student, the question above
can be avoided and you'll be able to do great work, but if you're not, you will
need to go beyond the basics before getting good.

Now to be clear, this advice is not just for the deep-learning crowd; it is good
advice for any student who is taking his or her first course in machine
learning.

The key point is that if you have a deep, deep brain of a computer scientist,
that's just as important to you.




Language Generation -- ChatGPT

What should | do to get an A+ in CS236 at Stanford?

To get an A+ in CS236 (Deep Generative Models) at Stanford, you will need to excel.in both your understanding of the material and your performance in assignments and exams. Here
are some general tips to help you achieve this:

1. **Attend Lectures and Engage Actively**: Attend all lectures and actively engage with the material. Take thorough notes, ask questions, and participate in discussions. This will help
you understand the concepts better.

2. **Read the Assigned Material**: Make sure to read the assigned textbooks, papers, and supplementary materials. Understanding the theoretical foundations is crucial.
3. **Stay Organized**: Keep a well-organized notebook or digital notes. This will help you quickly review and understand the material.
4. **Seek Help When Needed**: Don't hesitate to ask questions if you're having trouble with a concept. You can ask the professor, teaching assistants, or classmates for clarification.

5. **Complete Assignments Thoroughly**: Take your time to complete assignments, ensuring you fully understand the requirements and concepts involved. Start early and seek help if
you're stuck. High-quality assignments are often a significant portion of your grade.

6. **Collaborate, but Don't Plagiarize**: Collaboration is often encouraged, but make sure you understand your institution's policy on collaboration and plagiarism. Always give credit
where it's due and submit original work.

15. **Meet with the Professor**: If you're aiming for an A+, consider scheduling meetings with the professor to discuss your progress and seek feedback.

Remember that getting an A+ can be highly competitive, and the specific grading criteria may vary from one course to another and one professor to another. It's essential to
understand the grading policies and expectations of your instructor. Always aim for excellence, but also keep in mind that learning and understanding the material should be your
primary goal. Good luck!

Slide courtesy: Stefano Ermon



<end>




Code Generation

@ pdarse_expenses.py
import datetime

def parse_expenses(expenses_string):
"""Parse the list of expenses and return the list of triples (date, v#
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OpenAl Codex
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Video Generation

Suddenly, the walls of the embankment
broke and there was a huge flood

Slide courtesy: Stefano Ermon



Video Generation

a couple sledding down a snowy hill on a tire
roman chariot style

Slide courtesy: Stefano Ermon



Video Generation

Slide courtesy: Stefano Ermon



Imitation Learning

Conditional generative model P(actions | past observations)

— =
=
L]

Janner et al., 2022

Slide courtesy: Stefano Ermon Li et al., 2017
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Molecule generation

Slide courtesy: Stefano Ermon



DeepFakes

Which image is real?

User

@StefanoErmon

Slide courtesy: Stefano Ermon



DeepFakes
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