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An Introduction to Generative Models
Or Unsupervised Learning Part 3
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Introduction

Richard Feynman: “What I cannot create, I do not understand”

Generative modeling: “What I understand, I can create”
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A statistical generative model is a probability distribution 𝑃!(𝑥)
§ Data: samples (e.g., images of bedrooms)
§ Prior knowledge: parametric form (e.g., Gaussian?), loss function 

(e.g., maximum likelihood?), optimization algorithm, etc.

It is generative because sampling from 𝑃!(𝑥) generates new images

Statistical Generative Models
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scalar probability 𝑃!(𝑥)
A probability 
distribution
𝑃!(𝑥)

Image x

…
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Building a simulator for the data generating process

𝑃!(𝑥) Data

Slide courtesy: Stefano Ermon 



Building a simulator for the data generating process

𝑃!(𝑥) New datapointsControl signals
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Building a simulator for the data generating process

𝑃!(𝑥)

Potential datapoints Probability values

New datapointsControl signals
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Building a simulator for the data generating process

𝑃!(𝑥)
=Statistical model

Potential datapoints Probability values

New datapointsControl signals
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Building a simulator for the data generating process

𝑃!(𝑥)
=Statistical model

=Generative model
Potential datapoints Probability values

New datapointsControl signals
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Building a simulator for the data generating process

Generative model 𝑃!(𝑥)
Potential datapoints Probability values

New datapointsControl signals
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We Have Already Seen 
Generative Models In Disguise!



We want parameters 𝜃 such that model 𝑃!(𝑥) assigns high probabilities to 
samples from the training data distribution, and low values to samples that 
are not in the data distribution.

Generative model 𝑃!(𝑥)
Potential datapoints Probability values

New datapointsControl signals
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Fit data distribution to data
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A Simple Generative Model: Fit A Gaussian Density

Suppose we are modeling a dataset 𝒟 = 𝑥", 𝑥#, 𝑥$, … , 𝑥% , 𝑥& ∈ ℝ'

Suppose we select the gaussian family as our model class:
 𝑃! 𝑥 = 𝒩 𝑥; 𝜇 = 𝜃", Σ = 𝜃#

Then we could fit parameters 𝜃" and 𝜃# to as:

𝜃∗ = argmax
!

5
&)"…%

𝑃!(𝑥&) = argmax
!

6
&)"…%

log 𝑃!(𝑥&)

These work out to: 
𝜃" = 𝑚𝑒𝑎𝑛 𝑥", … , 𝑥% , 𝜃# = 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑥", … , 𝑥%

Q: Can you show this to be true?

This is a “maximum likelihood” objective!

Image: Visualizing the Bivariate Gaussian Distribution in Python - GeeksforGeeks

https://www.geeksforgeeks.org/visualizing-the-bivariate-gaussian-distribution-in-python/


Modeling More Complex Data Distributions?

Clustering with Scikit with GIFs - dashee87.github.io

https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/


Recap: K-Means Clustering
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K-Means (𝐾	, 𝑋)
• Randomly choose K cluster 

center locations (centroids)
• Loop until convergence, do:

• Assign each point to the cluster 
of the closest centroid

• Re-estimate the cluster 
centroids based on the data 
assigned to each cluster

K-means finds a local optimum of 
the following objective function:

argmin
𝑺
6
,)"

-

6
𝒙∈0!

𝒙 − 𝝁- #
#

where 𝑺 = 𝑆", … , 𝑆-  are sets 
corresponding to disjoint clusters, 
and the clusters together include 
all samples.

“Sum of squared distances” 
loss function

Optimizer: 
“Alternating Minimization”



Recap: K-Means Clustering Convergence

https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/

https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/


From K-Means to GMMs



K-Means on Non-Spherical Clusters?

https://amueller.github.io/aml/03-unsupervised-learning/02-clustering-mixture-models.html



“Gaussian Mixture Models”



Gaussian Mixture Models

• The generative process works as:
§ Sample a “latent” 𝑧~𝑝! 𝑧 = a categorical distribution over 1, 2, …, K
§ Then sample 𝑥~𝑝! 𝑥 𝑧 = 𝑘 = 𝒩(𝑥;	𝜇!

, , Σ!
,)

• The resulting distribution is a “mixture of Gaussians”, whose likelihood is:

𝑝! 𝑥 = 6
1)",…,-

𝑝! 𝑧 𝑝! 𝑥 𝑧 = 6
,)"

-

𝑝! 𝑧 = 𝑘 𝒩(𝑥;	𝜇!
, , Σ!

,)

Permits a k-means-like “alternating optimization 
procedure”, called “Expectation maximization” 

which approximates the maximum likelihood fit.
Q: What is the form of the likelihood function that 

K-Means approximately maximizes?



K-Means → Gaussian Mixture Models

Clustering with Scikit with GIFs - dashee87.github.io

https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/


GMMs applied to non-spherical clusters



From GMMs to Variational 
Autoencoders



What About Much More 
Complex Distributions?
Images, text, audio, etc.?



From GMMs to Variational Autoencoders (VAEs)

• Sample a latent 𝑧~𝒩(0, 𝐼). 
• Then sample 𝑥~𝑝! 𝑥 𝑧 =
𝒩(𝑥;	𝜇! 𝑧 , Σ! 𝑧 ), where 𝜇!(⋅) 
and	Σ!(⋅) are deep neural 
networks!
§ In particular, typically one 

neural network maps an input 𝑧 
to output  𝜇3)",…,' , 𝜎3)",…,'  for 
all data dimensions 𝑗

• Sample a “latent” 𝑧~𝑝! 𝑧 = a 
categorical distribution over 1, 2, 
…, K
• Then sample 𝑥~𝑝! 𝑥 𝑧 = 𝑘 =
𝒩(𝑥;	𝜇!

, , Σ!
,)

A mixture of infinitely many 
gaussians!

GMMs VAEs



From GMMs to Variational Autoencoders (VAEs)

• Sample a latent 𝑧~𝒩(0, 𝐼). 
• Then sample 𝑥~𝑝! 𝑥 𝑧 =
𝒩(𝑥;	𝜇! 𝑧 , Σ! 𝑧 ), where 𝜇!(⋅) 
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networks!
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…, K
• Then sample 𝑥~𝑝! 𝑥 𝑧 = 𝑘 =
𝒩(𝑥;	𝜇!

, , Σ!
,)

𝑝! 𝑥 = '
"#$

%

𝑝! 𝑧 = 𝑘 𝒩(𝑥;	𝜇!
", Σ!

") 𝑝! 𝑥 = 0
&
𝑝! 𝑧 𝒩 𝑥; 𝜇! 𝑧 , Σ! 𝑧 𝑑𝑧

GMMs VAEs



Computing the likelihood 𝑷𝜽(𝒙) under a VAE

𝑝! 𝑥 = 0
&~𝒵

𝑝! 𝑧 𝑝!(𝑥|𝑧)𝑑𝑧 ∝ 𝔼&~)*+,-./ 𝒵 𝑝! 𝑧 𝑝!(𝑥|𝑧)

Integrating over all 𝑧 is hard. We can approximate by averaging 𝑝! 𝑧 𝑝!(𝑥|𝑧) over some 
randomly sampled 𝑧$, 𝑧0, … , 𝑧1

𝑝! 𝑥 ≈
1
𝑀
'
+

𝑝! 𝑧+ 𝑝!(𝑥|𝑧+)

In reality for high-dimensional problems like generating images, 𝑝!(𝑥|𝑧+) is tiny for almost 
all values of z, so sampling like this is doomed to fail (requires millions of samples to be a 
good approximation to 𝑝!(𝑥)). 

Would be awfully useful to have access to the distribution 𝑝(𝑧|𝑥) of latents corresponding 
to a data point 𝑥. Then we could just sample 𝑧+s from it. But we don’t …



The Evidence Lower Bound To Log Likelihood

𝔼4"(1) log
𝑝!(𝑥& , 𝑧)
𝑞&(𝑧)

= log 𝑝!(𝑥&) + 𝔼4(1) log
𝑝!(𝑧|𝑥&)
𝑞&(𝑧)

= log 𝑝!(𝑥&) − 𝐷-7(𝑞&(𝑧)||𝑝! 𝑧 𝑥& )

Log likelihood Positive quantity

“ELBO”

Log likelihood ≥ ELBO
(=ELBO for 𝑞& 𝑧 = 𝑝!(𝑧|𝑥&)

If we maximize this ELBO jointly over 𝜃 and all the 𝑞& ⋅ s, then:
 each 𝑞&(⋅) would naturally approximate the posterior 𝑝!(𝑧|𝑥&)!

(Can you see why?)

Any arbitrary 
distribution



Expanding the ELBO objective

ELBO = 𝔼4"(1) log
𝑝!(𝑥& , 𝑧)
𝑞&(𝑧)

= 𝔼4"(1) log
𝑝! 𝑧 𝑝!(𝑥&|𝑧)

𝑞&(𝑧)

= 𝔼4"(1) log
𝑝! 𝑧
𝑞&(𝑧)

+ 𝔼4"(1) log 𝑝! 𝑥&|𝑧

= −𝐷-7(𝑞&(𝑧)| 𝑝! 𝑧 + 𝔼4"(1) log 𝑝! 𝑥&|𝑧

“reconstruction loss”KL divergence from prior



“Amortized” Variational Inference

• Note that we were optimizing over not just the neural network parameters 
𝜃, but also over a separate distribution 𝑞&(𝑧) for each training point!
• If 𝑞&(𝑧) is even a simple distribution like a diagonal covariance gaussian, this 

means 2𝑑 parameters for each sample (assuming 𝑑-dimensional latents)
• If we train over lots of high-dimensional data points (e.g. images), typically 

requiring large latent dimension d), this becomes a problem.
• A simple solution is “amortized” inference. Rather than a look-up table 
𝑞&(𝑧) that looks up the appropriate distribution for each training sample 𝑖, 
we use a neural network with new parameters 𝜙 to perform this mapping 
𝑞& 𝑧 ← 𝑞8(𝑧|𝑥&)



Final Form of VAE

VAE training loss: ∑9"∈𝒟−𝐷-7 𝑞8(𝑧|𝑥&)||𝑝! 𝑧 + 𝔼4#(1|9") log 𝑝! 𝑥&|𝑧  

𝑞8 𝑝!

From Autoencoder to Beta-VAE | Lil'Log

Sampling new 𝑥 only 
requires the decoder.

Evaluating 𝑃(𝑥) for a 
sample? Use the ELBO, 

same as used in training 
objective.

Often set to 𝒩(0, 𝐼)

Often approximated with 
one sample during SGD

https://lilianweng.github.io/posts/2018-08-12-vae/


Lots of models springing from / connected to VAEs 

• “Conditional” VAEs (where rather than modeling 𝑝(𝑥), we are modeling 
𝑝 𝑥 𝑦 , e.g. to generate an image conditioned on a text input describing 
the image)

• “Vector Quantized” VAEs (where the latent is restricted to be one of a 
discrete set of vectors)

• “Diffusion Models” (where there is not one but many levels of latents: 𝑧" →
𝑧# → ⋯ → 𝑧< = 𝑥, and there is a very specific kind of posterior 𝑝(𝑧&|𝑥) 
produced by adding noise to 𝑥.)

• …



Autoregressive models e.g. the GPT family

Autoregressive models recursively generate the next item (e.g. a word in a 
generated sentence), conditioned on the previous output(s): 

𝑝 𝑥 = [𝑥", 𝑥#, … , 𝑥,] = 5
&)",…,,

𝑝(𝑥&|𝑥=&)	



Applications!
Pretty Pictures and Beyond



The rest of this slide deck was not covered in class

• These slides are provided here for your reference. They will not be tested 
unless covered in a later lecture / homework, and are colored differently to 
indicate this. 



Data generation in the real world

Generate

Stroke paintings to realistic images
[Meng, He, Song, et al., ICLR 2022]

“Ace of Pentacles”

Language-guided artwork creation
https://chainbreakers.kath.io  @RiversHaveWings

Generate

Generative model 
of realistic images

Generative model 
of paintings

Slide courtesy: Stefano Ermon 

https://chainbreakers.kath.io/


Solving inverse problems with generative models

Medical image reconstruction
[Song et al., ICLR 2022]

Generate

Generative model 
of medical images
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Outlier detection with generative models

Outlier detection
[Song et al., ICLR 2018]

Generative model 
of traffic signs

High 
probability

Low 
probability
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Progress in Generative Models of Images -- GANs

Ian Goodfellow, 2019 
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Progress in Generative Models of Images – Diffusion 
Models

Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, 2021 
44Slide courtesy: Stefano Ermon 



Text2Image Diffusion Models
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User input:

An astronaut riding a horse

Slide courtesy: Stefano Ermon 



Text2Image Diffusion Models
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User input:

A perfect Italian meal

Slide courtesy: Stefano Ermon 



Text2Image Diffusion Models
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User input:

Slide courtesy: Stefano Ermon 



Dalle3

A minimap diorama of a cafe adorned with indoor plants. Wooden 
beams crisscross above, and a cold brew station stands out with tiny 
bottles and glasses

Slide courtesy: Stefano Ermon 



Menon et al, 2020 Liu al, 2018

Antic, 2020

Progress in Inverse Problems
P(high resolution | low resolution) P(full image| mask)

P(color image| greyscale)
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Progress in Inverse Problems

User input:

Slide courtesy: Stefano Ermon 



Progress in Inverse Problems
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Progress in Inverse Problems

Kawar et al., 2023

Slide courtesy: Stefano Ermon 



WaveNet

Generative model of speech signals

van den Oord et al, 2016c

Parametric

Concatenative

WaveNet

Unconditional

Text to Speech

Music
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Diffusion Text2Speech

Generative model of speech signals

Betker, Better speech synthesis through scaling 2023
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Audio Super Resolution
Conditional generative model  P(high-res signal | low-res audio signal)

Low res signal

High res audio signal

Kuleshov et al., 2017
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Language Generation

Radford et al., 2019
Demo from talktotransformer.comP(next word | previous words)

Slide courtesy: Stefano Ermon 



Language Generation -- ChatGPT

To get an A+ in CS236 (Deep Generative Models) at Stanford, you will need to excel in both your understanding of the material and your performance in assignments and exams. Here 
are some general tips to help you achieve this:

1. **Attend Lectures and Engage Actively**: Attend all lectures and actively engage with the material. Take thorough notes, ask questions, and participate in discussions. This will help 
you understand the concepts better.

2. **Read the Assigned Material**: Make sure to read the assigned textbooks, papers, and supplementary materials. Understanding the theoretical foundations is crucial.

3. **Stay Organized**: Keep a well-organized notebook or digital notes. This will help you quickly review and understand the material.

4. **Seek Help When Needed**: Don't hesitate to ask questions if you're having trouble with a concept. You can ask the professor, teaching assistants, or classmates for clarification.

5. **Complete Assignments Thoroughly**: Take your time to complete assignments, ensuring you fully understand the requirements and concepts involved. Start early and seek help if 
you're stuck. High-quality assignments are often a significant portion of your grade.

6. **Collaborate, but Don't Plagiarize**: Collaboration is often encouraged, but make sure you understand your institution's policy on collaboration and plagiarism. Always give credit 
where it's due and submit original work.

…

15. **Meet with the Professor**: If you're aiming for an A+, consider scheduling meetings with the professor to discuss your progress and seek feedback.

Remember that getting an A+ can be highly competitive, and the specific grading criteria may vary from one course to another and one professor to another. It's essential to 
understand the grading policies and expectations of your instructor. Always aim for excellence, but also keep in mind that learning and understanding the material should be your 
primary goal. Good luck!
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Machine Translation

Conditional generative model  P( English text| Chinese text)
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Figure from Google AI research blog.

Slide courtesy: Stefano Ermon 



Code Generation

OpenAI Codex
Slide courtesy: Stefano Ermon 



Video Generation

Suddenly, the walls of the embankment 
broke and there was a huge flood

Slide courtesy: Stefano Ermon 



Video Generation

a couple sledding down a snowy hill on a tire 
roman chariot style

Slide courtesy: Stefano Ermon 



Video Generation
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Imitation Learning

Li et al., 2017 64

Conditional generative model  P(actions | past observations)

Janner et al., 2022 
Slide courtesy: Stefano Ermon 



Molecule generation
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DeepFakes

Which image is real?
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DeepFakes
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