
CIS 4190/5190 Final Exam

Version A

December 22, 2022

Instructions

• Write your answers on paper with a pen. Write your name, section number (4190
or 5190), and exam version (shown above) prominently on the first page of your
answers at the top left.

• No devices or cheat sheet(s) are allowed.

• The exam contains 11 questions, with 80 points total. Questions 1-7 are short answer,
and 8-11 are more involved.

• Each point should take approximately 1-2 minutes; if you find yourself spending too
much time on one problem, move on and come back to it.

• At the end of 2 hours, you will put down your pens and submit your exam.

Good luck!



1. (12 pts) Consider the following 2D binary classification datasets:

(A) (B) (C)

For each of the following model families, indicate which of the above datasets can be
perfectly classified by some model in the model family.

(a) (3 pts) Logistic regression A

(b) (3 pts) Logistic regression over features ϕ(x) =
[
1 x1 |x1| x2

]⊤
A, B

(c) (3 pts) A decision tree with axis aligned splits—i.e., xi ≤ t, where i ∈ {1, 2} is a
feature index and t ∈ R is a real-valued threshold. C

(d) (3 pts) Decision tree has oblique splits—i.e., a1x1 + a2x2 ≤ t, for some a1, a2, t ∈ R.
A, B, C

2. (4 pts) Consider the following 2D datasets:

(A) (B) (C)

Note that in (C), the points lie on a line. Suppose we run PCA, take only the top principal
component, and use it to compress the data.

(a) (1 pt) Which dataset will have the highest reconstruction error? A

(b) (1 pts) Which dataset will have the lowest reconstruction error? C

(c) (2 pts) For your answer to part (b), what is its reconstruction error? 0



3. (4 pts) Suppose we use k-means clustering for binary classification as follows. Given a
labeled dataset {(xi, yi)}ni=1, where xi ∈ Rd and yi ∈ {0, 1}, we first use k-means clustering
to compute centroids x(1), ..., x(k) ∈ Rd. Then, for each cluster j ∈ {1, ..., k}, we compute
the fraction of training examples with positive labels in that cluster:

y(j) =

∑n
i=1 1(ki = j) · yi∑n

i=1 1(ki = j)
,

where ki = argminj∈{1,...,k} ∥xi − x(j)∥22 is the cluster assigned to xi.

(a) (1 pt) If k = 1, what does the resulting model family look like? (In other words,
what functions are possible across all possible datasets?) Constant function

(b) (1 pt) If k →∞, what does the resulting model family look like? Arbitrary function

(c) (2 pt) Does increasing k increase, decrease, or not affect variance? Increases

4. (8 pts) Let ϕ1 and ϕ2 be two feature maps over inputs x ∈ Rd, and consider the linear
regression models β⊤

1 ϕ1(x) and β⊤
2 ϕ2(x) corresponding to ϕ1 and ϕ2, respectively. For

each of the following, can the variance of β⊤
1 ϕ1(x) be higher than, lower than, or either

higher than or lower than that of β⊤
2 ϕ2(x)? Indicate all possibilities. Unless otherwise

specified, assume no regularization.

(a) (1 pt) ϕ1 has strictly more features than ϕ2. [Hint: What if the features in ϕ1 are
all the same?] either

(b) (1 pt) The features in ϕ1 are a strict superset of those in ϕ2 (e.g., ϕ2 consists of
quadratic features, and ϕ1 consists of quadratic features and some others). higher

(c) (1 pt) ϕ1 and ϕ2 contain exactly the same features, and we use L2 regularization for
β⊤
1 ϕ1(x) but not for β

⊤
2 ϕ2(x). lower

(d) (1 pt) The features in ϕ1 are a strict superset of those in ϕ2, and we use L2 regular-
ization for β⊤

1 ϕ1(x) but not for β
⊤
2 ϕ2(x). either

(e) (2 pts) We construct ϕ1(x) by using principal components analysis on the training
inputs {xi}ni=1, and taking the projection onto the top k components. We construct
ϕ2 similarly, but take the top k′ components, where k′ < k. higher

(f) (2 pts) We take ϕ1(x) to be a bag of words model (i.e., each feature is an indicator
(ϕ1(x))i = 1(wi ∈ x) of whether word wi is in sentence x), and take ϕ2(x) to be
bigram model (i.e., each feature is an indicator (ϕ2(x))i = 1(wiw

′
i ∈ x) of whether

words wi and w′
i occur sequentially in sentence x). lower

5. (4 pts) Suppose we use AdaBoost to train an ensemble of logistic regression models over a
feature map ϕ. For each of the following hyperparameters, indicate whether increasing it
tends to increase or decrease variance (you should give exactly one answer for each part).

(a) (1 pt) The number of T iterations of AdaBoost (equivalently, the number of base
models in the final ensemble) increases



(b) (1 pt) Assuming we use L2 regularization, the magnitude of λ (recall that the regu-
larization term is λ · ∥β∥22, where β are the logistic regression parameters) decreases

(c) (1 pt) The number of training examples n (i.e., the training dataset is {(xi, yi)}ni=1)
decreases

(d) (1 pt) The number of features d (i.e., each feature vector is ϕ(x) ∈ Rd) increases

6. (4 pts) For which of the following algorithms is optimization perfect—i.e., the standard
optimizer is guaranteed to find the model that globally minimizes the loss function?

(a) (1 pt) Logistic regression, if the loss is the NLL (a.k.a. cross-entropy loss) yes

(b) (1 pt) Logistic regression, if the loss is the accuracy no

(c) (1 pt) Neural network with one hidden layer, if the loss is the NLL no

(d) (1 pt) k-means clustering, if the loss is the squared distance to the centroid repre-
senting each point, averaged over points no

7. (4 pts) Consider a logistic regression model, which has likelihood function

pθ(Y = y | X = x) =

{
σ(θ⊤x) if y = 1

1− σ(θ⊤x) if y = 0,

where σ(z) = 1
1+e−z is the sigmoid function. Suppose we have already fit the parameters θ,

and we want to rescale the predicted probabilities. One strategy for doing so is temperature
scaling, where we introduce an additional real-valued parameter β ∈ R, and consider

pβ(Y = y | X = x) =

{
σ(β · θ⊤x) if y = 1

1− σ(β · θ⊤x) if y = 0.

(a) (2 pts) What happens to the classification boundary if we take β → 0 (i.e., very
small but not quite zero)? What happens to the predicted probabilities (i.e., what
values can they take)? Classification boundary does not change, probabilities→ 1/2

(b) (2 pts) What happens to the classification boundary if we take β → ∞? What
happens to the predicted probabilities? Classification boundary does not change,
probabilities → 0 or → 1 (just → 1 is fine)

8. (10 pts) Consider a neural network with one hidden layer:

fW (x) =

[
1
1

]⊤
σ

([
W11 W12

W21 W22

] [
x1

x2

])
,

where σ(z) is some nonlinear function. Note that

fW (x) = σ(W11x1 +W12x2) + σ(W21x1 +W22x2).



(a) (4 pts) What is the gradient ∇WfW (x)? In particular, compute each partial deriva-
tive ∂

∂Wij
fW (x); then, the gradient is

∇WfW (x) =

[ ∂
∂W11

fW (x) ∂
∂W12

fW (x)
∂

∂W21
fW (x) ∂

∂W22
fW (x)

]
.

You can leave your answer in terms of σ(z) and σ′(z) = ∂
∂z
σ(z). We have

∇WfW (x) =

[
σ′(W11x1 +W12x2)x1 σ′(W11x1 +W12x2)x2

σ′(W21x1 +W22x2)x1 σ′(W21x1 +W22x2)x2

]

(b) (2 pts) What is the gradient ∇WL(W ;x, y) of the loss L(W ;x, y) = (fW (x) − y)2?
You do not need to expand fW (x) (but you should expand ∇WfW (x)). We have

∇WL(W ;x, y) = 2(fW (x)− y)∇WfW (x)

= 2(fW (x)− y)

[
σ′(W11x1 +W12x2)x1 σ′(W11x1 +W12x2)x2

σ′(W21x1 +W22x2)x1 σ′(W21x1 +W22x2)x2

]

(c) (2 pts) Suppose the parameters satisfy W11 = W21 and W12 = W22. After one step
gradient descent (with learning rate η), do these equalities still hold? In other words,
recalling that the gradient descent update rule is

W ′ ← W − η · ∇WL(W ;x, y),

where η ∈ R>0 is the learning rate, show that W ′
11 = W ′

21 and W ′
12 = W ′

22. Note that
the updated weights are[
W ′

11 W ′
12

W ′
21 W ′

22

]
=

[
W11 W12

W21 W22

]
− η · 2(fW (x)− y)

[
σ′(W11x1 +W12x2)x1 σ′(W11x1 +W12x2)x2

σ′(W21x1 +W22x2)x1 σ′(W21x1 +W22x2)x2

]
=

[
W11 W12

W11 W12

]
− η · 2(fW (x)− y)

[
σ′(W11x1 +W12x2)x1 σ′(W11x1 +W12x2)x2

σ′(W11x1 +W12x2)x1 σ′(W11x1 +W12x2)x2

]
Thus, we have W ′

11 = W ′
21 and W ′

12 = W ′
22.

(d) (2 pts) Based on your answer, briefly explain why initializing the weight matrix to
zero (i.e., W11 = W12 = W21 = W22 = 0) is a bad idea. We always have W11 = W21

and W12 = W22, so the neural network effectively has half as many parameters.

9. (10 pts) Consider two binary random variables X1, X2.

(a) (3 pts) There are three possible Bayesian networks over these two random variables;
draw all three of them. We have X1 → X2, X2 → X1, and X1 X2

(b) (3 pt) For each possible Bayesian network, indicate whether it can represent joint
distributions of the form p(X1 = x1, X2 = x2) = p(X1 = x1)p(X2 = x2). All three of
them can



(c) (3 pt) For each possible Bayesian network, indicate whether it can represent an
arbitrary joint distribution p(X1 = x1, X2 = x2). Only X1 → X2 and X2 → X1

(d) (1 pt) We say two Bayesian networks are equivalent if they can represent exactly
the same class (a.k.a. subset) of possible joint distributions. Indicate which pairs of
Bayesian networks you drew are equivalent. X1 → X2 and X2 → X1 are equivalent.

10. (10 pts) In class, we learned that recurrent neural networks (RNNs) can be viewed as
reusing the same parameter across layers. In this problem, we will examine the gradients
of RNNs via a toy example.

(a) (4 pts) Consider a neural network y = fθ(x), where x ∈ R, y ∈ R, and θ ∈ R2, where

fθ(x) = θ2σ(θ1x),

for some nonlinear function σ(z). What is the gradient∇θfθ(x) =
[

∂
∂θ1

fθ(x)
∂

∂θ2
fθ(x)

]⊤
?

You can leave your answer in terms of σ and σ′, where σ′(z) = ∂
∂z
(z). We have

∇θfθ(x) =

[
θ2σ

′(θ1x)x
σ(θ1x)

]

(b) (4 pts) Consider a neural network y = hβ(x), where x ∈ R, y ∈ R, and β ∈ R, where

hβ(x) = βσ(βx),

with σ is as before. What is the gradient ∇βhβ(x) =
∂
∂β
hβ(x)? We have

∇βhβ(x) = βσ′(βx)x+ σ(βx)

(c) (2 pts) Note that letting θ =
[
β β

]⊤
, then we have hβ(x) = fθ(x). Using this

fact, express the gradient ∇βhβ(x) in terms of ∇θfθ(x). [Hint: Use the chain rule
to compute ∂

∂β
f[β β]⊤(x).] Check to make sure your answer is consistent with the

previous parts! We have

∇βhβ(x) =
∂

∂β
f[β β]⊤(x) =

∂

∂β

[
β
β

]⊤
∇θfθ(x)

=

[
1
1

]⊤
∇θfθ(x)



11. (10 pts) Consider the following Markov decision process with states S = {s1, s2, ..., sn}
and actions

A = {a1 = move left, a2 = move right}.

The transitions are deterministic: Suppose the agent is currently in state si. Then, taking
action a1 transitions the agent to state si−1 (unless i = 1, in which case it stays in s1),
and taking a2 transitions it to si+1 (unless i = n, in which case it stays in sn). Finally,
the rewards are

R(si) =


1 if i = 1

0 if i ∈ {2, 3, ..., n− 1}
n+ 10 if i = n,

the discount factor is γ = 1, the time horizon is T = n, and the initial state is s1. Suppose
we are running a reinforcement learning algorithm, and it knows all the MDP transitions,
as well as the rewards for all states except sn.

(a) (2 pts) Write down the optimal policy—i.e., the action π∗(si) ∈ A to take for each
i. What is its cumulative expected reward? π(s) = a2 for all s, cumulative reward
of n+ 11

(b) (2 pts) Suppose we act randomly in this MDP—i.e., choose action a ∼ Uniform({a1, a2})
i.i.d. on each step. What is the probability of reaching state sn (from initial state
s1) in a single rollout within the time horizon? (1/2)n−1 (give one point for (1/2)n)

(c) (2 pts) Suppose that our current estimate the reward of sn to be R(sn) = 0. Write
down the optimal policy π̂(si) ∈ A for each i for this estimate. π(si) = a1

(d) (2 pts) Recall that an ϵ-greedy policy acts randomly with probability ϵ and optimally
based on the current estimate (given in part (c)) with probability 1− ϵ. What is the
probability that an ϵ-greedy policy based on π̂ reaches sn (from initial state s1) in a
single rollout within the time horizon? (ϵ/2)n−1 (give one point for (ϵ/2)n)

(e) (2 pts) Based on your above answers, briefly explain why random exploration (in-
cluding ϵ-greedy) will perform poorly for learning the unknown reward R(sn). The
probability of exploring state sn is exponentially small.


