
CIS 4190/5190: Lec 17 Mon Nov 04,
2024

Reinforcement Learning Part 1

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

Machine Learning Systems Make Decisions

• ML systems make decisions, broadly speaking. For example:
§ A spam classifier might decide whether to place an email in your inbox

or spam.
§ ML-based credit scoring in a financial institution might decide whether

to approve a loan application.

• In these and all the settings we have considered so far, the ML system
makes a one-time decision.
§ For each loan application or each email, the system would make an

independent decision. There is no reason to be influenced by the
previous decision.

What if we need to make a series of interconnected decisions over time?

Problem Setting: Sequential Decision Making

● The decision-making “agent” must
make a series of interconnected
decisions that affect each other. The
outcome of one decision affects the
future decision-making process.

● Performance score is typically a
function of the full sequence of states
and decisions.

Problem Setting: Sequential Decision Making
Must make a sequence of decisions to

maximize some success measure/”reward”,
which is a cumulative effect of the full sequence.

Actions 𝒂𝒕: muscle contractions
State 𝒔𝒕: sight, smell
Reward 𝒓𝒕: food

motor current or torque
camera images
average speed

what to purchase
inventory levels
profit

“Policies” for Sequential Decision Making

For any input state of the system, the ML model maps it to a decision.

• This motivates the following input-output structure of the model:
§ Input: state observation, like sight and smell for the dog.
§ Output: actions, like muscle contractions.

This mapping from input states to a probability distribution over output
actions (or sometimes just a single deterministic action) is called a decision-
making “policy”, often denoted 𝜋.

RL: Learning Through Trial and Error

The aim of RL is to learn to make sequential decisions in an environment:

• Driving a car

• Cooking

• Playing a videogame

• Controlling a power plant

• Riding a bicycle

• Making movie recommendations

• Navigating a webpage

• Treating a trauma patient

How does an RL agent learn to do these things?
• Very little needs to be known about the task in advance.
• Assume only occasional feedback, such as a tasty meal, or a car crash, or

video game points.
• Learn through trial and error.

6

https://www.youtube.com/@aiwarehouse

A.I. Learns to Drive From Scratch in Trackmania - YouTube

https://www.youtube.com/watch?v=SX08NT55YhA&ab_channel=Yosh

action at

state st

reward rt

The Standard Reinforcement Learning Interface

• Agent receives observations (state st
Î S) and feedback (reward rt) from
the “environment”
• Agent takes action at Î A
• Agent receives updated state st+1 and

reward rt+1

• Agent’s goal is to maximize, loosely speaking,
“expected rewards in the future”.

Goal of RL is to learn a policy 𝜋 𝑠 : 𝑆 → 𝐴 for acting in the environment

Image: https://robots.ieee.org/robots/pr2/

rt+1

st+1

environment

States might have to be
estimated, e.g., from images

e.g. state 𝑠$ = robot pose, action 𝑎$= motor torques, 𝑟$= running speed
9

agent

https://robots.ieee.org/robots/pr2/

The Environment as a Markov Decision Process (MDP)

Image: https://towardsdatascience.com/reinforcement-learning-
demystified-markov-decision-processes-part-1-bf00dda41690

An MDP (𝑆, 𝐴, 𝑃, 𝑅, 𝛾) is defined by:
• Set of states 𝑠 ∈ 𝑆
• Set of actions 𝑎 ∈ 	𝐴
• Transition function 𝑃 𝑠$%&	 𝑠$, 𝑎$)

oProbability 𝑃(𝑠’	|	𝑠, 𝑎) that 𝑎 from 𝑠 leads to 𝑠!

oAlso “dynamics model” / just “model”
• Reward function 𝑟$ = 	𝑅	(𝑠$, 𝑎$, 𝑠$%&)
• Discount factor 𝛾 < 1, expressing how much we care

about the future (vs. immediate rewards)
• “utility” = discounted sum of future rewards ∑$ 𝛾

$ 𝑟$%&
• Goal: find a "policy” 𝜋 such that its actions 𝑎$ = 𝜋(𝑠$)

maximize utility in expectation
In RL , we assume no knowledge of the true functions 𝑃(⋅) or 𝑅(⋅)

10

Example

Unknown to agent

https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690
https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690

Entering An Unknown Gridworld
In the shoes of an RL agent

Sample RL environment: Grid World
• The agent’s state is one cell 𝑠 = (𝑥, 𝑦) within the

grid 𝑥 ∈ {1,2,3,4} and 𝑦 ∈ {1,2,3}.
• The agent can execute 4 actions: 𝑎 =“W”, “E”, “S”,

“N”
For the moment, this is all that that the RL agent
knows about the environment. In particular, it does
not know:
- 𝑃(𝑠’|𝑠, 𝑎)

- Which cell would it move to, if it executes an
action from a cell? (e.g. 𝑎 =“N” from s = (1, 2))

- The result might even be non-deterministic.
- 𝑅 𝑠, 𝑎, 𝑠!

- What is the instantaneous reward it would get if
it moved from s = 1,2 to s! = (1,3) by
executing action 𝑎 =“N”?

Based on slide by Dan Klein 19

A random trajectory of an RL agent

s=(1,1)

Time t=1

Action= “N”

A random trajectory of an RL agent

s=(1,1)
Action= “N”

s’=(1,2)
Reward = -0.03

Time t=1

Time step t=1 over

A random trajectory of an RL agent

s=(1,2)
Action= “N”

s’=?
Reward = ?

Time t=2

A random trajectory of an RL agent

s=(1,2)
Action= “N”

s’=(1,2)
Reward = -0.03

Time t=2

Time step t=2 over

A random trajectory of an RL agent

s=(1,2)
Action= “N”

s’=?
Reward = ?

Time t=3

A random trajectory of an RL agent

Time step t=3 over

Time t=3

s=(1,2)
Action= “N”

s’=(1,3)
Reward = -0.03

A random trajectory of an RL agent

Time t=4 s=(1,3)
Action= “N”

s’=(2,3)
Reward = -0.03

Time step t=4 over

A random trajectory of an RL agent

Time t=5

Time step t=5 over

s=(2,3)
Action= “E”

s’=(3,3)
Reward = -0.03

A random trajectory of an RL agent

s=(3,3)
Action= “E”

s’=(4,3)
Reward = -0.03

Time t=6

Time step t=6 over

A random trajectory of an RL agent

s=(4,3)
Action= “N”

s’= special state “END”
Reward = +1

One “episode”/“trial” of our “episodic task” is over.

Next, the agent respawns in the environment. “Reset”

END

Reset

s=(2,1)
Action=?

s’= ?
Reward = ?

Another episode begins!

Note that we have started at a different point in the grid than last time.
In addition to 𝑆, 𝐴, 𝑃, 𝑅, 𝛾 , there may also be an “initial state probability

distribution” 𝜇 over states that the agent is spawned into.

So, can we maximize rewards in this environment?

• What have we learned about this environment after having acquired this
experience?
§ Do we know something about 𝑃, 𝑅?
§ Do we know how to act optimally now?

We have learned some things, but there is still far too much ambiguity.

Perhaps with more experience …

Provided sufficient experience, RL algorithms can learn optimal policies!

Gridworld Revealed

Behind The Scenes: The Full Environment
• A grid map with solid / open cells. Agent moves between open cells.

• From terminal states (4,3) and (4,2), any action ends the episode,
and results in a +1/-1 reward respectively.

• For each timestep outside terminal states , the agent pays a small
“living” cost (negative reward): −0.03

• The agent actions N, E, S, W correspond to North, East, South, West
§ But the outcomes of actions are not deterministic!

§ The chosen motion direction is attempted 80% of the time
§ 10% of the time, the agent instead executes a different

direction 90° off. Another 10% of the time, -90° off.
§ E.g. an agent surrounded by open cells and executing action

N will end up in the northern cell 80% of the time, in the
eastern cell 10% of the time, and in the western cell 10% of
the time.

§ The agent stays put if it attempts to move into a solid cell or
outside the world. (Imagine the map is surrounded by solid cells)

• Goal: As always, maximize the sum of discounted future rewards
within an episode

Based on slide by Dan Klein 33

What actually happened in that episode?

• Now that we have seen the full environment, let’s view a replay with all this
extra information to see what actually happened during that one episode of
experience we saw before.

What actually happened in that episode?

What actually happened in that episode?

Action= “N”

What actually happened in that episode?

Action= “N”
Attempted motion = “N”

Reward = -0.03

What actually happened in that episode?

Action= “N”

What actually happened in that episode?

Action= “N”
Attempted Motion=“E”

Reward = -0.03

(stays still because blocked)

What actually happened in that episode?

Action= “N”
Attempted Motion=“N”

Reward = -0.03

What actually happened in that episode?

Action= “N”
Attempted Motion=“E”

Reward = -0.03

What actually happened in that episode?

Action= “E”
Attempted Motion=“E”

Reward = -0.03

What actually happened in that episode?

Action= “E”
Attempted Motion=“E”

Reward = -0.03

What actually happened in that episode?
Action= “N”

Attempted Motion: ?
Result=“the end”

Reward = +1

Note: this corresponds to saying: “when 𝑠 = (4,3), for any 𝑎, the reward is 𝑅 𝑠, 𝑎, 𝑠" = 𝑅(𝑠) = +1”.
This is meaningfully different from: “when 𝑠′ = (4,3), the reward is 𝑅 𝑠, 𝑎, 𝑠" = 𝑅(𝑠′) = +1 for any 𝑠, 𝑎.”

It so happened that our random
trajectory did end up at the right place!

Was this action sequence “optimal?” No

Desired Outcome of RL: Optimal Policies

Goal: given some environment, find the optimal policy 𝜋∗ 𝑠 : 𝑆 → 𝐴
• “Optimal” ⟹ Following 𝜋∗ maximizes expected utility ∑$ 𝛾

$ 𝑟$%&

Optimal policy when living cost is
 𝑅 𝑠, 𝑎, 𝑠! = 𝑅 𝑠 = 	−0.03, 𝛾 = 1.0

 for all non-terminal states 𝑠

Example optimal policy 𝜋∗

Based on slide by Dan Klein 45Q: What’s going on here?

Why discounts?

Idea: future rewards are worth exponentially less than current rewards.
- They are less certain

Future rewards are discounted by 0 < 𝛾 < 1:
∑$89: 𝛾$𝑟$%&

Future rewards matter
less to the decision than
more recent rewards

Image by Dan Klein

Also very useful for theoretical analysis

discounted cumulative future reward / “utility”

𝑠$

𝑠$%&

𝑠$%;

𝑠$%<

Sensitivity of Optimal Policy To 𝑅 And 𝛾

Living cost 𝑅 𝑠, 𝑎, 𝑠= = 0 𝑅 𝑠, 𝑎, 𝑠= = −1 𝑅 𝑠, 𝑎, 𝑠= = −2

𝛾 = 0.9 at 0.03 living cost 𝛾 = 0.5 𝛾 = 0.1

The task specification through 𝑅 (and 𝛾) is critical!

How is RL Different from Supervised Learning (SL)?

Supervised Learning
• Target labels for ℎ are directly

available in the training data
• Train to map (regress/classify)

from 𝑥 to 𝑦 in the training data

Reinforcement Learning
• Optimal action labels 𝑎 for states
𝑠 are not given to us. No
predefined solutions!

• Train by trying various action
sequences in an environment,
and observing which ones
produce good rewards over time.

RL: Find 𝜋 𝑠 : 𝑆 → 𝐴 that maximizes expected utility

SL: Find ℎ 𝑥 : 𝑋 → 𝑌, that minimizes a loss 𝐿 over training (𝑥, 𝑦) pairs

48

Unlike supervised learning, RL can find solutions that the problem
specifier did not already know!

Warning: “Reward Hacking”
• Reward functions as task specifications can be surprisingly hard to get right!

def reward_function(params):
 '''
 A complex reward function for a robot arm reaching a specific target position and
orientation.
 '''
 # Set up the target position and orientation
 target_pos = [0.5, 0.5, 0.5]
 target_orient = [0.0, 0.0, 0.0, 1.0]

 # Get the current position and orientation of the robot arm
 robot_pos = params['position']
 robot_orient = params['orientation']

 # Calculate the distance to the target position and orientation
 pos_diff = math.sqrt((robot_pos[0] - target_pos[0])**2 + (robot_pos[1] -
target_pos[1])**2 + (robot_pos[2] - target_pos[2])**2)
 orient_diff = np.linalg.norm(np.subtract(robot_orient, target_orient))

 # Penalize the robot for being too far away from the target position or orientation
 if pos_diff > 0.1 or orient_diff > 0.1:
 reward = -1.0
 else:
 # Calculate a reward based on the proximity to the target position and orientation
 pos_reward = (1.0 - pos_diff) ** 2
 orient_reward = (1.0 - orient_diff) ** 2

 # Penalize the robot for moving too much
 movement_penalty = params['speed'] * 0.01

 # Combine the rewards and penalties to get the final reward
 reward = (pos_reward + orient_reward) - movement_penalty

 return reward

Reward hacking is the flip side of the cool thing about RL: it can find
solutions that the problem specifier did not already know!

Key Problems Specific to RL

● Credit assignment: Which actions in a sequence were the good/bad ones?
● Exploration vs Exploitation: Yes, trial-and-error, but smartly pick what to

try?

Value Functions and Bellman
Equations

The Laws Governing Expected Future Rewards

State Value Functions 𝑉(𝑠) of Policies
Given MDP (S, A, P, R, 𝛾):

 Value of a state s under policy 𝜋	:
 𝑉#(𝑠) = expected utility when starting in 𝑠 and acting according to 𝜋

 Optimal value of a state 𝑠 :
 𝑉∗(𝑠) = expected utility when starting in 𝑠 and acting optimally

Rewards generated
by following
optimal policy 𝜋∗

Rewards generated by
following 𝜋a

s

s, a

s,a,s’
s’

𝑉> 𝑠 = 𝔼 F
$89

:

𝛾$ 𝑟$%&|𝑆9 = 𝑠

𝑉∗ 𝑠 = 𝑉>∗ 𝑠 = 𝔼 F
$89

:

𝛾$ 𝑟$%&|𝑆9 = 𝑠

52
Note: The optimal policy 𝜋∗ must maximize expected utility 𝑉>(𝑠)

Bellman Equation #1: for (arbitrary) 𝑉! functions

• The Bellman equations connect value functions at consecutive timesteps:

expected value
over successor

state s’

current reward +
discounted future

reward

a

s

s, a

s,a,s’
s’

𝑉> 𝑠 = F
?"∈A

B8>(?)

𝑃(𝑠=|𝑠, 𝑎) 𝑅 𝑠, 𝑎, 𝑠= + 𝛾𝑉>(𝑠′)

𝑉> 𝑠 = F
?"∈A

𝑃(𝑠=|𝑠, 𝜋 𝑠) 𝑅 𝑠, 𝜋 𝑠 , 𝑠= + 𝛾𝑉>(𝑠′)

(Scratch page)

Bellman	equation	for	arbitrary	𝑉#:

𝑉# 𝑠 = U
$!∈&
'(#($)

𝑃(𝑠"|𝑠, 𝑎) 𝑅 𝑠, 𝑎, 𝑠" + 𝛾𝑉#(𝑠′)

Optimal state value of 𝑠 is what we get by following the
optimal policy, i.e., picking the optimal action. i.e.,
Optimal policy selects actions that maximize expected
utility, i.e. actions that maximize value.

Bellman Equation #2: for optimal 𝑉∗ functions

What if we followed the optimal policy 𝜋∗? Could just plug 𝜋 = 𝜋∗ into the
above expression, but even without knowing 𝜋∗, you can say:

𝑉∗ 𝑠 = 𝑉>∗(𝑠) = max
B∈Y

F
?"∈A

𝑃(𝑠=|𝑠, 𝑎) 𝑅 𝑠, 𝑎, 𝑠= + 𝛾𝑉∗(𝑠′)

Note that this is defined without assuming that you already know the
optimal policy 𝜋∗. Indeed, we can first find the optimal value function and
then derive the policy from it. Coming up soon!

“Q-States”

• Each MDP state has an associated tree of future outcomes from various
actions:

56

a

s

s’

s, a
(𝑠, 𝑎, 𝑠′)	called a transition, and
is governed by 𝑃(𝑠′|𝑠, 𝑎)

Receive 𝑅(𝑠, 𝑎, 𝑠′)
s,a,s’

state 𝑠

(𝑠, 𝑎)	is called
a Q-state

Based on slide by Dan Klein

In other words, knowing/learning 𝑄∗ would be sufficient to act optimally (assuming you can solve the argmax)!

Action Value Functions 𝑄(𝑠, 𝑎) of Policies

• It is also helpful to define action-value functions, because they are helpfully
connected to policies

 Q-value of taking action a in state s then following policy 𝜋	:
 𝑄#(𝑠, 𝑎) = expected utility when taking a in s and then following 𝜋

	 	

 Optimal Q-value: 𝑄∗ 𝑠, 𝑎 = 𝑄>∗ 𝑠, 𝑎

Given Q*, can you select optimal actions?
Yes, 𝜋∗	can be greedily determined from Q*: 𝜋∗ 𝑠 = argmax

B
𝑄∗(𝑠, 𝑎)

Q-state

a

s

s, a

s,a,s’
s’

𝑄> 𝑠, 𝑎 = 𝔼 F
$89

:

𝛾$ 𝑟$%&|𝑆9 = 𝑠, 𝐴9 = 𝑎

57

Bellman Equation #3: for (arbitrary) 𝑄! functions

• Action-value functions also have their own Bellman equations:

expected value over
successor state s’

current reward + discounted future
reward

𝑄> 𝑠, 𝑎 = F
?"∈A

𝑃(𝑠=|𝑠, 𝑎) 𝑅 𝑠, 𝑎, 𝑠= + 𝛾𝑄> 𝑠′, 𝜋(𝑠=)

𝑄> 𝑠, 𝑎 = 𝔼?"~[(?"|?,B)[𝑅 𝑠, 𝑎, 𝑠= + 𝛾𝑄> 𝑠′, 𝜋(𝑠=)]

a

s

s, a

s,a,s’
s’

58

Bellman Equation #4: for optimal 𝑄 functions

Optimal values are what we get
by picking the optimal action

a

s

s, a

s,a,s’
s’

𝑄# 𝑠, 𝑎 = 𝔼%!~'(%!|%,+)[𝑅 𝑠, 𝑎, 𝑠! + 𝛾𝑄# 𝑠′, 𝜋(𝑠!)]

𝑄∗ 𝑠, 𝑎 = 𝑄>∗ 𝑠, 𝑎 = 𝔼?"~[(?"|?,B)[𝑅 𝑠, 𝑎, 𝑠= + 𝛾max
\"

𝑄∗ 𝑠′, 𝑎′]

Recall:
𝜋∗ 𝑠 = argmax

"
𝑄∗(𝑠, 𝑎)

59

Recap
• Markov Decision Processes (𝑆, 𝐴, 𝑃, 𝑅, 𝛾)
• RL wants to find the optimal policy 𝜋∗ to maximize ∑6 𝛾6𝑟678
• One way to do this is to find the optimal 𝑄 function, 𝑄∗(𝑠, 𝑎)
• 𝑄∗(𝑠, 𝑎) satisfies a recursive equation, called the Bellman

equation

Coming up next:
• How to compute 𝑄∗ if we knew the full MDP (𝑆, 𝐴, 𝑃, 𝑅, 𝛾)?

§ “Q-policy and Q-value iteration”. (Also briefly 𝑉-value
iteration)

• How to learn 𝑄∗ from experience if we only had (𝑆, 𝐴, 𝛾) and
didn’t know 𝑃, 𝑅?
§ “Q learning”, a widely used RL algorithm

60

Finding 𝑄∗ & 𝜋∗ in “known
environments”:

𝑄 Policy Iteration & 𝑄	Value Iteration

how to compute?

usually easy to do

Q-Policy Iteration

Key Idea: To find 𝑄∗, solve iteratively via dynamic programming

• Start with a random guess, e.g.,𝑄9∗ 𝑠, 𝑎 ← 0 for all states 𝑠 and actions 𝑎
• Iterate (incrementing 𝑖, till convergence):

§ Policy Improvement:
§ For all 𝑠: Update the guess for 𝜋∗ to be compatible with 𝑄]

𝜋] 𝑠 ← argmax
B

	𝑄] 𝑠, 𝑎

§ Policy Evaluation:
§ For all 𝑠, 𝑎: Update your guess for 𝑄∗ to be compatible with 𝜋]:

𝑄]%& 𝑠, 𝑎 ← 𝑄>#(𝑠, 𝑎)

62

Q-Policy Evaluation
How do we calculate the 𝑄> 𝑠, 𝑎 for some policy 𝜋(𝑠)?
• Recall, Bellman Equation gives us a recursive definition of arbitrary Q value:

𝑄# 𝑠, 𝑎 = 𝔼%!~'(%!|%,+)[𝑅 𝑠, 𝑎, 𝑠! + 𝛾𝑄# 𝑠′, 𝜋(𝑠!)]

• Idea: convert the Bellman equation for 𝑸𝝅 𝒔, 𝒂 into an update rule

63

𝑄9> 𝑠, 𝑎 ← 0

𝑄_%&> 𝑠, 𝑎 ← 𝔼?"~[(?"|?,B)[𝑅 𝑠, 𝑎, 𝑠= + 𝛾𝑄_>(𝑠=, 𝜋 𝑠=)]

Putting it together: Q-Policy Iteration & Q-Value Iteration

• Start with a random guess, e.g.,𝑄9∗ 𝑠, 𝑎 ← 0 for all states 𝑠 and actions 𝑎
• Iterate (incrementing 𝑖, till convergence):

§ Policy Improvement: (For all 𝑠)
§ Compute the corresponding policy 𝜋]∗ 𝑠 ← argmax

B
 𝑄]∗ 𝑠, 𝑎

§ Policy Evaluation: (For all 𝑠, 𝑎)
§ Iterate (incrementing 𝑗, till convergence?):

§𝑄_
>#
∗
(𝑠, 𝑎) ← 𝔼?"~[(?"|?,B)[𝑅 𝑠, 𝑎, 𝑠= + 𝛾𝑄_`&

># (𝑠=, 𝜋] 𝑠=)]
• More concise expression for 𝑄-value iteration:

𝑄978 𝑠, 𝑎 ← 𝔼%!~'(%!|%,+) 𝑅 𝑠, 𝑎, 𝑠! + 𝛾max
+!
𝑄9(𝑠!, 𝑎′)

Can also run only a single
update: “Q value iteration”,

or just “Q iteration”

Bellman Equation for
𝑄∗ 𝑠, 𝑎 converted to an

update rule! 64

𝑄#$% 𝑠, 𝑎 ←;
&'

𝑃(𝑠'|𝑠, 𝑎) 𝑅 𝑠, 𝑎, 𝑠' + 𝛾	max
"!
𝑄#(𝑠', 𝑎′)

Q-Iteration example

65

Q-Iteration example

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

0

0 000

0

Living cost 0 0.9

66

Q-Iteration example

0

0

0

0

0

0

0

0

0

0.72

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0.9x1]
+ 0.1x[0 + 0]
+0.1x[0+0]

=0.72

0 0.9

67

Q-Iteration example

0

0

0

0

0

0

0

0

0.09

0.72

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0.9x1]

+0.1x[0+0]
=0.09

0 0.9

68

Q-Iteration example

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0.9x1]

+0.1x[0+0]
=0.09

0 0.9

69

Q-Iteration example

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0]
+0.1x[0+0]

=0

0 0.9

70

Q-Iteration example

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

0

-0.72

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0.9x-1]
+ 0.1x[0+0]
+0.1x[0+0]

=-0.72

0 0.9

71

Q-Iteration example

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

0

-0.72

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0]

+0.1x[0+0.9x-1]
=-0.09

0 0.9

72

Q-Iteration example

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0.9x-1]

+0.1x[0+0]
=-0.09

0 0.9

73

Q-Iteration example

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0]
+0.1x[0+0]

=0

0 0.9

74

Q-Iteration example

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

-0.72

-0.09

0

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

Now we have 𝑄%(𝑠, 𝑎)
for all (𝑠, 𝑎)

0 0 0.72

0

0 000

0

0 0.9

75

Q-Iteration example

0

0

0

0

0

0

0

0

0.09

0.78

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

-0.72

-0.09

0

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0.9x1]
+ 0.1x[0+0.9x0.72]

+0.1x[0+0]
=0.7848

0 0.9

76

Q-Iteration example

0

0

0

0

0

0

0

0

0.09

0.78

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

-0.72

-0.09

0

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0.9x1]

+0.1x[0+0]
=0.09
And so on till

convergence…

0 0.9

77

• Information propagates outward from terminal states
• Eventually all states have correct value estimates

Q-Iteration example

0.59

0.64

0.53

0.57

0.67

0.74

0.67

0.60

0.77

0.85

0.57

0.66

0.57

-0.60

0.30

0.53

0.48

0.29

0.41

0.40

-0.65

0.13

0.27

0.28

0.40

0.42

0.40

0.43

0.49

0.41

0.44

0.45

0.57

0.51

0.46

0.51

(after 1000 sweeps over (s,a))

0 0.9

78

