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Recap

• Q-Learning: We can modify Q-value iteration when 𝑃 and 𝑅 are unknown:
§ Treat each sample from the distribution as a coarse proxy for the mean
§ Make updates incremental 

• Deep Q-Learning v1: 
§ To handle high-dimensional states, replace table by a deep network that 

maps (𝑠, 𝑎) to 𝑄(𝑠, 𝑎) 
§ Convert incremental update to gradient descent update
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From Tabular to Deep Q Learning



High-dimensional states example: Pacman

• Let’s say we discover through 
experience that this state is bad:

• In naïve Q-learning, we know nothing 
about this state or its Q states:

• Or even about this one!

4Slide by Dan Klein



Q-Learning

• In many real situations, we cannot possibly learn about every single 
state+action!
§ Too many state-action pairs to visit them all in training
§ Too many state-action pairs to hold the Q-tables in memory

• Instead, we want to generalize:
§ Learn about some small number of training Q-states from experience
§ Generalize that experience to new, similar Q-states
§ This is a fundamental idea in machine learning, and we see it over and 

over again

5Based on slide by Dan Klein



Feature-Based Representations

• Solution: describe a state using a vector of features
§ Features are functions from states to real numbers (often 0/1) that 

capture important properties of the state
§ Example features:

§ Distance to closest ghost
§ Distance to closest dot
§ Number of ghosts
§ 1 / (dist to dot)2
§ Is Pacman in a tunnel? (0/1)
§ …… etc.

§ Can also describe a q-state (s, a) with features 
§ e.g. action moves closer to food

6Based on slide by Dan Klein

As we now do in computer vision/NLP, can we avoid engineering these features?



Predict Q-values with a deep neural network

• Input: the state, e.g. an image
• Output: Q-values of various actions

• Learning: 
 gradient descent* with the squared Bellman error loss:

𝑅 + 𝛾max
!!

𝑄" 𝑠#, 𝑎# 	− 𝑄" 𝑠, 𝑎
$

As always, the policy action is the one with the highest predicted Q-value

A Neural Network to Predict Q from “Raw” State 
Input
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= 𝑦!

𝑄! 𝑠, 𝑎"
𝑄! 𝑠, 𝑎#

:
:
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Deep Q-Learning v1

1. take some action ai and observe (si,ai, s0i, ri)
2. yi = ri + �maxa0 Q� (s0i,a

0
i)

3. � �� ↵dQ�(si,ai)
d� (Q� (si,ai)� yi)

<latexit sha1_base64="DJnX0ArsyveA9Cd3LLS4PbLyAJA="></latexit>

Based on slide by Sergey Levine

=
𝑑
𝑑𝜙

𝑄! − 𝑦"
#

Incremental update step → gradient descent* on the squared Bellman error loss!
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𝑄! 𝑠, 𝑎"
𝑄! 𝑠, 𝑎#

:
:

𝑠

Closely connected to the tabular Q learning update. Hint: if you replace the 
neural network with a Q table, its parameters 𝝓 are just Q value entries? 

Note: we pretend that 𝑦* is a constant while computing the gradient, to resemble regression



Problems with Deep Q-Learning v1

Problems:
1. sequential states are strongly correlated (not i.i.d.)

1. take some action ai and observe (si,ai, s0i, ri)

2. � �� ↵dQ�(si,ai)
d�

⇣
Q� (si,ai)� [ri + �maxa0 Q� (s0i,a

0
i)]
⌘

<latexit sha1_base64="gUYJ+r6tSABBRr0Aujsj4N6sV4U="></latexit>

Based on slide by Sergey Levine 9

So consecutive Q updates drive the network to overfit to 
recently encountered states and forget previous experiences



Addressing Correlations: Experience Replay

• Q-Learning is “off-policy”: we don’t say anything about the specific actions 
that need to be executed, and we don’t need the transitions to be in 
sequence.

• Maintain a “replay buffer” of previous experiences

• Perform Q-updates based on a
sample from the replay buffer

• Advantages:
§ Breaks correlations between consecutive samples
§ Each experience step may influence multiple gradient updates

Based on slide by Sergey Levine

Replay Buffer

FIFO or Priority Queue

𝑠+, 𝑎+, 𝑟+, 𝑠$

𝑠$, 𝑎$, 𝑟$, 𝑠,

𝑠-, 𝑎-, 𝑟-, 𝑠-.+

⋯

10



Deep Q Learning v2 (with replay buffer 𝓓)

𝐾	 = 	1 is common, though larger K may sometimes be more efficient

1. collect dataset {(si,ai, s0i, ri)} using some policy, add it to D
2. Loop K times, do:

3. sample a batch of (si,ai, s0i, ri)’s from D
4. � �� ↵

P
i
dQ�(si,ai)

d�

⇣
Q� (si,ai)� [ri + �maxa0 Q� (s0i,a

0
i)]
⌘

<latexit sha1_base64="C8r4/SY6OxgefSMX0NNXgJlMgWo="></latexit>

Based on slide by Sergey Levine

replay buffer
Q-learning
(off-policy)

𝒔, 𝒂, 𝒔+, 𝑟

𝜋 𝒂 𝒔  (e.g., 𝜖-greedy)

Deep Q Learning v2
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Problems with Deep Q-Learning v1

Problems:
1. sequential states are strongly correlated (not i.i.d.)
2. Target value is always changing!

1. take some action ai and observe (si,ai, s0i, ri)

2. � �� ↵dQ�(si,ai)
d�

⇣
Q� (si,ai)� [ri + �maxa0 Q� (s0i,a

0
i)]
⌘

<latexit sha1_base64="gUYJ+r6tSABBRr0Aujsj4N6sV4U="></latexit>

Based on slide by Sergey Levine 12



Problem: Moving Target for Q-regression

Problem: Instability (e.g., rapid changes) in Q(·) can cause it to diverge
• Q-learning is not gradient descent on any fixed objective!

no gradient through target value

Solution: use two nets to provide stability
• The Q-network is updated regularly
• The target network is an older version of the Q-

network, updated occasionally 

1. take some action ai and observe (si,ai, s0i, ri)

2. � �� ↵dQ�(si,ai)
d�

⇣
Q� (si,ai)� [ri + �maxa0 Q� (s0i,a

0
i)]
⌘

<latexit sha1_base64="wWSnV9mQj8UdTbnBlsE6mXSMAWI="></latexit>

computed via
target network

computed via
Q-network

⇣
Q�(s, a)�

�
ri + �max

a0
Q�0(s0, a0)

�⌘2

<latexit sha1_base64="ujWXA6kLHVtWjrzbN8Bsk4vJetE="></latexit>

Based on slide by Sergey Levine 13



1. save target network parameters: �0  �
2. collect dataset {(si,ai, s0i, ri)} using some policy, add it to D

3. sample a batch (si,ai, s0i, ri) from D
4. � �� ↵

P
i
dQ�(si,ai)

d� (Q� (si,ai)� [ri + �maxa0 Q�0 (s0i,a
0
i)])

<latexit sha1_base64="dwsVPnJmVsDPGGHkHg/GkwOy05c="></latexit>

Deep Q Learning v3

targets don’t change in inner loop!

supervised 
regression

Deep Q Learning v3

This is the “classic” deep Q Learning algorithm from 2015!* 
*(usually K=1) 

Based on slide by Sergey Levine 14



Imitation Learning Through Behavior Cloning
Solving sequential decision making problems with supervised learning!





Supervised learning of Action Policies?

• Given the current “state” 𝑠, make a decision .𝑦 = max
0
𝜋1(𝑎|𝑠). 

§ Supervision => labels for “good” decisions that maximize future rewards.
§ So, we’d like to have some dataset of (state 𝑠, good decision 𝑎) pairs. 

Then we could try running supervised learning just as always.



Behavior Cloning (BC)
observed states
 s1,  s2, ..., sH
 a1, a2, ..., aH
       actions 

training 
data

supervised 
learning

observed state st action atconvolutional network

expert



Behavior Cloning Objective Function
Supervised maximum-likelihood objective to train a function that maps from 
expert sensory inputs to expert actions.

𝐿𝑜𝑠𝑠 = −
1
𝑁
9
	!23

4

9
523

6

log 𝜋1(𝑎!,5|𝑠!,5)

Does this work?

Expert actionsDemonstration data

1
𝑁
9
!23

4

9
523

6

∇1 log 𝜋1(𝑎!,5|𝑠!,5)

trajectories time
Likelihood gradient: 
“Change the policy to 
make these actions 
more likely”. 

Could minimize by following the gradient:



Mobile Aloha, Stanford



…
Mobile Aloha, Stanford

Typically requires a large number of demonstrations (a few 100s) to learn well. 



Exhibit A: Zero-Shot Policies From Web Human Videos

Training Final Policy

Could we learn general skill policies 
without specific reference to any one robot, scene, objects?

Shi et al 2024, (under review)



“Off-The-Shelf” Imitation From Web Human Videos Alone

Rollout

Skill

Object Drawer Cupboard CupboardDrawer

Slide Opening Slide Closing Vertical Hinge
Opening

Vertical Hinge
Closing

Step 3: Deploying Human Arm Policies on Robot Arms*
Fang et al, AnyGrasp, T-RO 2022

Bahl et al, VRB, CVPR 2023

Shi et al 2024, (under review)



“Off-The-Shelf” Imitation From Web Human Videos Alone

Skill

Object Pasta Into Pot Food in Pot Pasta In WaterWater Into Sink

Pouring Pouring Stirring Stirring

Rollout

Step 3: Deploy Human Arm Policies on Robot Arms*

Slide Opening Slide Closing Vertical Hinge
Opening

Vertical Hinge
Closing

Sk
ill

 li
br

ar
y

Shi et al 2024, (under review)



“Off-The-Shelf” Imitation From Web Human Videos Alone

Skill

Object Banana Cup Pasta Into DrawerCan

Picking Picking Placing Placing

Rollout

Step 3: Deploy Human Arm Policies on Robot Arms*

Pouring Stirring

Slide Opening Slide Closing Vertical Hinge
Opening

Vertical Hinge
Closing

Sk
ill

 li
br

ar
y

Shi et al 2024, (under review)



“Off-The-Shelf” Imitation From Web Human Videos Alone

Picking Placing

Step 3: Retargeting Human Arm Policies to Robot Arms*

Pouring Stirring

Slide Opening Slide Closing Vertical Hinge
Opening

Vertical Hinge
Closing

Skill

Object Banana Salt Into Pan
(Unseen)

Cake
(Unseen)Tofu

Cutting Cutting Pouring Cutting

Rollout

Sk
ill

 li
br

ar
y

Shi et al 2024, (under review)



Key Issue with BC: Distributional Shift

The cloned policy is imperfect; this leads to “compounding” errors, and the agent soon encounters 
unfamiliar states, leading to failure.

The policy is trained on demonstration data that is different from the data it encounters in the world. 

Note how these errors arise from ignoring the the sequential, interconnected 
nature of the task. Past decisions influence future states!



Active Behavior Cloning: DAGGER
A general trick for handling distributional shift: requery expert on new states 
encountered by the initial cloned policy upon execution, then retrain.

Ross et al, DAGGER, 2011

1. Train 𝜋! 𝑎"|𝑠"  from expert data 𝒟 = 𝑠#, 𝑎#, … , 𝑠$ , 𝑎$
2. Run 𝜋! 𝑎"|𝑠"  to get dataset 𝒟% = 𝑠#&'( , … , 𝑠)&'(
3. Ask expert to label each state in 𝒟% with actions 𝑎"&'(
4. Aggregate: 𝒟 ← 𝒟 ∪ 𝒟%

Assumes it is okay to keep asking the expert all through the training process. 
“Queryable experts”. Might not always be practical. 



Aside: Distribution Shift More Broadly

● When supervised ML systems are deployed, it is common for the 
distribution to shift.
○ E.g. when a new spam classifier is deployed on gmail, spammers might notice that 

their old spamming techniques are not working, and innovate to break the new 
spam classifier.

● One strategy to fix this is continuous data aggregation, like in DAGGER.
○ E.g., Allow users to mark new emails that slip through the filter as spam. Add these 

to the training data, and retrain the spam classifier from time to time.

Lesson: ML systems are often deployed in sequential decision making 
settings without realizing it: later inputs may be influenced in some complex 
way by older decisions of the ML system. Warrants caution!



Other Ways to Do Imitation

● BC might not generalize beyond demonstrations. Instead learn explicitly 
about the “reward” function that the demonstrator is trying to maximize? 
○ This is called “inverse reinforcement learning”

Would you conclude that this 
agent likes / dislikes:
- Blue squares? 
- White squares?
- Orange squares?
- Red squares?
- Green square?

Knowing the reward could 
inform more generalizable 
imitation, e.g. starting from a 
different location than expert



BC Operates Per-Timestep, Not Aware of Future Impacts

• Suppose you try to imitate driving. The imitator is not perfect, and you 
either:
§ Are slower by 5 mph than the expert behavior on a highway, or
§ Are off by 5 mph as you start your car in your garage (e.g. moving 

forward at 4 mph, instead of backing out at 1 mph).
§ BC objective might value both errors similarly, but one is much worse!

BC objective, by simply mimicking the immediate expert actions, is 
not aware of any future impacts of an agent’s actions. 

Compare to RL which tries to explicitly optimize ∑5 𝑟5.



Imitation vs RL

• Imitation is often very useful. In most cases where you have access to clean 
expert demonstrations, you should aim to use it through some kind of 
imitation. But there are limitations.
• Compared to RL, BC usually takes the short-term myopic view: 

§ The BC loss is only per-timestep deviations from the expert actions. 
§ It does not account for the impacts of current actions on the future.

• More broadly, imitation is limited to mimicking experts and cannot discover 
new solutions. What about solving new problems, like controlling a new 
robot, or beating the world’s best Go player? RL is your best bet.
• There are also ways to naturally combine imitation and RL (beyond the 

scope of this class). 



Policy Gradients
RL That Looks A Little Bit Like Behavior Cloning



Recall: Behavioral Cloning for Imitation Learning

Expert 
actions

Demonstration data

1
𝑁
9
!23

4

9
523

6

∇1 log 𝜋1(𝑎!,5|𝑠!,5)

The BC gradient w.r.t. policy parameters 𝜃 looked like:



“Policy Gradient” Methods
Update policy parameters with the gradients of the expected utility in an 
episode by following policy 𝜋𝜽

𝜽/01 = 𝜽234 + 𝛼∇𝜽𝔼6𝜽 7
7!87

𝑟7

𝜋𝜽 induces a trajectory distribution, which induces a reward distribution. 

It turns out that the gradient ∇𝜽𝔼9𝜽[∑5 𝑟5] works out to:

Note: we are ignoring discount factors for now, all formulae will easily generalize

Note: we will focus for 
now on “finite-horizon” 
settings, i.e., 𝑇 is finite. 



Compare to the BC Gradient

Expert actionsDemonstration data

Recall: we start out with no data at all … so where does this data come from?
Ans: We generate our own data during learning … this is trial-and-error learning!

trajectories time
Likelihood 
gradient: “Change 
policy to make 
these actions 
more likely”. 

Critic: “how good 
was this trajectory?” 
--- credit assignment

Expert actionsDemonstration data

1
𝑁
9
!23

4

9
523

6

∇1 log 𝜋1(𝑎!,5|𝑠!,5)

BC Gradient:

RL “Policy 
Gradient”: 1

𝑁
9
!23

4

9
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6

∇1 log 𝜋1(𝑎!,5|𝑠!,5) 9
5"25

6

𝑟(𝑠!,5 , 𝑎!,5)



The basic policy gradients algorithm: REINFORCE

generate samples 
(i.e. run the policy)

Evaluate the 
samples

improve the policy



Reward function need not be differentiable!

In supervised learning, when we optimized an objective using gradient 
descent, we needed the objective to be differentiable w.r.t. to the 
parameters 𝜃.

In RL, this is not true any more. See how the update term involves no 
derivative of the reward function!





Causal policy gradient

“reward to go”
often denoted 8𝑄*,7



“On-Policy” Learning

• The policy gradient increases the likelihood of those past actions that 
yielded good eventual utility when later actions were generated from the 
current policy.

• This means you can only ever compute the policy gradient update on data 
that is generated from the current policy.
§ “On-policy” learning. 
§ Expensive in terms of amount of experience required in the 

environment, because old experience, generated from old policies, is no 
longer relevant. Need to keep generating fresh new experiences.



Whither Exploration?

• Exploration in RL: Which actions to execute in the world to most efficiently 
learn an optimal policy?
§ But with on-policy RL, do we really have a choice? Remember, our 

updates can only be computed from trajectories sampled from the 
current policy 𝜋1  at each stage of training!

• Two solutions:
§ 𝜋1  is inherently stochastic, because it is probabilistic, so it does 

automatically perform different actions each time it is executed, and 
therefore induces some exploration. 

§ Explicitly add an “exploration bonus” to the reward, e.g. entropy 
𝑟5 ← 𝑟5 + 𝜆𝐻 𝜋1 𝑎5 𝑠5

which incentivizes more uncertain policies, inducing more exploration. 
𝜆 → 0 during training.



“Policy Gradient” with Discount Factor 𝜸
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𝑁
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∇1 log 𝜋1(𝑎!,5|𝑠!,5) 9
5"25
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𝑟(𝑠!,5 , 𝑎!,5)
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∇1 log 𝜋1(𝑎!,5|𝑠!,5) 9
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𝛾5":5𝑟(𝑠!,5 , 𝑎!,5)

With non-trivial discount factors, the policy gradient simply changes to:

With discount factor set to 1, the policy gradient we have seen is:





Policy gradient with automatic differentiation



Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Maximum likelihood as in behavior cloning:
# Given:
# actions - (N*T) x Da tensor of actions
# states - (N*T) x Ds tensor of states
# Build the graph:
logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative_likelihoods = softmax_cross_entropy_with_logits(labels=actions, logits=logits)
loss = reduce_mean(negative_likelihoods)
gradients = loss.gradients(loss, variables)



Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Policy gradient:
# Given:
# actions - (N*T) x Da tensor of actions
# states - (N*T) x Ds tensor of states
# q_values – (N*T) x 1 tensor of estimated state-action values
# Build the graph:
logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative_likelihoods = softmax_cross_entropy_with_logits(labels=actions, logits=logits)
weighted_negative_likelihoods = multiply(negative_likelihoods, q_values)
loss = reduce_mean(weighted_negative_likelihoods)
gradients = loss.gradients(loss, variables)

q_values



Policy gradient in practice
• Remember that the “policy gradient” of expected utility has high variance. 

§ Expected utility is estimated by sampling a small number of trajectories 
from the policy.

§ This isn’t the same as supervised learning!
§ Gradients are often very noisy!

• Consider using much larger batches to reduce the variance
• Tweaking learning rates is very hard

§ Adaptive step size rules like ADAM can be OK-ish
§ We’ll learn about policy gradient-specific learning rate adjustment 

methods later!
• Popular policy gradient approaches today: PPO, TRPO …
• RL implementation details can be hard to get right. Good to start with 

popular repositories: OpenAI stable-baselines, CleanRL etc.



Applications in locomotion, dexterous manipulation, and more

Scaling Simulated Experiences

GitHub - j3soon/OmniIsaacGymEnvs-DofbotReacher

https://github.com/j3soon/OmniIsaacGymEnvs-DofbotReacher
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Many More Kinds of RL Algorithms

But policy gradients are among the most stable approaches that work most 
broadly, and take limited wall clock time even though many samples.

More efficient 
(fewer samples)

Less efficient 
(more samples)

on-policyoff-policy

evolutionary or 
gradient-free 
algorithms

on-policy policy 
gradient 
algorithms

actor-critic
style 
methods

off-policy 
Q-function 
learning

model-based 
deep RL

model-based 
shallow RL


