
CIS419/519 Spring ’18

CIS 519/419 
Applied Machine Learning

www.seas.upenn.edu/~cis519

Dan Roth
danroth@seas.upenn.edu
http://www.cis.upenn.edu/~danroth/
461C, 3401 Walnut

Slides were created by Dan Roth (for CIS519/419 at Penn or CS446 at UIUC), Eric Eaton 
for CIS519/419 at Penn, or from other authors who have made their ML slides available. 

http://www.cis.upenn.edu/%7Edanroth/


CIS419/519 Spring ’18

Introduction - Summary
 We introduced the technical part of the class by giving two (very important) 

examples for learning approaches to linear discrimination.
 There are many other solutions.
 Question 1: Our solution learns a linear function; in principle, the target 

function may not be linear, and this will have implications on the performance 
of our learned hypothesis. 
 Can we learn a function that is more flexible in terms of what it does with the 

feature space?

 Question 2: Can we say something about the quality of what we learn 
(sample complexity, time complexity; quality)
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Decision Trees
 Earlier, we decoupled the generation of the feature space from 

the learning. 
 Argued that we can map the given examples into another 

space, in which the target functions are linearly separable. 

 Do we always want to do it? 
 How do we determine what are good mappings?

 The study of decision trees may shed some light on this.
 Learning is done directly from the given data representation.
 The algorithm ``transforms” the data itself.

3

Think about the Badges problem

x

x2

What’s the best learning algorithm? 
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This Lecture
 Decision trees for (binary) classification

 Non-linear classifiers

 Learning decision trees (ID3 algorithm)
 Greedy heuristic (based on information gain)

Originally developed for discrete features
 Some extensions to the basic algorithm

 Overfitting
 Some experimental issues

4
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Representing Data 
 Think about a large table, N attributes, and assume you want to know 

something about the people represented as entries in this table.
 E.g. own an expensive car or not;
 Simplest way: Histogram on the first attribute – own
 Then, histogram on first and second (own & gender)
 But, what if the # of attributes is larger: N=16
 How large are the 1-d histograms (contingency tables) ? 16 numbers
 How large are the 2-d histograms? 16-choose-2 = 120 numbers
 How many 3-d tables? 560 numbers
 With 100 attributes, the 3-d tables need 161,700 numbers

 We need to figure out a way to represent data in a better way, and 
figure out what  are the important attributes to look at first. 

 Information theory has something to say about it – we will use it to 
better represent the data. 

5
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Decision Trees
 A hierarchical data structure that represents data by 

implementing a divide and conquer strategy
 Can be used as a non-parametric classification and 

regression method
 Given a collection of examples, learn a decision tree that 

represents it.
 Use this representation to classify new examples

6

A
C

B



CIS419/519 Spring ’18

The Representation
 Decision Trees are classifiers for instances represented as 

feature vectors (color= ; shape= ; label= )
 Nodes are tests for feature values
 There is one branch for each value of the feature
 Leaves specify the category (labels)
 Can categorize instances into multiple disjoint categories

 Decision 
Trees
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Expressivity of Decision Trees
 As Boolean functions they can represent any Boolean function.
 Can be rewritten as rules in Disjunctive Normal Form (DNF)

 Green^square positive
 Blue^circle positive
 Blue^square positive

 The disjunction of these rules is equivalent to the Decision Tree
 What did we show? What is the hypothesis space here?
 2 dimensions, 3 values each |X| = 9; |Y| = 2; |H| = 29

 Decision 
Trees
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Decision Trees
 Output is a discrete category. Real valued outputs are 

possible (regression trees)
 There are efficient algorithms for processing large 

amounts of data (but not too many features)
 There are methods for handling noisy data (classification 

noise and attribute noise) and for handling missing 
attribute values

 Decision 
Trees
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Decision Boundaries
 Usually, instances are represented as attribute-value pairs 

(color=blue, shape = square, +)
 Numerical values can be used either by discretizing or by 

using thresholds for splitting nodes
 In this case, the tree divides the features space into axis-

parallel rectangles, each labeled with one of the labels

 Decision 
Trees
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Today’s key concepts
 Learning decision trees (ID3 algorithm)

 Greedy heuristic (based on information gain)
Originally developed for discrete features

 Overfitting
 What is it? How do we deal with it?

 Some extensions of DTs

 Principles of Experimental ML

11

How can this be avoided with linear classifiers?
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Decision Trees
 Can represent any Boolean Function
 Can be viewed as a way to compactly represent a lot of 

data.
 Natural representation: (20 questions) 
 The evaluation of the Decision Tree Classifier is easy

 Clearly, given data, there are
many ways to represent it as 
a decision tree. 

 Learning a good representation 
from data is the challenge.

12
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Will I play tennis today? 

 Features 
 Outlook: {Sun, Overcast, Rain}
 Temperature: {Hot, Mild, Cool}
 Humidity: {High, Normal, Low}
 Wind: {Strong, Weak}

 Labels
 Binary classification task: Y =  {+, -}

13
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Will I play tennis today? 
O T H W Play?

1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +

10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -

14

Outlook: S(unny), 
O(vercast), 
R(ainy)

Temperature: H(ot), 
M(edium), 
C(ool)

Humidity: H(igh),
N(ormal), 
L(ow)

Wind: S(trong), 
W(eak)
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Basic Decision Trees Learning Algorithm

 Data is processed in Batch (i.e. all the data available)
 Recursively build a decision tree top down.

O T H W Play?
1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +

10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -

Algorithm?

YesHumidity

NormalHigh
No Yes

Wind

WeakStrong
No Yes

Outlook 

Overcast RainSunny
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Basic Decision Tree Algorithm
 Let S be the set of Examples

 Label  is the target attribute (the prediction) 
 Attributes is the set of measured attributes

 ID3(S, Attributes, Label)
If all examples are labeled the same return a single node tree with Label

Otherwise Begin 
A =  attribute in Attributes that best classifies S (Create a Root node for tree)

for each possible value v of A
Add a new tree branch corresponding to A=v

Let Sv be the subset of examples in S with A=v
if Sv is empty:  add leaf node with the common value 

of Label in S
Else:  below this branch add the subtree

ID3(Sv, Attributes - {a}, Label)
End
Return Root

16

why? 

For evaluation time
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Picking the Root Attribute
 The goal is to have the resulting decision tree as small as 

possible (Occam’s Razor)
 But, finding the minimal decision tree consistent with the data is 

NP-hard

 The recursive algorithm is a greedy heuristic search for a 
simple tree, but cannot guarantee optimality.

 The main decision in the algorithm is the selection of the 
next attribute to condition on.

17
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Picking the Root Attribute
 Consider data with two Boolean attributes (A,B).

<  (A=0,B=0), - >:    50 examples
<  (A=0,B=1), - >:    50 examples
<  (A=1,B=0), - >:      0 examples
<  (A=1,B=1), + >: 100 examples

 What should be the first attribute we select?

 Splitting on A: we get purely labeled nodes.

Splitting on B: we don’t get purely labeled nodes.

What if we have: <(A=1,B=0), - >: 3 examples?

18
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Picking the Root Attribute
 Consider data with two Boolean attributes (A,B).

<  (A=0,B=0), - >:    50 examples
<  (A=0,B=1), - >:    50 examples
<  (A=1,B=0), - >:      0 examples       3 examples
<  (A=1,B=1), + >: 100 examples

 What should be the first attribute we select?
 Trees looks structurally similar; which attribute should we choose

Advantage A. But…
Need a way to quantify things

19
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Picking the Root Attribute
 The goal is to have the resulting decision tree as small as 

possible (Occam’s Razor)
 The main decision in the algorithm is the selection of the 

next attribute to condition on.
 We want attributes that split the examples to sets that are 

relatively pure in one label; this way we are closer to a leaf 
node.

 The most popular heuristics is based on information gain, 
originated with the ID3 system of Quinlan.

20
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Entropy
 Entropy (impurity, disorder) of a set of examples, S, relative to 

a binary classification is:
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆 = −𝐸𝐸+ log 𝐸𝐸+ − 𝐸𝐸− log 𝐸𝐸−

 where P+ is the proportion of positive examples in S and
P- is the proportion of  negatives.
 If all the examples belong to the same category: Entropy = 0 
 If all the examples are equally mixed (0.5, 0.5): Entropy = 1
 Entropy  = Level of uncertainty. 

 In general, when pi is the fraction of examples labeled i:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆 𝐸𝐸1,𝐸𝐸2 , … ,𝐸𝐸𝑘𝑘 = −�
1

𝑘𝑘
𝐸𝐸𝑖𝑖 log 𝐸𝐸𝑖𝑖

 Entropy can be viewed as the number of bits required, on average, to  
encode the class of labels. If the probability for + is 0.5, a single bit is 
required for each example; if it is 0.8 -- can use less then 1 bit.

21
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Entropy
 Entropy (impurity, disorder) of a set of examples, S, 

relative to a binary classification is:
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆 = −𝐸𝐸+ log 𝐸𝐸+ − 𝐸𝐸− log 𝐸𝐸−

 where P+ is the proportion of positive examples in S and      
P- is the proportion of  negatives.
 If all the examples belong to the same category: Entropy = 0 
 If all the examples are equally mixed (0.5, 0.5): Entropy = 1
 Entropy  = Level of uncertainty. 

22
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Entropy
 Entropy (impurity, disorder) of a set of examples, S, 

relative to a binary classification is:
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆 = −𝐸𝐸+ log 𝐸𝐸+ − 𝐸𝐸− log 𝐸𝐸−

 where P+ is the proportion of positive examples in S and      
P- is the proportion of  negatives.
 If all the examples belong to the same category: Entropy = 0 
 If all the examples are equally mixed (0.5, 0.5): Entropy = 1
 Entropy  = Level of uncertainty. 

23
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Information Gain
 The information gain of an attribute a is the expected 

reduction in entropy caused by partitioning on this attribute

𝐺𝐺𝐺𝐺𝐺𝐺𝐸𝐸 𝑆𝑆,𝐺𝐺 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆 − �
𝑣𝑣∈𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆)

|𝑆𝑆𝑣𝑣|
|𝑆𝑆|

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆𝑣𝑣)

 Where:
 Sv is the subset of S for which attribute a has value v, and
 the entropy of partitioning the data is calculated by weighing the 

entropy of each partition by its size relative to the original set

 Partitions of low entropy (imbalanced splits) lead to high gain
 Go back to check which of the A, B splits is better

24

Outlook 

Overcast RainSunny

High Entropy – High level 
of Uncertainty

Low Entropy – No 
Uncertainty. 
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Will I play tennis today? 
O T H W Play?

1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +

10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -

25

Outlook: S(unny), 
O(vercast), 
R(ainy)

Temperature: H(ot), 
M(edium), 
C(ool)

Humidity: H(igh),
N(ormal), 
L(ow)

Wind: S(trong), 
W(eak)
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Will I play tennis today? 
O T H W Play?

1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +

10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -

26

Current entropy:
p = 9/14
n = 5/14

H(Y) = 
−(9/14) log2(9/14)  

−(5/14) log2(5/14) 
≈ 0.94
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Information Gain: Outlook
O T H W Play?

1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +

10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -

27

Outlook = sunny: 
p = 2/5     n = 3/5 HS = 0.971

Outlook = overcast:
p = 4/4     n = 0 Ho= 0

Outlook = rainy:
p = 3/5     n = 2/5 HR = 0.971

Expected entropy: 
(5/14)×0.971 + (4/14)×0 
+ (5/14)×0.971 = 0.694

Information gain: 
0.940 – 0.694 = 0.246
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Information Gain: Humidity
O T H W Play?

1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +

10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -

28

Humidity = high: 
p = 3/7     n = 4/7 Hh = 0.985

Humidity = Normal:
p = 6/7     n = 1/7 Ho= 0.592

Expected entropy: 
(7/14)×0.985 + (7/14)×0.592= 0.7785

Information gain: 
0.940 – 0.151 = 0.1515
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Which feature to split on? 
O T H W Play?

1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +

10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -

29

Information gain: 
Outlook:  0.246
Humidity: 0.151
Wind: 0.048
Temperature: 0.029

→ Split on Outlook
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An Illustrative Example (III)

30

Outlook 
Gain(S,Humidity)=0.151
Gain(S,Wind) = 0.048
Gain(S,Temperature) = 0.029
Gain(S,Outlook) = 0.246
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An Illustrative Example (III)

31

Outlook 

Overcast Rain
3,7,12,13 4,5,6,10,14

3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
Yes? ? 

O T H W Play?
1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +

10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -
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An Illustrative Example (III)

32

Outlook 

Overcast Rain
3,7,12,13 4,5,6,10,14

3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
Yes? ? 

Continue until:
• Every attribute is included in path, or,
• All examples  in the leaf have same label

O T H W Play?
1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +

10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -
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An Illustrative Example (IV)

33

=Humidity),Gain(S sunny .97-(3/5) 0-(2/5) 0 = .97

=Temp),Gain(S sunny .97- 0-(2/5) 1 = .57

=Wind),Gain(S sunny .97-(2/5) 1 - (3/5) .92= .02

Day    Outlook Temperature      Humidity    Wind PlayTennis
1       Sunny            Hot              High          Weak            No
2       Sunny            Hot              High         Strong           No
8       Sunny            Mild             High          Weak            No
9       Sunny            Cool            Normal      Weak          Yes
11      Sunny            Mild             Normal     Strong         Yes

Outlook 

Overcast Rain
3,7,12,13 4,5,6,10,14

3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
Yes? ? 



CIS419/519 Spring ’18

An Illustrative Example (V)

34

Outlook 

Overcast Rain
3,7,12,13 4,5,6,10,14

3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
Yes? ? 
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An Illustrative Example (V)

35

Outlook 

Overcast Rain
3,7,12,13 4,5,6,10,14

3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
YesHumidity ? 

NormalHigh
No Yes
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induceDecisionTree(S)
 1. Does S uniquely define a class? 

if all s ∈ S have the same label y: return S;

 2. Find the feature with the most information gain:
i = argmax i Gain(S, Xi)

 3. Add children to S:
for k in Values(Xi): 

Sk = {s ∈ S | xi = k}
addChild(S, Sk)
induceDecisionTree(Sk)

return S;

36
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An Illustrative Example (VI)

37

Outlook 

Overcast Rain
3,7,12,13 4,5,6,10,14

3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
YesHumidity Wind

NormalHigh
No Yes

WeakStrong
No Yes
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Hypothesis Space in Decision Tree 
Induction

 Conduct a search of the space of decision trees which can 
represent all possible discrete functions. (pros and cons)

 Goal: to find the best decision tree
 Best could be “smallest depth”
 Best could be “minimizing the expected number of tests”

 Finding a minimal decision tree consistent with a set of 
data is NP-hard.

 Performs a greedy heuristic search:  hill climbing without 
backtracking

 Makes statistically based decisions using all data

38
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History of Decision Tree Research
 Hunt and colleagues in Psychology used full search decision tree 

methods to model human concept learning in the 60s
 Quinlan developed ID3, with the information gain heuristics in the 

late 70s to learn expert systems from examples
 Breiman, Freidman and colleagues in statistics developed CART 

(classification and regression trees simultaneously)
 A variety of improvements in the 80s: coping with noise, continuous 

attributes, missing data, non-axis parallel etc.
 Quinlan’s updated algorithm, C4.5 (1993) is commonly used (New: C5)
 Boosting (or Bagging) over DTs is a very good general purpose 

algorithm

39
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Example
 Outlook = Sunny, Temp = Hot,  Humidity = Normal,  Wind = Strong,  NO

40

Outlook 

Overcast Rain
3,7,12,13 4,5,6,10,14

3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
YesHumidity Wind

NormalHigh
No Yes

WeakStrong
No Yes
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Overfitting - Example
 Outlook = Sunny, Temp = Hot,  Humidity = Normal,  Wind = Strong,  NO

41

Outlook 

Overcast Rain
3,7,12,13 4,5,6,10,14

3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
YesHumidity Wind

NormalHigh
No

WeakStrong
No Yes

WeakStrong
No Yes

Wind

This can always be done –
may fit noise or other 
coincidental regularities
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Our training data

42
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The instance space

43
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Overfitting the Data
 Learning a tree that classifies the training data perfectly may not lead 

to the tree with the best generalization performance.
 There may be noise in the training data the tree is fitting
 The algorithm might be making decisions based on very little data

 A hypothesis h is said to overfit the training data if there is another 
hypothesis h’, such that h has a smaller error than h’ on the training 
data but h has larger error on the test data than h’.

44

Complexity of tree

accuracy

On testing

On training
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Reasons for overfitting
 Too much variance in the training data

 Training data is not a representative sample 
of the instance space

 We split on features that are actually irrelevant

 Too much noise in the training data
 Noise = some feature values or class labels are incorrect
 We learn to predict the noise

 In both cases, it is a result of our will to minimize the 
empirical error when we learn, and the ability to do it 
(with DTs) 

45
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Pruning a decision tree
 Prune = remove leaves and assign majority label of the 

parent to all items
 Prune the children of S if:

 all children are leaves, and
 the accuracy on the validation set does not decrease if we assign 

the most frequent class label to all items at S.

46
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Avoiding Overfitting
 Two basic approaches

 Pre-pruning: Stop growing the tree at some point during construction 
when it is determined that there is not enough data to make reliable 
choices.

 Post-pruning: Grow the full tree and then remove nodes that seem not to 
have sufficient evidence.

 Methods for evaluating subtrees to prune
 Cross-validation: Reserve hold-out set to evaluate utility
 Statistical testing: Test if the observed regularity can be dismissed as 

likely to occur by chance
 Minimum Description Length: Is the additional complexity of the 

hypothesis smaller than remembering the exceptions?
 This is related to the notion of regularization that we will see in other 

contexts – keep the hypothesis simple. 

47

How can this be avoided with linear classifiers?

Next: a brief detour into explaining generalization and overfitting

Hand waving, for now. 
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Preventing Overfitting

48

h1 h2
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The i.i.d. assumption
 Training and test items are independently and identically 

distributed (i.i.d.): 

 There is a distribution P(X, Y) from which the data D = 
{(x, y)} is generated.
 Sometimes it’s useful to rewrite P(X, Y) as P(X)P(Y|X)

Usually P(X, Y) is unknown to us (we just know it exists)

 Training and test data are samples drawn from the 
same P(X, Y): they are identically distributed

 Each (x, y) is drawn independently from P(X, Y)

52
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Size of tree

Accuracy

On test data

On training data

Overfitting

 A decision tree overfits the training data when its accuracy 
on the training data goes up but its accuracy on unseen data 
goes down

53

Why this shape 
of curves? 
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Model complexity

Empirical 
Error

Overfitting

54

 Empirical error (= on a given data set):
The percentage of items in this data set are misclassified by 
the classifier f.

??
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Model complexity

Empirical 
Error

Overfitting

55

 Model complexity (informally):
How many parameters do we have to learn?

 Decision trees: complexity = #nodes
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Model complexity

Expected
Error

Overfitting

56

 Expected error:
What percentage of items drawn from P(x,y) do we expect to 
be misclassified by f? 

 (That’s what we really care about – generalization)
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Model complexity

Variance of a learner (informally)

 How susceptible is the learner to minor changes in the training data? 
 (i.e. to different samples from P(X, Y))

 Variance increases with model complexity 
 Think about extreme cases: a hypothesis space with one function vs. all functions. 
 Or, adding the “wind” feature in the DT earlier.
 The larger the hypothesis space is,  the more flexible the selection of the chosen 

hypothesis is as a function of the data. 
 More accurately: for each data set D, you will learn a different hypothesis h(D), that 

will have a different true error e(h); we are looking here at the variance of this 
random variable. 
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Variance
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Model complexity

Bias of a learner (informally)

 How likely is the learner to identify the target hypothesis? 
 Bias is low when the model is expressive (low empirical error) 

 Bias is high when the model is (too) simple 
 The larger the hypothesis space is,  the easiest it is to be close to the true 

hypothesis. 
 More accurately: for each data set D, you learn a different hypothesis h(D), that 

has a different true error e(h); we are looking here at the difference of the mean 
of this random variable from the true error. 
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Bias
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Model complexity

Expected
Error

Impact of bias and variance

59

 Expected error ≈ bias + variance

Variance
Bias
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Model complexity

Expected
Error

Model complexity

60

 Simple models: 
High bias and low variance

Variance
Bias

Complex models: 
High variance and low bias 
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Underfitting Overfitting

Model complexity

Expected
Error

Underfitting and Overfitting

61

 Simple models: 
High bias and low variance

Variance
Bias

Complex models: 
High variance and low bias 

This can be made more accurate for some loss functions. 
We will discuss a more precise and general theory that 
trades expressivity of models with empirical error
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Avoiding Overfitting
 Two basic approaches

 Pre-pruning: Stop growing the tree at some point during construction 
when it is determined that there is not enough data to make reliable 
choices.

 Post-pruning: Grow the full tree and then remove nodes that seem not to 
have sufficient evidence.

 Methods for evaluating subtrees to prune
 Cross-validation: Reserve hold-out set to evaluate utility
 Statistical testing: Test if the observed regularity can be dismissed as 

likely to occur by chance
 Minimum Description Length: Is the additional complexity of the 

hypothesis smaller than remembering the exceptions?
 This is related to the notion of regularization that we will see in other 

contexts – keep the hypothesis simple. 
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How can this be avoided with linear classifiers?

Next: a brief detour into explaining generalization and overfitting

Hand waving, for now. 
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Trees and Rules
 Decision Trees can be represented as Rules

 (outlook = sunny) and (humidity = normal) then YES
 (outlook = rain) and (wind = strong) then NO

 Sometimes Pruning can be done at the rules level
 Rules are generalized by 

erasing a condition (different!)

63

Outlook 

Overcast Rain
3,7,12,13 4,5,6,10,14

3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
YesHumidity Wind

NormalHigh
No

WeakStrong
No YesYes
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Continuous Attributes
 Real-valued attributes can, in advance, be discretized into ranges, 

such as big, medium, small
 Alternatively, one can develop splitting nodes based on thresholds of 

the form A<c that partition the data into examples that satisfy A<c
and A>=c. The information gain for these splits is calculated in the 
same way and compared to the information gain of discrete splits.

 How to find the split with the highest gain?
 For each continuous feature A:

 Sort examples according to the value of A
 For each ordered pair (x,y) with different labels

 Check the mid-point as a possible threshold, i.e.

Sa · x, Sa ¸ y
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Continuous Attributes
 Example:  

 Length (L):  10  15  21  28  32  40  50 
 Class:           - +   +    - +    +    -
 Check thresholds:   L < 12.5;  L < 24.5;  L < 45
 Subset of Examples= {…},      Split= k+,j-

 How to find the split with the highest gain ?
 For each continuous feature A:

 Sort examples according to the value of A
 For each ordered pair (x,y) with different labels

• Check the mid-point as a possible threshold. I.e,          

Sa · x, Sa ¸ y
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Missing Values
 Diagnosis = < fever, blood_pressure,…, blood_test=?,…> 

 Many times values are not available for all attributes 
during training or testing  (e.g., medical diagnosis)

 Training: evaluate Gain(S,a) where in some of the 
examples a value for a is not given 

66
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Missing Values
Outlook 

Overcast Rain
3,7,12,134,5,6,10,14

3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
Yes? ? 

=Humidity),Gain(Ssunny

=Temp),Gain(Ssunny .97- 0-(2/5) 1 = .57      

Day    Outlook Temperature      Humidity    Wind PlayTennis
1       Sunny            Hot              High          Weak            No
2       Sunny            Hot              High         Strong          No
8       Sunny            Mild             ??? Weak             No
9       Sunny            Cool            Normal     Weak            Yes
11      Sunny            Mild            Normal     Strong          Yes

 Fill in: assign the most likely value of Xi to s:
argmax k P( Xi = k ): Normal

 97-(3/5) Ent[+0,-3] -(2/5) Ent[+2,-0] = .97

 Assign fractional counts P(Xi =k) 
for each value of Xi to s 
 .97-(2.5/5) Ent[+0,-2.5] - (2.5/5) Ent[+2,-.5] < .97

Other suggestions?

𝐺𝐺𝐺𝐺𝐺𝐺𝐸𝐸 𝑆𝑆, 𝐺𝐺 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆 −�
|𝑆𝑆𝑣𝑣|
|𝑆𝑆| 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆𝑣𝑣)
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Missing Values
 Diagnosis = < fever, blood_pressure,…, blood_test=?,…> 

 Many times values are not available for all attributes during training 
or testing  (e.g., medical diagnosis)

 Training: evaluate Gain(S,a) where in some of the examples a value 
for a is not given 

 Testing:  classify an example without knowing the value of a

68



CIS419/519 Spring ’18

Missing Values

69

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14
3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
YesHumidity Wind

NormalHigh
No

WeakStrong
No YesYes

Outlook = ???, Temp = Hot,  Humidity = Normal,  Wind = Strong, label = ??

1/3 Yes + 1/3 Yes +1/3 No = Yes

Outlook = Sunny, Temp = Hot,  Humidity = ???,  Wind = Strong, label = ??   
Normal/High

Other suggestions?
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Other Issues
 Attributes with different costs 

 Change information gain so that low cost attribute are preferred
 Dealing with features with different # of values

 Alternative measures for selecting attributes
 When different attributes have different number of values 

information gain tends to prefer those with many values

 Oblique Decision Trees 
 Decisions are not axis-parallel

 Incremental Decision Trees induction
 Update an existing decision tree to account  for new examples 

incrementally  (Maintain consistency?) 
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Decision Trees as Features
 Rather than using decision trees to represent the target function it is 

becoming common to use small decision trees as features
 When learning over a large number of features, learning decision 

trees is difficult and the resulting tree may be very large  
 (over fitting)

 Instead, learn small decision trees, with limited depth.
 Treat them as “experts”; they are correct, but only on a small region in 

the domain. (what DTs to learn?  same every time?)
 Then, learn another function, typically a linear function, over these as 

features. 
 Boosting (but also other linear learners) are used on top of the small 

decision trees. (Either Boolean, or real valued features)

71

http://l2r.cs.uiuc.edu/%7Edanr/Teaching/CS446-17/Lectures/boost-DT.pdf
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Experimental Machine Learning
 Machine Learning is an Experimental Field and we will 

spend some time (in Problem sets) learning how to run 
experiments and evaluate results
 First hint: be organized; write scripts

 Basics:
 Split your data into two (or three) sets:

 Training data (often 70-90%)
 Test data (often 10-20%)
 Development data (10-20%)

 You need to report performance on test data, but you are 
not allowed to look at it.
 You are allowed to look at the development data (and use it to 

tweak parameters)
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N-fold cross validation
 Instead of a single test-training split:

 Split data into N equal-sized parts 

 Train and test N different classifiers
 Report average accuracy and standard deviation of the 

accuracy

73

train test
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Evaluation: significance tests
 You have two different classifiers, A and B
 You train and test them on the same data set using N-fold 

cross-validation
 For the n-th fold: 

accuracy(A, n), accuracy(B, n)
pn = accuracy(A, n) - accuracy(B, n)

 Is the difference between A and B’s accuracies significant?
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Hypothesis testing
 You want to show that hypothesis H is true, based on your 

data  
 (e.g.  H  = “classifier A and B are different”) 

 Define a null hypothesis H0
 (H0 is the contrary of what you want to show)

 H0 defines a distribution P(m |H0) over some statistic
 e.g. a distribution over the difference in accuracy between A and 

B

 Can you refute (reject) H0?
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Rejecting H0

 H0 defines a distribution P(M |H0) over some statistic M
 (e.g. M= the difference in accuracy between A and B)

 Select a significance value S 
 (e.g. 0.05, 0.01, etc.)
 You can only reject H0 if P(m |H0) ≤ S

 Compute the test statistic m from your data
 e.g. the average difference in accuracy over your N folds

 Compute P(m |H0) 
 Refute H0 with p ≤ S if P(m |H0) ≤ S
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Paired t-test
 Null hypothesis (H0; to be refuted): 

 There is no difference between A and B, i.e. the expected 
accuracies of A and B are the same 

 That is, the expected difference (over all possible data 
sets) between their accuracies is 0:

H0: E[pD]  = 0
 We don’t know the true E[pD]
 N-fold cross-validation gives us N samples of pD
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Paired t-test
 Null hypothesis H0: E[diffD]  = μ = 0
 m: our estimate of μ based on N samples of diffD

m = 1/N ∑n diffn

 The estimated variance S2:  
S2 = 1/(N-1) ∑1,N (diffn – m)2

 Accept Null hypothesis at significance level a if the     
following statistic lies in (-ta/2, N-1, +ta/2, N-1)
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Decision Trees - Summary
 Hypothesis Space: 

 Variable size (contains all functions)
 Deterministic;  Discrete and Continuous attributes 

 Search Algorithm
 ID3 - batch
 Extensions: missing values

 Issues:  
 What is the goal? 
 When to stop? How to guarantee good generalization?

 Did not address: 
 How are we doing? (Correctness-wise, Complexity-wise)
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