CIS 519/419
 Applied Machine Learning www.seas.upenn.edu/~cis519

Dan Roth
danroth@seas.upenn.edu

http://www.cis.upenn.edu/~danroth/ 461C, 3401 Walnut

Slides were created by Dan Roth (for CIS519/419 at Penn or CS446 at UIUC), Eric Eaton for CIS519/419 at Penn, or from other authors who have made their ML slides available.

Introduction - Summary

- We introduced the technical part of the class by giving two (very important) examples for learning approaches to linear discrimination.
- There are many other solutions.
- Question 1: Our solution learns a linear function; in principle, the target function may not be linear, and this will have implications on the performance of our learned hypothesis.
- Can we learn a function that is more flexible in terms of what it does with the feature space?
- Question 2: Can we say something about the quality of what we learn (sample complexity, time complexity; quality)

Decision Trees

- Earlier, we decoupled the generation of the feature space from the learning.
- Argued that we can map the given examples into another space, in which the target functions are linearly separable.
- Do we always want to do it? Think about the Badges problem
- How do we determine what are good mappings?

What's the best learning algorithm?

- The study of decision trees may shed some light on this.
- Learning is done directly from the given data representation.
- The algorithm "transforms" the data itself.

This Lecture

- Decision trees for (binary) classification
- Non-linear classifiers
- Learning decision trees (ID3 algorithm)
- Greedy heuristic (based on information gain) Originally developed for discrete features
- Some extensions to the basic algorithm
- Overfitting
- Some experimental issues

Representing Data

- Think about a large table, N attributes, and assume you want to know something about the people represented as entries in this table.
- E.g. own an expensive car or not;
- Simplest way: Histogram on the first attribute - own
- Then, histogram on first and second (own \& gender)
- But, what if the \# of attributes is larger: $\mathrm{N}=16$
- How large are the 1-d histograms (contingency tables) ? 16 numbers
- How large are the 2-d histograms? 16 -choose-2 $=120$ numbers
- How many 3-d tables? 560 numbers
- With 100 attributes, the 3-d tables need 161,700 numbers
- We need to figure out a way to represent data in a better way, and figure out what are the important attributes to look at first.
- Information theory has something to say about it - we will use it to better represent the data.

Decision Trees

- A hierarchical data structure that represents data by implementing a divide and conquer strategy
- Can be used as a non-parametric classification and regression method
- Given a collection of examples, learn a decision tree that represents it.
- Use this representation to classify new examples

The Representation

- Decision Trees

Expressivity of Decision Trees

- Decision

Trees

Decision Trees

- Output is a discrete category. Real valued outputs are possible (regression trees)
- There are efficient algorithms for processing large amounts of data (but not too many features)
- There are methods for handling noisy data (classification noise and attribute noise) and for handling missing attribute values
- Decision Trees

Decision Boundaries

- Usually, instances are represented as attribute-value pairs (color=blue, shape = square, +)
- Numerical values can be used either by discretizing or by using thresholds for splitting nodes
- In this case, the tree divides the features space into axisparallel rectangles, each labeled with one of the labels
- Decision

Trees

Today’s key concepts

- Learning decision trees (ID3 algorithm)
- Greedy heuristic (based on information gain) Originally developed for discrete features
- Overfitting
- What is it? How do we deal with it?

How can this be avoided with linear classifiers?

- Some extensions of DTs
- Principles of Experimental ML

Decision Trees

- Can represent any Boolean Function
- Can be viewed as a way to compactly represent a lot of data.
- Natural representation: (20 questions)
- The evaluation of the Decision Tree Classifier is easy
- Clearly, given data, there are many ways to represent it as a decision tree.
- Learning a good representation from data is the challenge.

High Normal
No Yes

Strong Weak
No Yes

Will I play tennis today?

- Features
- Outlook:
- Temperature:
- Humidity:
- Wind:
\{Sun, Overcast, Rain\}
\{Hot, Mild, Cool\}
\{High, Normal, Low\}
\{Strong, Weak\}
- Labels
- Binary classification task: $Y=\{+,-\}$

Will I play tennis today?

	0	T	H	w	Play?	Outlook:	S(unny),
1	S	H	H	w			O(vercast),
2	S	H H H	H H	s	+		R (ainy)
4	R	M	H	w	+	Temperature	$\mathrm{H}(\mathrm{ot})$, M(edium) C(ool)
5	R	c	N	w	+		
6	R	c	N	s	-		
7	O	c	N	s	+		
8	S	M	N	w	+	Humidity:	H(igh), N(ormal), L(ow)
10	R	M	N	w	+		
11	S	M	N	s	+		
12	O	M	H	s	+	Wind:	S(trong), W(eak)
13	0	H	N	w	+		
14	R	M	H	s			

Basic Decision Trees Learning Algorithm

- Data is processed in Batch (i.e. all the data available) Algorithm?
- Recursively build a decision tree top down.

	O	T	H	W	Play?
1	S	H	H	W	-
2	S	H	H	S	-
3	O	H	H	W	+
4	R	M	H	W	+
5	R	C	N	W	+
6	R	C	N	S	-
7	O	C	N	S	+
8	S	M	H	W	-
9	S	C	N	W	+
10	R	M	N	W	+
11	S	M	N	S	+
12	O	M	H	S	+
13	O	H	N	W	+
CIS	R	M	H	S	-

High Normal
No Yes

Strong Weak
No Yes

Basic Decision Tree Algorithm

- Let S be the set of Examples
- Label is the target attribute (the prediction)
- Attributes is the set of measured attributes
- ID3(S, Attributes, Label)

If all examples are labeled the same return a single node tree with Label
Otherwise Begin
$A=$ attribute in Attributes that best classifies S (Create a Root node for tree) for each possible value v of A

Add a new tree branch corresponding to $A=v$
Let $S v$ be the subset of examples in S with $A=v$
if $S v$ is empty: add leaf node with the common value
of Label in S

Else: below this branch add the subtree ID3(Sv, Attributes - \{a\}, Label)
End
Return Root

Picking the Root Attribute

- The goal is to have the resulting decision tree as small as possible (Occam's Razor)
- But, finding the minimal decision tree consistent with the data is NP-hard
- The recursive algorithm is a greedy heuristic search for a simple tree, but cannot guarantee optimality.
- The main decision in the algorithm is the selection of the next attribute to condition on.

Picking the Root Attribute

- Consider data with two Boolean attributes (A,B).

$$
\begin{aligned}
& <(A=0, B=0),->: \quad 50 \text { examples } \\
& <(A=0, B=1),->: 50 \text { examples } \\
& <(A=1, B=0),->: \quad 0 \text { examples } \\
& <(A=1, B=1),+>: 100 \text { examples }
\end{aligned}
$$

- What should be the first attribute we select?
- Splitting on A: we get purely labeled nodes.

Splitting on B: we don't get purely labeled nodes.

What if we have: $<(A=1, B=0),->: 3$ examples?

Picking the Root Attribute

- Consider data with two Boolean attributes (A,B).

$$
\begin{aligned}
& <(A=0, B=0),->: 50 \text { examples } \\
& <(A=0, B=1),->: 50 \text { examples } \\
& <(A=1, B=0),->:-0 \text { examples } 3 \text { examples } \\
& <(A=1, B=1),+>: 100 \text { examples }
\end{aligned}
$$

- What should be the first attribute we select?
- Trees looks structurally similar; which attribute should we choose

Picking the Root Attribute

- The goal is to have the resulting decision tree as small as possible (Occam's Razor)
- The main decision in the algorithm is the selection of the next attribute to condition on.
- We want attributes that split the examples to sets that are relatively pure in one label; this way we are closer to a leaf node.
- The most popular heuristics is based on information gain, originated with the ID3 system of Quinlan.

Entropy

- Entropy (impurity, disorder) of a set of examples, S, relative to a binary classification is:

$$
\operatorname{Entropy}(S)=-p_{+} \log \left(p_{+}\right)-p_{-} \log \left(p_{-}\right)
$$

- where \mathbf{P}_{+}is the proportion of positive examples in S and
$\mathbf{P}_{\text {. }}$ is the proportion of negatives.
- If all the examples belong to the same category: Entropy $=0$
- If all the examples are equally mixed $(0.5,0.5)$: Entropy $=1$
- Entropy = Level of uncertainty.
- In general, when p_{i} is the fraction of examples labeled i :

$$
\operatorname{Entropy}\left(S\left[p_{1}, p_{2}, \ldots, p_{k}\right]\right)=-\sum_{1}^{k} p_{i} \log \left(p_{i}\right)
$$

- Entropy can be viewed as the number of bits required, on average, to encode the class of labels. If the probability for + is 0.5 , a single bit is required for each example; if it is 0.8 -- can use less then 1 bit.

Entropy

- Entropy (impurity, disorder) of a set of examples, S, relative to a binary classification is:

$$
\operatorname{Entropy}(S)=-p_{+} \log \left(p_{+}\right)-p_{-} \log \left(p_{-}\right)
$$

- where \mathbf{P}_{+}is the proportion of positive examples in S and $\mathbf{P}_{\text {_ }}$ is the proportion of negatives.
- If all the examples belong to the same category: Entropy $=0$
- If all the examples are equally mixed (0.5, 0.5): Entropy = 1
- Entropy = Level of uncertainty.

Entropy

- Entropy (impurity, disorder) of a set of examples, S, relative to a binary classification is:

$$
\operatorname{Entropy}(S)=-p_{+} \log \left(p_{+}\right)-p_{-} \log \left(p_{-}\right)
$$

- where \mathbf{P}_{+}is the propprtion of positive examples in S and $\mathbf{P}_{\text {_ }}$ is the proportion f negatives.
- If all the examples be ong to the same category: Entropy = 0
- If all the examples ar equally mixed ($0.5,0.5$): Entropy $=1$
- Entropy = Level of urcertainty.

CIS419/519 Spring '18

High Entropy - High level of Uncertainty

Low Entropy - No
Uncertainty.

Information Gain

Sunny Overcast Rain

- The information gain of an attribute a is the expected reduction in entropy caused by partitioning on this attribute $\operatorname{Gain}(S, a)=\operatorname{Entropy}(S)-\sum_{v \in \text { values }(S)} \frac{\left|S_{v}\right|}{|S|} \operatorname{Entropy}\left(S_{v}\right)$
- Where:
- S_{v} is the subset of S for which attribute a has value v, and
- the entropy of partitioning the data is calculated by weighing the entropy of each partition by its size relative to the original set
- Partitions of low entropy (imbalanced splits) lead to high gain
- Go back to check which of the A, B splits is better

Will I play tennis today?

	0	T	H	w	Play?	Outlook:	S(unny),
1	S	H	H	w			O(vercast),
2	S	H H H	H H	s	+		R (ainy)
4	R	M	H	w	+	Temperature	$\mathrm{H}(\mathrm{ot})$, M(edium) C(ool)
5	R	c	N	w	+		
6	R	c	N	s	-		
7	O	c	N	s	+		
8	S	M	N	w	+	Humidity:	H(igh), N(ormal), L(ow)
10	R	M	N	w	+		
11	S	M	N	s	+		
12	O	M	H	s	+	Wind:	S(trong), W(eak)
13	0	H	N	w	+		
14	R	M	H	s			

Will I play tennis today?

	O	T	H	W	Play?
1	S	H	H	W	-
2	S	H	H	S	-
3	O	H	H	W	+
4	R	M	H	W	+
5	R	C	N	W	+
6	R	C	N	S	-
7	O	C	N	S	+
8	S	M	H	W	-
9	S	C	N	W	+
10	R	M	N	W	+
11	S	M	N	S	+
12	O	M	H	S	+
13	O	H	N	W	+
14	R	M	H	S	-

$$
\begin{aligned}
& \text { Current entropy: } \\
& p=9 / 14 \\
& n=5 / 14 \\
& \begin{aligned}
& H(Y)= \\
&-(9 / 14) \log _{2}(9 / 14) \\
& \quad-(5 / 14) \log _{2}(5 / 14) \\
& \approx 0.94
\end{aligned}
\end{aligned}
$$

Information Gain: Outlook

Information Gain: Humidity

	0	T	H	W	Play?	Humidity = high:
1	S	H	H	w	-	$p=3 / 7 \quad n=4 / 7 \quad \mathrm{H}_{\mathrm{h}}=0.985$
2	S	H	H	S	-	
3	0	H	H	w	+	$p=6 / 7 \quad n=1 / 7 \quad H_{0}=0.592$
4 5	R	M	H N	w	+	
6	R	C	N	S	-	
7	O	C	N	S	+	Expected entropy:
8	S	M	H	w	-	$(7 / 14) \times 0.985+(7 / 14) \times 0.592=0.7785$
9	S	C	N	w	+	
10	R	M	N	W	+	
11	S	M	N	s	+	Information gain:
12	0	M	H	S	+	$0.940-0.151=0.1515$
13	0	H	N	w	+	
14	R	M	H	S	-	

Which feature to split on?

	o	T	H	w	Play?	Information gain:
1	5	H	H	w		
2	S	H	H	s	-	Outlook: 0.246
3	O	H	H	w	+	Humidity: 0.151
4	R	M	${ }_{\mathrm{H}}^{\mathrm{N}}$	w	+	Wind: 0.048
6	R	c	N	s	-	
7	0	c	N	s	+	Temperature: 0.029
8	S	M	H	w	-	
9	S	C	N	w	+	
10	R	M	N	w	+	\rightarrow Split on Outlook
11	S	M	N	s	+	
12	O	M	H	s	+	
13	0	H	N	w	+	
14	R	M	H	s	-	

An Illustrative Example (III)

Gain(S,Humidity)=0.151
Gain(S,Wind) $=0.048$
Gain(S,Temperature) $=0.029$
Gain(S,Outlook) $=0.246$

An Illustrative Example (III)

	O	T	H	W	Play?
1	S	H	H	W	-
2	S	H	H	S	-
3	O	H	H	W	+
4	R	M	H	W	+
5	R	C	N	W	+
6	R	C	N	S	-
7	O	C	N	S	+
8	S	M	H	W	-
9	S	C	N	W	+
10	R	M	N	W	+
11	S	M	N	S	+
12	O	M	H	S	+
13	O	H	N	W	+
14	R	M	H	S	-

An Illustrative Example (III)

Continue until:

- Every attribute is included in path, or,
- All examples in the leaf have same label

	O	T	H	W	Play?
1	S	H	H	W	-
2	S	H	H	S	-
3	O	H	H	W	+
4	R	M	H	W	+
5	R	C	N	W	+
6	R	C	N	S	-
7	O	C	N	S	+
8	S	M	H	W	-
9	S	C	N	W	+
10	R	M	N	W	+
11	S	M	N	S	+
12	O	M	H	S	+
13	O	H	N	W	+
14	R	M	H	S	-

An Illustrative Example (IV)

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes

An Illustrative Example (V)

An Illustrative Example (V)

induceDecisionTree(S)

- 1. Does S uniquely define a class?
if all $s \in S$ have the same label y : return S;
- 2. Find the feature with the most information gain:

$$
\mathrm{i}=\operatorname{argmax}_{\mathrm{i}} \operatorname{Gain}\left(\mathrm{~S}, \mathrm{X}_{\mathrm{i}}\right)
$$

- 3. Add children to S:
for k in Values $\left(\mathrm{X}_{\mathrm{i}}\right)$:

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{k}}=\left\{\mathrm{s} \in \mathrm{~S} \mid \mathrm{x}_{\mathrm{i}}=k\right\} \\
& \text { addChild }\left(\mathrm{S}, \mathrm{~S}_{\mathrm{k}}\right) \\
& \text { induceDecisionTree }\left(\mathrm{S}_{\mathrm{k}}\right)
\end{aligned}
$$

return S;

An Illustrative Example (VI)

Hypothesis Space in Decision Tree Induction

- Conduct a search of the space of decision trees which can represent all possible discrete functions. (pros and cons)
- Goal: to find the best decision tree
- Best could be "smallest depth"
- Best could be "minimizing the expected number of tests"
- Finding a minimal decision tree consistent with a set of data is NP-hard.
- Performs a greedy heuristic search: hill climbing without backtracking
- Makes statistically based decisions using all data

History of Decision Tree Research

- Hunt and colleagues in Psychology used full search decision tree methods to model human concept learning in the 60s
- Quinlan developed ID3, with the information gain heuristics in the late 70s to learn expert systems from examples
- Breiman, Freidman and colleagues in statistics developed CART (classification and regression trees simultaneously)
- A variety of improvements in the 80s: coping with noise, continuous attributes, missing data, non-axis parallel etc.
- Quinlan's updated algorithm, C4.5 (1993) is commonly used (New: C5)
- Boosting (or Bagging) over DTs is a very good general purpose algorithm

Example

- Outlook = Sunny, Temp = Hot, Humidity = Normal, Wind = Strong, NO

Overfitting - Example

- Outlook = Sunny, Temp = Hot, Humidity = Normal, Wind = Strong, NO

Sunny Overcast
Rain
1,2,8,9,11 3,7,12,13 4,5,6,10,14

2+,3-
4+,0Yes Wind High Normal No

Wind
Strong Weak
No Yes

This can always be done may fit noise or other coincidental regularities

Our training data

Overfitting the Data

- Learning a tree that classifies the training data perfectly may not lead to the tree with the best generalization performance.
- There may be noise in the training data the tree is fitting
- The algorithm might be making decisions based on very little data
- A hypothesis h is said to overfit the training data if there is another hypothesis h^{\prime}, such that h has a smaller error than h^{\prime} on the training data but h has larger error on the test data than h '.
accuracy

Reasons for overfitting

- Too much variance in the training data
- Training data is not a representative sample of the instance space
- We split on features that are actually irrelevant
- Too much noise in the training data
- Noise = some feature values or class labels are incorrect
- We learn to predict the noise
- In both cases, it is a result of our will to minimize the empirical error when we learn, and the ability to do it (with DTs)

Pruning a decision tree

- Prune = remove leaves and assign majority label of the parent to all items
- Prune the children of S if:
- all children are leaves, and
" the accuracy on the validation set does not decrease if we assign the most frequent class label to all items at S .

Avoiding Overfitting

How can this be avoided with linear classifiers?

- Two basic approaches
- Pre-pruning: Stop growing the tree at some point during construction when it is determined that there is not enough data to make reliable choices.
- Post-pruning: Grow the full tree and then remove nodes that seem not to have sufficient evidence.
- Methods for evaluating subtrees to prune
- Cross-validation: Reserve hold-out set to evaluate utility
- Statistical testing: Test if the observed regularity can be dismissed as likely to occur by chance
- Minimum Description Length: Is the additional complexity of the hypothesis smaller than remembering the exceptions?
- This is related to the notion of regularization that we will see in other contexts - keep the hypothesis simple.

> Hand waving, for now.

Next: a brief detour into explaining generalization and overfitting

Preventing Overfitting

The i.i.d. assumption

- Training and test items are independently and identically distributed (i.i.d.):
- There is a distribution $P(\mathbf{X}, \mathrm{Y})$ from which the data $\mathcal{D}=$ $\{(\mathbf{x}, \mathrm{y})\}$ is generated.
- Sometimes it's useful to rewrite $P(\mathbf{X}, \mathrm{Y})$ as $P(\mathbf{X}) P(\mathrm{Y} \mid \mathbf{X})$ Usually $P(\mathbf{X}, \mathrm{Y})$ is unknown to us (we just know it exists)
- Training and test data are samples drawn from the same $P(\mathrm{X}, \mathrm{Y})$: they are identically distributed
- Each (\mathbf{x}, y) is drawn independently from $P(\mathbf{X}, \mathrm{Y})$

Overfitting

- A decision tree overfits the training data when its accuracy on the training data goes up but its accuracy on unseen data goes down

Overfitting

- Empirical error (= on a given data set):

The percentage of items in this data set are misclassified by the classifier f.

Overfitting

- Model complexity (informally):

How many parameters do we have to learn?

- Decision trees: complexity = \#nodes

Overfitting

Expected

 Error

- Expected error:

What percentage of items drawn from $P(\mathbf{x}, \mathrm{y})$ do we expect to be misclassified by f ?

- (That's what we really care about - generalization)

Variance of a learner (informally)

- How susceptible is the learner to minor changes in the training data?
- (i.e. to different samples from P(X,Y))
- Variance increases with model complexity
- Think about extreme cases: a hypothesis space with one function vs. all functions.
- Or, adding the "wind" feature in the DT earlier.
- The larger the hypothesis space is, the more flexible the selection of the chosen hypothesis is as a function of the data.
- More accurately: for each data set D, you will learn a different hypothesis h(D), that will have a different true error e(h); we are looking here at the variance of this random variable.
CIS419/519 Spring '18

Bias of a learner (informally)

- How likely is the learner to identify the target hypothesis?
- Bias is low when the model is expressive (low empirical error)
- Bias is high when the model is (too) simple
- The larger the hypothesis space is, the easiest it is to be close to the true hypothesis.
- More accurately: for each data set D, you learn a different hypothesis h(D), that has a different true error e(h); we are looking here at the difference of the mean of this random variable from the true error.

Impact of bias and variance

- Expected error \approx bias + variance

Model complexity

Underfitting and Overfitting

Expected Error

Overfitting

- Simple models: High bias and low variance

Variance Bias
Model cumplexity
Complex models:
High variance and low bias

- This can be made more accurate for some loss functions.
- We will discuss a more precise and general theory that trades expressivity of models with empirical error

Avoiding Overfitting

How can this be avoided with linear classifiers?

- Two basic approaches
- Pre-pruning: Stop growing the tree at some point during construction when it is determined that there is not enough data to make reliable choices.
- Post-pruning: Grow the full tree and then remove nodes that seem not to have sufficient evidence.
- Methods for evaluating subtrees to prune
- Cross-validation: Reserve hold-out set to evaluate utility
- Statistical testing: Test if the observed regularity can be dismissed as likely to occur by chance
- Minimum Description Length: Is the additional complexity of the hypothesis smaller than remembering the exceptions?
- This is related to the notion of regularization that we will see in other contexts - keep the hypothesis simple.

Hand waving, for now.
Next: a brief detour into explaining generalization and overfitting

Trees and Rules

- Decision Trees can be represented as Rules
- (outlook = sunny) and (humidity = normal) then YES
- (outlook = rain) and (wind = strong) then NO
- Sometimes Pruning can be done at the rules level
- Rules are generalized by

Outlook
erasing a condition (different!)

High
No

Normal
Yes

Strong Weak No Yes

Continuous Attributes

- Real-valued attributes can, in advance, be discretized into ranges, such as big, medium, small
- Alternatively, one can develop splitting nodes based on thresholds of the form $A<c$ that partition the data into examples that satisfy $A<c$ and $A>=c$. The information gain for these splits is calculated in the same way and compared to the information gain of discrete splits.
- How to find the split with the highest gain?
- For each continuous feature A:
- Sort examples according to the value of A
- For each ordered pair (x, y) with different labels
- Check the mid-point as a possible threshold, i.e.

$$
S_{a \cdot x}, S_{a, y}
$$

Continuous Attributes

- Example:
- Length (L): 10152128324050
- Class: - + + - + + -
- Check thresholds: L < 12.5; L < 24.5; L < 45
- Subset of Examples= $\{. .\},$.$\quad Split= k+, j-$
- How to find the split with the highest gain ?
- For each continuous feature A:
- Sort examples according to the value of A
- For each ordered pair (x, y) with different labels
- Check the mid-point as a possible threshold. I.e,

$$
S_{a \cdot x} S_{a, y}
$$

Missing Values

- Diagnosis = < fever, blood_pressure,..., blood_test=?,...>
- Many times values are not available for all attributes during training or testing (e.g., medical diagnosis)
- Training: evaluate Gain(S,a) where in some of the examples a value for a is not given
$\operatorname{Gain}(S, a)=\operatorname{Entropy}(S)-\sum \frac{\left|S_{v}\right|}{|S|}$ Entropy $\left(S_{v}\right)$

Other suggestions?

Missing Values

Missing Values

- Diagnosis = < fever, blood_pressure,..., blood_test=?,...>
- Many times values are not available for all attributes during training or testing (e.g., medical diagnosis)
- Training: evaluate Gain(S,a) where in some of the examples a value for a is not given
- Testing: classify an example without knowing the value of a

Missing Values

Normal/High_
Outlook = Sunny, Temp = Hot, Humidity = ???, Wind = Strong, label = ??
Outlook = ???, Temp = Hot, Humidity = Normal, Wind = Strong, label = ??
Outlook $\quad 1 / 3$ Yes $+1 / 3$ Yes $+1 / 3 \mathrm{No}=$ Yes

Other Issues

- Attributes with different costs
- Change information gain so that low cost attribute are preferred
- Dealing with features with different \# of values
- Alternative measures for selecting attributes
- When different attributes have different number of values information gain tends to prefer those with many values
- Oblique Decision Trees
- Decisions are not axis-parallel
- Incremental Decision Trees induction
- Update an existing decision tree to account for new examples incrementally (Maintain consistency?)

Decision Trees as Features

- Rather than using decision trees to represent the target function it is becoming common to use small decision trees as features
- When learning over a large number of features, learning decision trees is difficult and the resulting tree may be very large
\rightarrow (over fitting)
- Instead, learn small decision trees, with limited depth.
- Treat them as "experts"; they are correct, but only on a small region in the domain. (what DTs to learn? same every time?)
- Then, learn another function, typically a linear function, over these as features.
- Boosting (but also other linear learners) are used on top of the small decision trees. (Either Boolean, or real valued features)

Experimental Machine Learning

- Machine Learning is an Experimental Field and we will spend some time (in Problem sets) learning how to run experiments and evaluate results
- First hint: be organized; write scripts
- Basics:
- Split your data into two (or three) sets:
- Training data (often 70-90\%)
- Test data (often 10-20\%)
- Development data (10-20\%)
- You need to report performance on test data, but you are not allowed to look at it.
- You are allowed to look at the development data (and use it to tweak parameters)

N -fold cross validation

- Instead of a single test-training split:
- Split data into N equal-sized parts

- Train and test N different classifiers
- Report average accuracy and standard deviation of the accuracy

Evaluation: significance tests

- You have two different classifiers, A and B
- You train and test them on the same data set using N -fold cross-validation
- For the n-th fold:

$$
\begin{aligned}
& \operatorname{accuracy}(A, n), \operatorname{accuracy}(B, n) \\
& p_{n}=\operatorname{accuracy}(A, n)-\operatorname{accuracy}(B, n)
\end{aligned}
$$

- Is the difference between A and B's accuracies significant?

Hypothesis testing

- You want to show that hypothesis H is true, based on your data
- (e.g. $H=$ "classifier A and B are different")
- Define a null hypothesis H_{0}
- (H_{0} is the contrary of what you want to show)
- H_{0} defines a distribution $\mathrm{P}\left(\mathrm{m} / \mathrm{H}_{0}\right)$ over some statistic
- e.g. a distribution over the difference in accuracy between A and B
- Can you refute (reject) H_{0} ?

Rejecting H_{0}

- H_{0} defines a distribution $\mathrm{P}\left(\mathrm{M} / \mathrm{H}_{0}\right)$ over some statistic M
- (e.g. $M=$ the difference in accuracy between A and B)
- Select a significance value S
- (e.g. 0.05, 0.01, etc.)
- You can only reject HO if $\mathrm{P}\left(m / \mathrm{H}_{0}\right) \leq \mathrm{S}$
- Compute the test statistic m from your data
- e.g. the average difference in accuracy over your N folds
- Compute $\mathrm{P}\left(m / \mathrm{H}_{0}\right)$
- Refute H_{0} with $p \leq \mathrm{S}$ if $\mathrm{P}\left(m / \mathrm{H}_{0}\right) \leq \mathrm{S}$

Paired t-test

- Null hypothesis (H_{0}; to be refuted):
- There is no difference between A and B, i.e. the expected accuracies of A and B are the same
- That is, the expected difference (over all possible data sets) between their accuracies is 0 :

$$
\mathrm{H}_{0}: E\left[p_{D}\right]=0
$$

- We don't know the true $E\left[p_{D}\right]$
- N-fold cross-validation gives us N samples of p_{D}

Paired t-test

- Null hypothesis $H_{0}: E\left[\right.$ diff $\left._{D}\right]=\mu=0$
- m: our estimate of μ based on N samples of diff $_{D}$

$$
\mathrm{m}=1 / \mathrm{N} \sum_{n} \mathrm{diff}_{\mathrm{n}}
$$

- The estimated variance S^{2} :

$$
S^{2}=1 /(N-1) \sum_{1, N}\left(\text { diff }_{n}-m\right)^{2}
$$

- Accept Null hypothesis at significance level a if the following statistic lies in $\left(-\mathrm{t}_{a / 2, \mathrm{~N}-1},+\mathrm{t}_{a / 2, \mathrm{~N}-1}\right)$

$$
\frac{\sqrt{N} m}{S} \sim t_{N-1}
$$

Decision Trees - Summary

- Hypothesis Space:
- Variable size (contains all functions)
- Deterministic; Discrete and Continuous attributes
- Search Algorithm
- ID3 - batch
- Extensions: missing values
- Issues:
- What is the goal?
- When to stop? How to guarantee good generalization?
- Did not address:
- How are we doing? (Correctness-wise, Complexity-wise)

