Python implementation of
Decision Tree, Stochastic
Gradient Descent, and Cross
Validation

Balance Scale Data Set

* This data set was generated to model psychological experimental
results.

* Each example is classified as having the balance scale tip to the right,
tip to the left, or be balanced.

* The attributes are the left weight, the left distance, the right weight,
and the right distance.

* The correct way to find the class is the greater of (left-distance * left-
weight) and (right-distance * right-weight).

* If they are equal, it is balanced.

Import libraries

* import numpy as np

* import pandas as pd

* froms
* froms
e from s
* froms

<

K

<

K

earn.cross_validation import train_test_split
earn.tree import DecisionTreeClassifier
earn.metrics import accuracy_score

earn import tree

Read from file

» data = pd.read_csv(

... 'http://archive.ics.uci.edu/ml/machine-learning-databases/balance-
scale/balance-scale.data’,

sep=",", header= None)

Print length of dataset

* print('Dataset length:', len(name))

Dataset length: 625

Data Slicing

e Dataset consists of 5 attributes
4 feature attributes and 1 target attribute
* The index of the target attribute is 1st

e X = data.values|:,1:5]
e Y = data.values[:,0]

Split dataset between train and test
e X_train, X_test, y train, y test = train_test_split(X, Y, test_size = 0.3)

e X_train and y_train = training data
e X _test and y_test = test data

* Test_size = test set will be 30% of whole dataset and training will be
70%

Decision Tree Training

e clf _entropy = DecisionTreeClassifier(max_depth=3)
e cIf_entropy.fit(X_train, y _train)

* Result

e DecisionTreeClassifier(compute importances=None, criterion="'gini’,
max_depth=3, max_features=None, max_leaf _nodes=None,
min_density=None, min_samples_leaf=1, min_samples_split=2,

random_state=None, splitter="best')

Prediction

v pred_en =clf entropy.predict(X_test)
*y pred _en

Stochastic Gradient Descent

e from sklearn.linear_model import SGDClassifier
X=1[0.,,0.], [1., 1.]]

y =10, 1]
clf = SGDClassifier(loss="hinge", penalty="12")
clf.fit(X, y)

- Predict new values

clf.predict([[2., 2.]])

Cross Validation

* import numpy as np

from sklearn.cross_validation import KFold
 X=np.array([[1, 2], [3, 4], [1, 2], [3, 4]])

e y=np.array([1, 2, 3, 4])

kf = KFold(4, n_folds=2)

len(kf)

¢ 2

e print(kf)

* sklearn.cross_validation.KFold(n=4, n_folds=2, shuffle=False,
random_state=None)

Cross Validation

 for train_index, test_index in kf:
print('TRAIN:', train_index, 'test:’, test_index)

TRAIN: [2 3] test: [0 1]
TRAIN: [0 1] test: [2 3]

END

