Recitation #9 CIS 519

CIS 519 TA Team

Overview

- Multinomial Naïve Bayes
 - Model
 - Code
- Gaussian Naïve Bayes
 - Mode
 - Code

How do we model it?

A Multinomial Bag of Words

- We are given a collection of documents written in a three word language {a, b, c}. All the documents have exactly n words (each word can be either a, b or c).
- We are given a labeled document collection {D₁, D₂,..., D_m}. The label y_i of document D_i is 1 or 0, indicating whether D_i is "good" or "bad".
- This model uses the multinominal distribution. That is, a_i (b_i, c_i, resp.) is the number of times word a (b, c, resp.) appears in document D_i.
- Therefore: $a_i + b_i + c_i = |D_i| = n$.
- In this generative model, we have:

 $P(D_{i}|y=1) = n!/(a_{i}! b_{i}! c_{i}!) \alpha_{1}^{a_{i}} \beta_{1}^{b_{i}} \gamma_{1}^{c_{i}}$

where α_1 (β_1 , γ_1 resp.) is the probability that **a** (**b**, **c**) appears in a "good" document.

• Similarly, $P(D_i | y = 0) = n!/(a_i! b_i! c_i!) \alpha_0^{a_i} \beta_0^{b_i} \gamma_0^{c_i}$

Unlike the discriminative case, the "game" here is different:

□ We make an assumption on how the data is being generated.

 \Box (multinomial, with α_i (β_i, γ_i)

- Now, we observe documents, and estimate these parameters.
- Once we have the parameters, we can predict the corresponding label.

A Multinomial Bag of Words (2)

- We are given a collection of documents written in a three word language {a, b, c}. All the documents have exactly n words (each word can be either a, b or c).
- We are given a labeled document collection {D₁, D₂ ... , D_m}. The label y_i of document D_i is 1 or 0, indicating whether D_i is "good" or "bad".

- The classification problem: given a document D, determine if it is good or bad; that is, determine P(y|D).
- This can be determined via Bayes rule: P(y|D) = P(D|y) P(y)/P(D)

• But, we need to know the parameters of the model to compute that.

A Multinomia

- Notice that this is an important trick to write down the joint probability without knowing what the outcome of the experiment is. The ith expression evaluates to $p(D_i, y_i)$ (Could be written as a sum with multiplicative y, but less convenient)
- How do we estimate the paramete
- We derive the most likely value of the likelihood of the observed data.
- $PD = \prod_{i} P(y_{i}, D_{i}) = \prod_{i} P(D_{i} | y_{i}) P(y_{i}) =$
 - We denote by $P(y_i=1) = \eta'$ the probabilit (at an example is "good" (y_i=1; otherwise y_i=0). Then:

's defined above, by maximizing the log

Labeled data, assuming that the examples are independent

- $\Pi_i P(y, D_i) = \Pi_i [(\eta n!/(a_i! b_i! c_i!) \alpha_1^{a_i} \beta_1^{b_i} \gamma_1^{c_i})^{y_i} c((1 \eta') n!/(a_i! b_i! c_i!) \alpha_0^{a_i} \beta_0^{b_i} \gamma_0^{c_i})^{1-y_i}]$
- We want to maximize it with respect to each of the parameters. We first compute log (PD) and then differentiate: Makes sense?
- $\log(PD) = \sum_i y_i$ [$\log(\eta') + C + a_i \log(\alpha_1) + b_i \log(\beta_1) + c_i \log(\gamma_1) + c_i \log(\gamma_$ $(1 - y_i) \left[\log(1 - \eta') + C' + a_i \log(\alpha_0) + b_i \log(\beta_0) + c_i \log(\gamma_0) \right]$
- dlogPD/ $\eta' = \sum_{i} [y_i / \eta' (1 y_i)/(1 \eta')] = 0 \rightarrow \sum_{i} (y_i \eta') = 0 \rightarrow (\eta = \sum_{i} y_i / m)$
- The same can be done for the other 6 parameters. However, notice that they are not independent: $\alpha_0 + \beta_0^- + \gamma_0 = \alpha_1 + \beta_1 + \gamma_1 = 1$ and also $a_i + b_i + c_i = |D_i| = n$.

Code

- >>> import numpy as np
- >>> X = np.random.randint(5, size=(6, 100))
- >>> y = np.array([1, 2, 3, 4, 5, 6])
- >>> from sklearn.naive_bayes import MultinomialNB
- >>> clf = MultinomialNB()
- >>> clf.fit(X, y)
- MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)
- >>> print(clf.predict(X[2:3]))
- [3]

Naïve Bayes: Continuous Features

- X_i can be continuous
- We can still use

$$P(X_1, \dots, X_n | Y) = \prod_i P(X_i | Y)$$

• And

$$P(Y = y | X_1, \dots, X_n) = \frac{P(Y = y) \prod_i P(X_i | Y = y)}{\sum_j P(Y = y_j) \prod_i P(X_i | Y = y_j)}$$

• Naïve Bayes classifier:

$$Y = \arg\max_{y} P(Y = y) \prod_{i} P(X_i | Y = y)$$

• Assumption: P(X_i|Y) has a Gaussian distribution

The Gaussian Probability Distribution • Gaussian probability distribution also called *normal* distribution.

- Daussian probability distribution also called normal
- It is a continuous distribution with pdf:
 - μ = mean of distribution

 σ^2 = variance of distribution

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

x is a continuous variable (- $\infty \le x \le \infty$)

• Probability of x being in the range [a, b] cannot be evaluated analytically (has to be looked up in a table)

Naïve Bayes: Continuous Features • P(X_i|Y) is Gaussian

Training: estimate mean and standard deviation

 $\mu_i = E[X_i | Y = y]$ $\sigma_i^2 = E[(X_i - \mu_i)^2 | Y = y]$

Note that the following slides abuse notation significantly. Since P(x) =0 for continues distributions, we think of P (X=x| Y=y), not as a classic probability distribution, but just as a function $f(x) = N(x, 1, \frac{3}{4}^2)$. f(x) behaves as a probability distribution in the sense that 8 x, $f(x) \downarrow 0$ and the values add up to 1. Also, note that f(x) satisfies Bayes Rule, that is, it is true that: $f_Y(y|X = x) = f_X (x|Y = y) f_Y (y)/f_X(x)$

Naïve Bayes: Continuous Features • P(X_i|Y) is Gaussian

Training: estimate mean and standard deviation

$$\mu_i = E[X_i | Y = y]$$

$$\sigma_i^2 = E[(X_i - \mu_i)^2 | Y = y]$$

X ₁	X ₂	X_3	Y
2	3	1	1
-1.2	2	.4	1
2	0.3	0	0
2.2	1.1	0	1

Naïve Bayes: Continuous Features • P(X_i|Y) is Gaussian

Training: estimate mean and standard deviation

$$\mu_i = E[X_i | Y = y]$$

$$\sigma_i^2 = E[(X_i - \mu_i)^2 | Y = y]$$

X ₁	X_2	X_3	Y
2	3	1	1
-1.2	2	.4	1
2	0.3	0	0
2.2	1.1	0	1

$$\mu_1 = E[X_1|Y=1] = \frac{2+(-1.2)+2.2}{3} = 1$$

$$\sigma_1^2 = E[(X_1 - \mu_1)|Y=1] = \frac{(2-1)^2 + (-1.2-1)^2 + (2.2-1)^2}{3} = 2.43$$

11

Code

- >>> from sklearn import datasets
- >>> iris = datasets.load_iris()
- >>> from sklearn.naive_bayes import GaussianNB
- >>> gnb = GaussianNB()
- >>> y_pred = gnb.fit(iris.data, iris.target).predict(iris.data)
- >>> print("Number of mislabeled points out of a total %d points : %d"
- ... % (iris.data.shape[0], (iris.target != y_pred).sum()))
- Number of mislabeled points out of a total 150 points : 6

Reference

• <u>http://scikit-</u>

<u>learn.org/stable/modules/generated/sklearn.naive_bayes.Multinomia</u> <u>INB.html</u>

- <u>http://scikit-learn.org/stable/modules/naive_bayes.html</u>
- <u>http://scikit-</u> learn.org/stable/auto_examples/datasets/plot_iris_dataset.html