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How do we model it? -

Our eventual goal will be: Given a document,

— predict whether it’s “good” or “bad”

A Multinomial Bag of Words

word language {a, b, c}. All the
era, b orc).

We are given a collection of documents written in a thr
documents have exactly n words (each word can he ei

We are given a labeled document collection {D,,
or 0, indicating whether D.is “good” or “bad”.

..., D,}. The label y, of document D;is 1

This model uses the multinominal distribution. That is, a; (b, c, resp.) is the number of
times word a (b, c, resp.) appears in document D,

Therefore: a,+b+c=|D =n.
In this generative model, we have:
P(D:|y =1) =n!/(a,! b,! ¢.!) @, B,Piy C
where a; (71, Y, resp.) is the probability that a (b, c) appears in a “good” document.
Similarly, P(D;|ly=0)=n!/(a!b!c!) a2~ B,y

1 Unlike the discriminative case, the “game” here is different:

d We make an assumption on how the data is being generated.
O (multinomial, with a; (875, ;)
L Now, we observe documents, and estimate these parameters.
d Once we have the parameters, we can predict the corresponding label.




A Multinomial Bag of Words (2)

* We are given a collection of documents written in a three word language {a, b, c}. All the
documents have exactly n words (each word can be either a, b or c).

* We are given a labeled document collection {D,, D, ..., D,.}. The label y,of document D;is 1
or 0, indicating whether D.is “good” or “bad”.

* The classification problem: given a document D, determine if it is good or bad; that is,
determine P(y|D).

* This can be determined via Bayes rule: P(y|D) = P(D|y) P(y)/P(D)

e But, we need to know the parameters of the model to compute that.



A M U ‘tl NOM |a experiment is. The ith expression evaluates to p(D;, v

Notice that this is an important trick to write down the
joint probability without knowing what the outcome of the

(Could be written as a sum with multiplicative y, but less convenient)

How do we estimate the paramet

We derive the most likely value of t s defined above, by maximizing the log

likelihood of the observed data.

PD =1I1I; P(y;, D;) = 11, P(D, |yi ) P(yi) =

 We denote by P(yi=1) =7 " the probabilit
Then:

IT, P(y, D;) = IL; [(" 7 n!/(a;! bl ¢!) @@ By, )i e((1-17) nl/(al bl ¢l) a g% ™ By Py )]

Labeled data, assuming that the
examples are independent
t an example is “good” (y,=1; otherwise y=0).

We want to maximize it with respect to each of the parameters. We first comnute log (PD)

and then differentiate: Makes sense

-J

log(PD) =Zi Yi [log(n’) + C + a; log(a,) + b; log(8™,) + ¢; log(y,) + \/
(1-y;) [log(1-n") + C' + a, log(a,) + b; log(L ™) + ¢, log(y,)]
dlogPD/n " = ZI ly,/n" -(1-y)/(1-n")]=0 =>» Zi (y,-n)=0 = 7= ZI Vil

The same can be done for the other 6 parameters. However, notice that they are not
independent: ay+ 7o+ Vo=a,+ B+ V,=1and alsoa,+ b+ ¢,= |D,| =n.



Code

* >>> mport numpy as np

e >>> X = np.random.randint(5, size=(6, 100))

e >>>y =np.array([1, 2, 3, 4, 5, 6])

e >>> from sklearn.naive_bayes import MultinomialNB

e >>> clf = MultinomialNB()

o >>> clffit(X, y)

* MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)
e >>> print(clf.predict(X[2:3]))

* [3]



Naive Bayes: Continuous Features

» X; can be continuous
* We can still use

P(X1,...,X,|Y) =L, P(Xi]Y)
* And

PY =yl X1, ... X,) = = L], POGIY=0)

Z:j P(Y=y;) | [, P(XilY=y;)

* Naive Bayes classifier:

Y = argmax P(Y = y) HP(Xi‘Y =Y)
Y i

 Assumption: P(X|Y) has a Gaussian distribution
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The Gaussian ProbabilitydDistribution

* Gaussian probability distribution also called normal distribution.
* It is a continuous distribution with pdf:
e

1 = mean of distribution p(x) = e

o® = variance of distribution oV2r

X is a continuous variable (- < x < )
* Probability of x being in the range [a, b] cannot be evaluated
analytically (has to be looked up in a table)

mode=median=mean = i

C(x-u)
20

1
p(X)Z O'-‘/Z_ﬂ'

g=standard deviaton
B3 % of area within +1o

e gaussian




Naive Bayes: Continuous Features
* P(Xi|Y) is Gaussian

» Training: estimate mean and standard deviation
pi = BIXG|Y =y
of = E[(Xi — )Y =y

Note that the following slides abuse notation significantly.
Since P(x) =0 for continues distributions, we think of
P (X=x| Y=y), not as a classic probability distribution, but
just as a function f(x) = N(x, ', %2).
f(x) behaves as a probability distribution in the sense that
8 X, f(x) , 0 and the values add up to 1. Also, note that
f(x) satisfies Bayes Rule, that is, it is true that:

fuly|X = x) = fx (X[Y =y) fy (y)/fx(x)




Naive Baves: Continuous Features
* P(Xi|Y) is Gaussian

» Training: estimate mean and standard deviation
pi = E[XG[Y =y
of = E[(Xi — w)?*lY =y

X, X, X | Y
2 3 1 |1
12 2 4 | 1
2 03 0 |0
22 11 0 | 1
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Naive Baves: Continuous Features
* P(Xi|Y) is Gaussian

» Training: estimate mean and standard deviation
pi = E[XG[Y =y
o7 = E[(Xi — ps)?lY =y

X X X Y

2 3 1 1

12 2 4 1

2 03 0 0

22 1.1 0 1
w = E[X,|Y = 1] = 2+(—1:.32)+2.2 1

U% = EB[(Xy —pu)|Y =1] = =L +(_1'2§1) @21 — 243




Code

e >>> from sklearn import datasets

e >>> jris = datasets.load iris()

e >>> from sklearn.naive_bayes import GaussianNB

e >>> gnb = GaussianNB()

* >>>y pred = gnb.fit(iris.data, iris.target).predict(iris.data)

* >>> print("Number of mislabeled points out of a total %d points : %d"
° .. % (iris.data.shape[0],(iris.target !=y_pred).sum()))

* Number of mislabeled points out of a total 150 points : 6



Reference

e http://scikit-
earn.org/stable/modules/generated/sklearn.naive bayes.Multinomia
NB.html

e http://scikit-learn.org/stable/modules/naive bayes.html

e http://scikit-
earn.org/stable/auto examples/datasets/plot iris dataset.html



http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html
http://scikit-learn.org/stable/modules/naive_bayes.html
http://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html

