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• At the end of 75 minutes, you will put down your pens and submit your exam.

Good luck!



1. (1 pt) Which of the following options is the correct order of steps involved in training a
neural network? .

A. backward pass → compute loss → forward pass

B. forward pass → backward pass → compute loss

C. compute loss → forward pass → backward pass

D. forward pass → compute loss → backward pass

D

2. (1 pt) Which of the following neural networks is the most expressive, i.e., it can represent
the most possible functions? As usual, W,Wi, b, bi represent learnable weights. .

A. ReLU(Wx+ b)

B. W2(ReLU(W1x+ b1)) + b2

C. W2(W1x+ b1) + b2

D. W1x+W2x+W1W2x+ b1 + b2 + b1b2

B

3. (1 pt) Assume we are using a 3-way dataset split (train, val, and test) to train a ma-
chine learning model on train and tune its hyperparameters on val. Suppose we compute
the accuracy of the trained network on each split, Acctrain, Accval, Acctest, respectively.
Which of the following is most likely to be true? .

A. Acctrain > Accval > Acctest

B. Acctrain < Accval < Acctest

C. Acctrain = Accval = Acctest

D. Acctrain > Accval = Acctest

A

4. (1 pt) For a k-nearest neighbor (KNN) classifier with Euclidean distance, would its
decision boundary change if we multiply all features of each sample by 0.5? .

A. Yes

B. No

B

5. (1 pt) In a k-nearest neighbor (KNN) model, what is the effect of choosing a very small
value for k, such as k=1? Select all options that apply. .

A. It leads to a more robust model that handles noise better.

B. It may result in overfitting, as the model can be sensitive to noise and outliers.
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C. It reduces the capacity of the model.

D. It makes the model immune to class imbalance.

B

6. (2 pts) You fit a logistic regression classifier to a dataset using the plain maximum
likelihood objective and batch gradient descent (i.e., each gradient update is computed over
the entire dataset) with learning rate α. You track changes to the parameters ∥βt − βt−1∥22
over iterations t. You observe that the parameters continue to change indefinitely without
convergence. Which of the following would you suspect? Select all options that apply.

.

A. The learning rate is too small.

B. The learning rate is too large.

C. The training dataset cannot be separated by any function within your function class.

D. The training dataset is perfectly separable within your function class.

B D

7. (2 pts) Alice is trying to grow a decision tree using the gain ratio, which is the information
gain divided by split information. For a particular split that she is considering, she finds, to
her initial horror that its split information is 0. After taking a moment to think it through,
she smiles and declares that this is not a problem. She is right. Can you explain why? (1-2
sentences)
This feature has the same value for all the data points, so it would anyway have zero infor-
mation gain / be useless for the decision tree.

8. (3 pts) You are training a logistic regression model on a binary classification task, where
the features are Age and Income. The following is the logistic regression equation:

P (y = 1|X) =
1

1 + e−(β0+β1·Age+β2·Income)

After training, you obtain the following coefficients: β0 = −3, β1 = 0.05, and β2 = 0.001.
Which of the following statements is correct about the relationship between Age, Income,
and the predicted probability? Select all that apply. .

A. An increase of 20 years in Age results in a greater change in the predicted probability
than an increase of $10,000 in Income.

B. The positive sign of β1 and β2 indicates that increasing Age and Income both increase
the predicted probability of the outcome being y = 1.
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C. The effect on the predicted probability of an increase by δ in Income is negligible
compared to the effect of an increase by the same δ in Age because β1 is much larger
than β2.

D. The intercept β0 = −3 suggests that when both Age and Income are zero, the predicted
probability of y = 1 is ≈50%.

B C
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9. (3 pts) Consider a linear regression model with d features (no regularization). Describe
how the variance and bias of the model would change (i.e., increase, decrease, or remain
unchanged) for each of the following modifications.

A. (1 pt) Randomly drop 50% of the features, resulting in a model with d/2 input features.
.

Answer: bias increases, variance decreases

B. (1 pt) Perform Principal Component Analysis (PCA) on the training dataset, and
keep the top d′ features (where d′ = d/2), then use these features as input to the linear
regression model. .
Answer: bias increases, variance decreases

C. (1 pt) Concatenate the top d′ features from PCA with the original d-dimensional
features, resulting in a model with d + d′ input features. (Ignore any optimization
difficulties that arise from this). .
Answer: bias and variance remain unchanged

10. (6 pts) Suppose that your function class for a regression problem is ŷ = fβ(x) = β0. You
want to minimize the mean squared error. The dataset is D = {(xi, yi)}i=1,2,...,N .

A. (2 pts) Can you derive an expression for the constant β∗ that minimizes the MSE on
the training dataset 1

N

∑
i(ŷi − yi)

2? Show your steps.

The function class for the regression problem is given by:

ŷ = fβ(x) = β0

The mean squared error (MSE) is defined as:

MSE =
1

N

N∑
i=1

(ŷi − yi)
2

Since ŷi = β0 for all i, we can substitute:

MSE =
1

N

N∑
i=1

(β0 − yi)
2

To minimize this expression with respect to β0, we take the derivative of MSE with
respect to β0:

d

dβ0

(
1

N

N∑
i=1

(β0 − yi)
2

)
=

2

N

N∑
i=1

(β0 − yi)

Setting this derivative equal to zero:
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2

N

N∑
i=1

(β0 − yi) = 0

This simplifies to:

N∑
i=1

β0 =
N∑
i=1

yi

β0 =
1

N

N∑
i=1

yi = ȳ

B. (2 pts) You fit a 3-layer neural network to this data by minimizing its MSE. The final
training MSE loss is 1.25× variance ({yi}i=1,2,...,N). Can you conclusively say whether
this is a “good” fit to the training data? Explain in 1-2 sentences.

Setting β to the label mean as derived in 10A yields MSE = label variance (by definition
of variance). If MSE(neural net) > MSE(constant β), the neural net has not fit the
data well.

C. (2 pts) For the same function class as in part (A), can you derive an expression for the
constant β+ that minimizes the mean absolute error 1

N

∑
i |ŷi − yi|? Show your steps.

The objective function L is given by:

L =
1

N

N∑
i=1

|β − yi|

Where:

|β − yi| =

{
(β − yi), if yi < β

(yi − β), if yi ≥ β

So, the objective function can be rewritten as:

L =
1

N

(∑
i:yi<β

(β − yi) +
∑
i:yi≥β

(yi − β)

)

Now, to minimize L, take the derivative of L with respect to β:

∂L
∂β

=
∑
i:yi<β

1 +
∑
i:yi≥β

(−1)

This simplifies to:
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∂L
∂β

= 1 · (number of samples where yi < β)− 1 · (number of samples where yi ≥ β)

Setting this derivative to zero:

(number of samples where yi < β) = (number of samples where yi ≥ β)

Thus, β must be such that half the samples are less than β and half are greater than
or equal to β. This means that β must be the median of the {yi}:

β = median(y1, y2, . . . , yN)

11. (4 pts) While growing a decision tree, you arrive
at a set of samples at a particular node, as shown in
Figure 1 on the right. For the purpose of this question,
you are considering a split of the data that is indicated
by the vertical dashed line. Compute the gain ratio
for this split. You may leave expressions in terms of
logarithms if the logarithm is not a whole number. You
are classifying circles versus stars.

Figure 1: Decision tree.
The Gain Ratio is defined as:

Gain Ratio =
Info Gain

Split Info

We are given the following information:
- Left split: 9 samples (7-, 2+) - Right split: 9 samples (6-, 3+) - Parent data: 18 samples

(13-, 5+)
The information gain is calculated as:

Info Gain = Hy(parent)−
9

18
Hy(left)−

9

18
Hy(right)

Where the entropies are:

Hy(parent) = −13

18
log2

13

18
− 5

18
log2

5

18
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Hy(left) = −7

9
log2

7

9
− 2

9
log2

2

9

Hy(right) = −6

9
log2

6

9
− 3

9
log2

3

9

Substituting these into the Info Gain formula:

Info Gain =

(
−13

18
log2

13

18
− 5

18
log2

5

18

)
−
(

9

18

(
−7

9
log2

7

9
− 2

9
log2

2

9

))
−
(

9

18

(
−6

9
log2

6

9
− 3

9
log2

3

9

))
Next, we calculate the Split Info:

Split Info = − 9

18
log2

9

18
− 9

18
log2

9

18

Split Info = 1

Thus, the Gain Ratio is:

Gain Ratio =
Info Gain

Split Info
= Info Gain

12. (5 pts) Consider the dataset shown in the Figure 2
on the right, for classifying circles versus stars.

A. (3 pts) Draw the decision boundaries (within this
box) for 1-nearest neighbors. Use Euclidean dis-
tances as measured on the image.

B. (2 pts) Suppose you are trying to “compress” this
training dataset by removing as many data points
as possible without altering the decision boundary
within this box. Draw visible “x”s over each point
that you would remove.

Figure 2: Nearest neighbors.
Answer (figure below):
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Figure 3: This is the solution graph for Q12

13. (8 pts) Consider a simple neural network model: fβ,ω(x) = β · g(ω1x1 + ω2x2) where:

• x = [x1, x2] is the input,

• β is a scalar weight, and ω1, ω2 are weights associated with the input features,

• g is the Leaky ReLU activation function, where:

g(z) =

{
z if z ≥ 0

0.1z if z < 0

• The loss function is L(fβ,ω(x), y) =
1
2
(fβ,ω(x)− y)2, where y is the label.

A. (3 pts) Write down the gradients of the loss with respect to the model parameters: ∂L
∂β
,

∂L
∂ω1

, and ∂L
∂ω2

. You can leave your answer in terms g and g′, where g′(z) = ∂
∂z
g(z).

Answers:
∂L

∂β
= (fβ,ω(x)− y) · σ(ω1x1 + ω2x2)

∂L

∂ω1

= (fβ,ω(x)− y) · β · σ′(ω1x1 + ω2x2) · x1

∂L

∂ω2

= (fβ,ω(x)− y) · β · σ′(ω1x1 + ω2x2) · x2
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B. (2 pts) Find the derivative of the Leaky ReLU activation function g(z) with respect to
z, denoted as g′(z). Answers:

σ′(z) =

{
1 if z ≥ 0

0.1 if z < 0

C. (3 pts) Consider a dataset with a single data point of x = [5, 4] and y = 0. Calculate
the gradients ∂L

∂β
, ∂L
∂ω1

, and ∂L
∂ω2

for the following weights: β = 1, ω1 = −2, and ω2 = −5.

Answers: Compute z = ω1x1+ω2x2 = (−2)×5+(−5)×4 = −30. Since z = −30 < 0,
σ(z) = 0.1× (−30) = −3, and σ′(z) = 0.1. Therefore fβ,ω(x) = β · σ(z) = 1× (−3) =
−3. Additionally, fβ,ω(x)− y = −3− 0 = −3. Gradient with respect to β:

∂L

∂β
= (−3) · (−3) = 9

Gradient with respect to ω1:

∂L

∂ω1

= (−3) · 1 · 0.1 · 5 = −1.5

Gradient with respect to ω2:

∂L

∂ω2

= (−3) · 1 · 0.1 · 4 = −1.2

Your answer to Question 13:

(Continue your answer to Question 13 on the next page)
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Your answer to Question 13 (continued):
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14. (6 pts) Consider the dataset shown in the Figure 3 for prin-
cipal component analysis.

A. (2 pts) Draw the axis corresponding to the first principal
component. Use the Figure 5 provided below to annotate
your answer for this item (14.A).

B. (1 pts) Draw the axis corresponding to the second principal
component. Use the Figure 5 provided below to annotate
your answer for this item (14.B).

C. (2 pts) Bob is a data scientist who has forgotten that he
must first subtract the mean from all the data before ap-
plying PCA (Figure 4). Instead, he directly applies the fol-
lowing equation to calculate the covariance matrix in the
PCA procedure.

C = E
[
xx⊤] = E

[
x1x1 x1x2

x2x1 x2x2

]
Draw the axis corresponding to the first component with
Bob’s faulty PCA. Use the Figure 5 provided below to an-
notate your answer for this item (14.C).

D. (1 pts) Draw the axis corresponding to the second com-
ponent with Bob’s faulty PCA. Use the Figure 5 provided
below to annotate your answer for this item (14.D).

Figure 4: 2D dataset
for PCA.

Figure 5: 2D dataset
without mean sub-
traction.

Note the principal components’ axes should pass through the origin of the coordinate system.

[Answer for 14.A] [Answer for 14.B] [Answer for 14.C] [Answer for 14.D]

Figure 6: Your answers for question 14.
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ANSWER:
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15. (6 pts) In class, we explored a dataset where traditional k-
means clustering struggles—specifically when all the data points
are roughly aligned along two distinct lines (as shown in Fig-
ure 6 on the right). Recognizing this limitation, Chris took up
this challenge and developed an intriguing variation of k-means,
which he calls k-lines clustering. Rather than clustering around
k centroids, the k-lines algorithm seeks to identify k lines that
better capture the underlying structure of the data. Here’s how
Chris’s k-lines algorithm works: Figure 7: Clustering.

• Randomly initialize k lines.

• Assign each point to the line that it is closest to (i.e., perpendicular distance).

• Perform linear regression (minimizing the mean squared error) to update each line
based on the points assigned to it.

• Repeat until convergence.

Similar to k-means, the converged results of this k-lines algorithm also depend on the
initialization of the lines. Consider the following random initializations of k = 2 lines:

A. (3 pts) Two horizontal lines are selected as initialization as shown in Figure 15.A below.
Please plot the lines after the first update in Figure 15.A. How many iterations does
it take before k-lines converges? .

B. (3 pts) Two lines passing through the center of the data plane are selected as initial-
ization as shown in Figure 15.B below. Please plot the lines after the first update in
Figure 15.B. How many iterations does it take before k-lines converges? .

[Answer for 15.A] [Answer for 15.B]

Figure 8: Your answers for question 15.

Answer:
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