Mid term 1

• Exam:

- 75-min exam on Mar 5 (lecture time and location)
- In-person closed-book
- Can bring a cheatsheet: 1 handwritten piece of paper (letter size, two sides)
- No need for calculator

Practice exam:

- Exam and solutions posted on course website
- Will go over during the review for mid term 1 (Mar 3)

• Mid term 1 covers:

- All the modules we have learned so far:
 - Linear regression
 - Logistic regression
 - Neural networks
 - KNN and decision trees

Project

- Start after mid term 1 (25%)
 - Projects announcement on 3/3
- Team of 2-3
- Choose from one of the projects options (3 in total)
 - Different modalities: images, text, and audio clips.
 - Email both instructors if you want to use your own research for this project (i.e., you are actively doing ML research with a faculty member, who can help assess your work)
- Grading
 - Performance & report

Lecture 11: Unsupervised Learning (Part 1)

CIS 4190/5190 Spring 2025

Types of Learning

Supervised learning

- Input: Examples of inputs and desired outputs
- Output: Model that predicts output given a new input

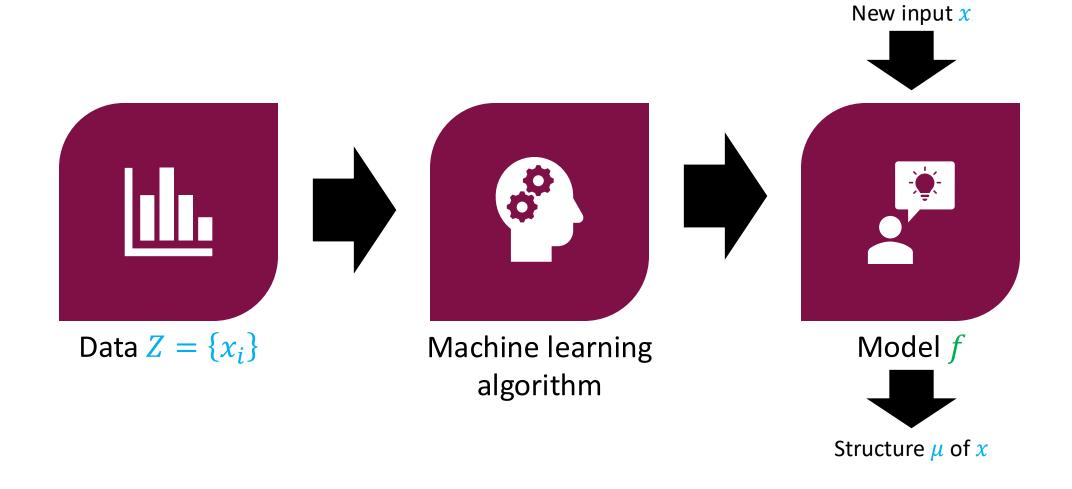
Unsupervised learning

- Input: Examples of some data (no "outputs")
- Output: Representation of structure in the data

Reinforcement learning

- Input: Sequence of interactions with an environment
- Output: Policy that performs a desired task

Unsupervised Learning



Applications of Unsupervised Learning

Visualization

• Exploring a dataset, or a machine learning model's outputs

Feature Learning

- Automatically construct lower-dimensional features
- Especially useful with a lot of unlabeled data and just a few labeled examples

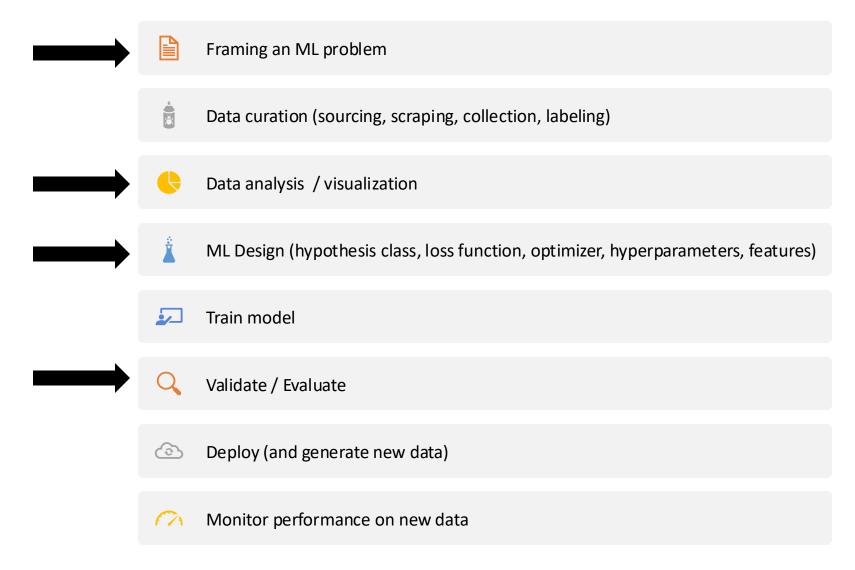
Image Compression

- E.g., JPEG is adopting unsupervised machine learning approaches
- https://jpeg.org/items/20190327_press.html

Applications of Unsupervised Learning

- Visualize the data, find clusters
 - e.g. "based on our polling data, there are three main voting blocs, based on age, race, education level, income, political beliefs, and home-ownership. Features like marital status and # children are irrelevant."
- Identify interesting supervised learning problems within your dataset e.g. "do our company's profits y_i actually correlate with the weather x_i ?"
- Generate new data
 e.g. "given all of Bach's work, I could generate new music that would sound
 like Bach."
- Identify important features in the dataset e.g. "Most of the variation between our customers is explained by their age, location, and education level."

Applications of Unsupervised Learning



Loss Minimization Framework

- To design an unsupervised learning algorithm:
 - Model family: Choose a model family $F=\left\{f_{\beta}\right\}_{\beta}$, where $\mu=f_{\beta}(x)$ encodes the structure of x
 - Loss function: Choose a loss function $L(\beta; \mathbb{Z})$
- Resulting algorithm:

$$\hat{\beta}(Z) = \arg\min_{\beta} L(\beta; Z)$$

Types of Unsupervised Learning

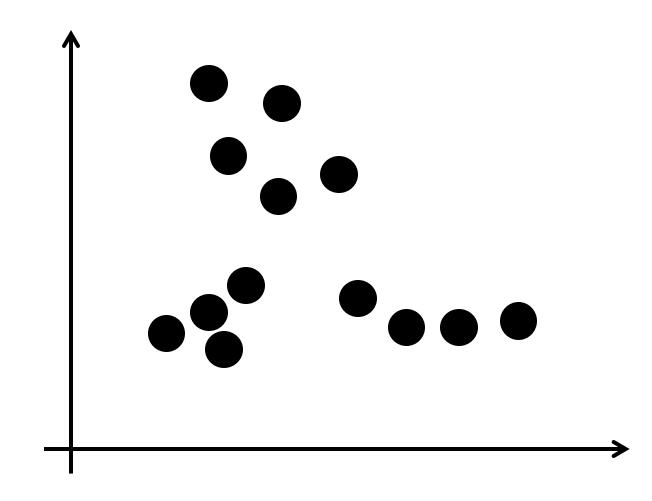
Clustering

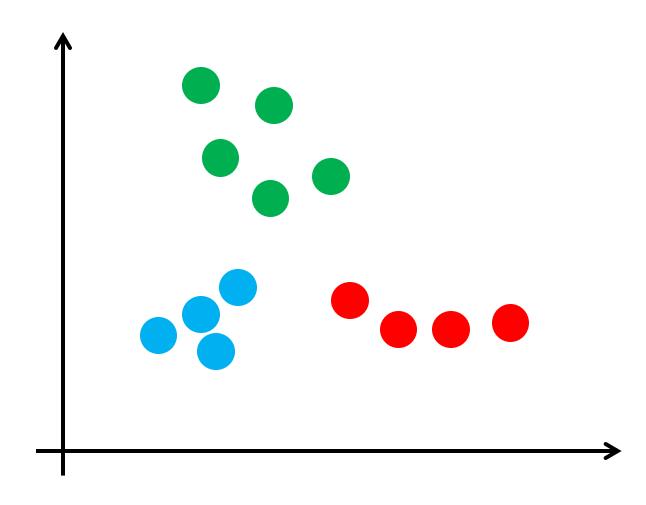
- Map samples $x \in \mathbb{R}^d$ to $f(x) \in \mathbb{N}$
- Each $k \in \mathbb{N}$ is associated with a representative example $x_k \in \mathbb{R}^d$
- Examples: K-means clustering, greedy hierarchical clustering

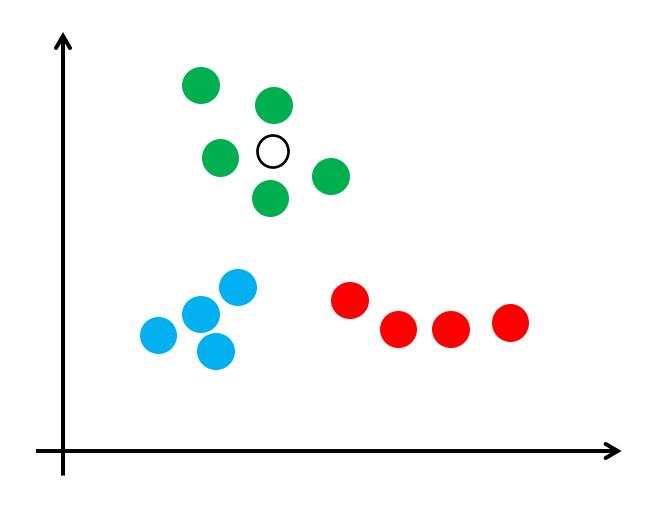
Dimensionality reduction

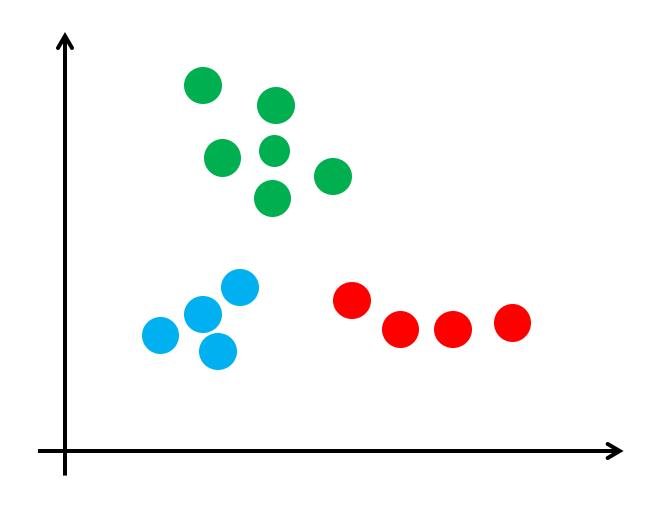
- Map samples $x \in \mathbb{R}^d$ to $f(x) \in \mathbb{R}^{d'}$, where $d' \ll d$
- Example: Principal components analysis (PCA)
- Modern deep learning is based on this idea

- Input: Dataset $Z = \{x_i\}_{i=1}^n$
- **Output:** Model $f(x) \in \{1, ..., K\}$
 - Intuition: Predictions should encode "natural" clusters in the data
 - Here, $K \in \mathbb{N}$ is a hyperparameter









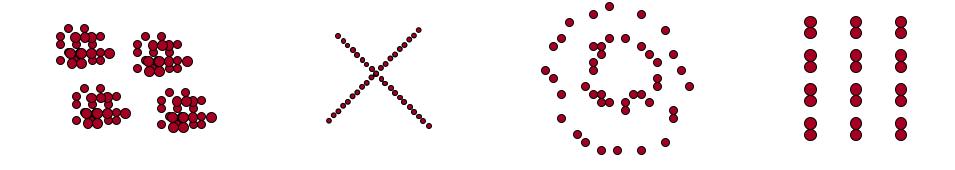
Clustering Example

- Image segmentation
- Goal: break up the image/pixels into meaningful or perceptually similar regions

- Input: Dataset $Z = \{x_i\}_{i=1}^n$
- **Output:** Model $f(x) \in \{1, ..., K\}$
 - Intuition: Predictions should encode "natural" clusters in the data
 - Here, $K \in \mathbb{N}$ is a hyperparameter
- How to formalize "naturalness"?
 - Using a loss function!

Clustering Loss

Loss depends on the structure of the data we are trying to capture



 K-Means clustering aims to minimize specific loss over a specific model family

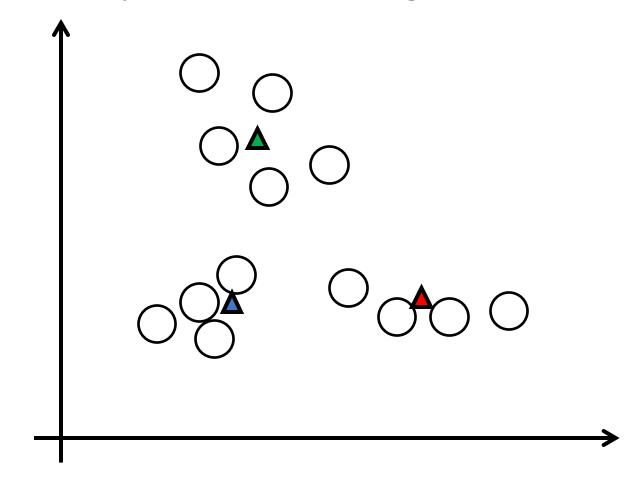
K-Means Clustering Model Family

- Parameters:
- Centroids μ_j , for $j \in \{1, ..., K\}$
 - One for each cluster (*K* is a hyperparameter)
 - Intuition: μ_i is the "center" of cluster j
- Assignment: assign each data point x it to the nearest cluster:

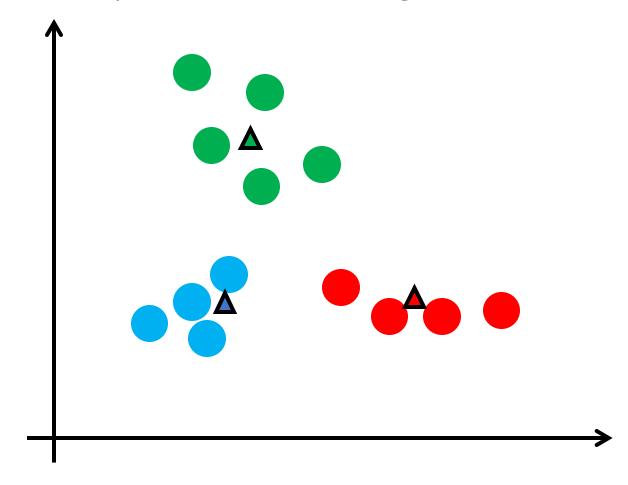
$$f_{\mu}(x) = \arg\min_{j} \left\| x - \mu_{j} \right\|_{2}^{2}$$

Can use other distance functions

Compute MSE of each point in the training data to its centroid

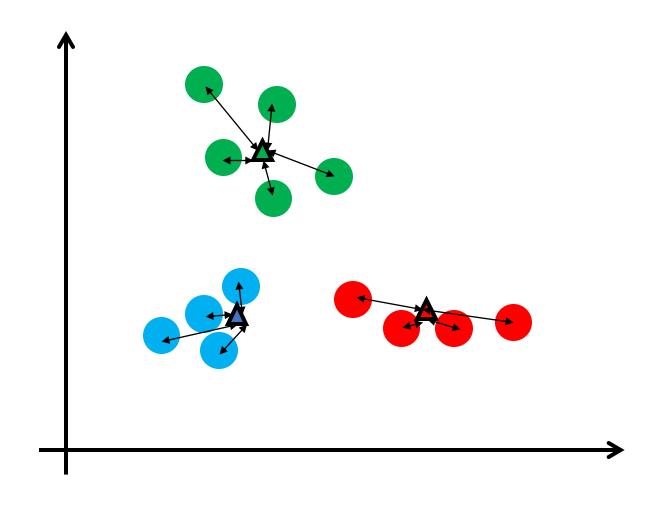


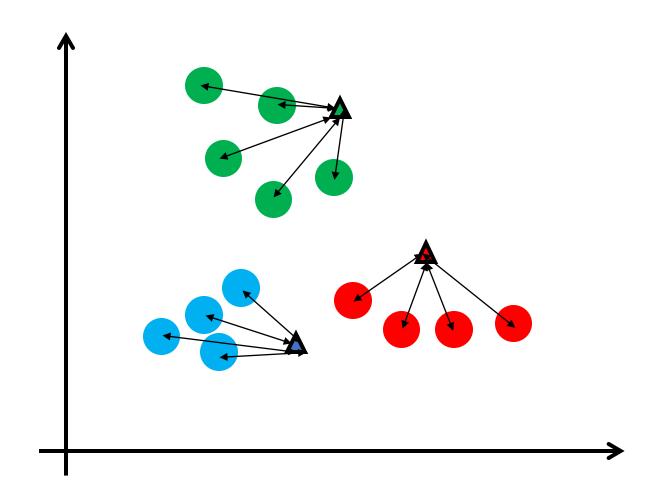
Compute MSE of each point in the training data to its centroid



- K-means clustering chooses centroids that minimize loss of training examples Z
- Compute MSE of each point in the training data to its <u>nearest</u> <u>centroid</u>:

$$L(\mu; \mathbf{Z}) = \sum_{i=1}^{n} \| \mathbf{x}_{i} - \mu_{f_{\mu}(\mathbf{x}_{i})} \|_{2}^{2}$$





K-Means Clustering Summary

• Model family: $f_{\mu}(x) = \arg\min_{j} ||x - \mu_{j}||_{2}^{2}$

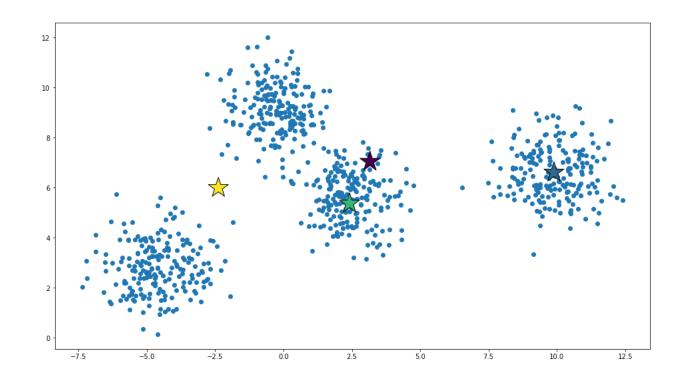
• Loss:
$$L(\mu; Z) = \sum_{i=1}^{n} \|x_i - \mu_{f_{\mu}(x_i)}\|_2^2$$

Optimization

- If we know the assignment of points to clusters:
 - Mean of point per cluster is the vector that minimizes the squared loss!
 - Without knowledge of true assignments, this optimization is non-convex and has many local optimums
- If we know the centroids:
 - Assignment for a point can be done by finding its closet centroid

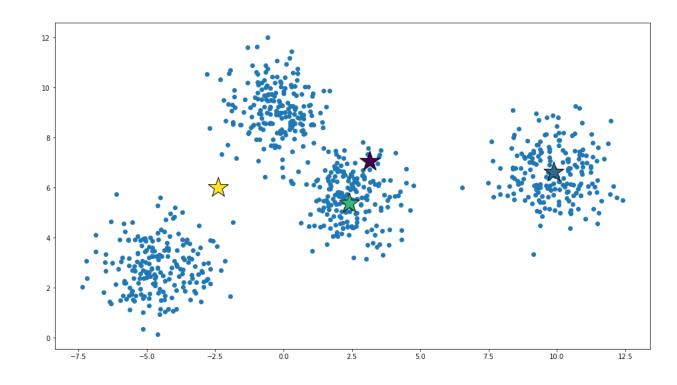
- An iterative clustering algorithm
- Initialize: Pick K random points as cluster centers
- Alternate:
 - Assign data points to closets cluster center
 - Change the cluster center to the average of its assigned points
- Stop when no points' assignments change

```
Kmeans(Z):
     for j \in \{1, ..., k\}:
          \mu_{1,j} \leftarrow \text{Random}(Z)
     for t \in \{1, 2, ...\}:
          for i \in \{1, ..., n\}:
              j_{t,i} \leftarrow f_{\mu_t}(x_i)
          for j \in \{1, ..., k\}:
               \mu_{t,j} \leftarrow \operatorname{mean}(\{x_i \mid j_{t,i} = j\})
          if \mu_t = \mu_{t-1}:
               return \mu_t
```

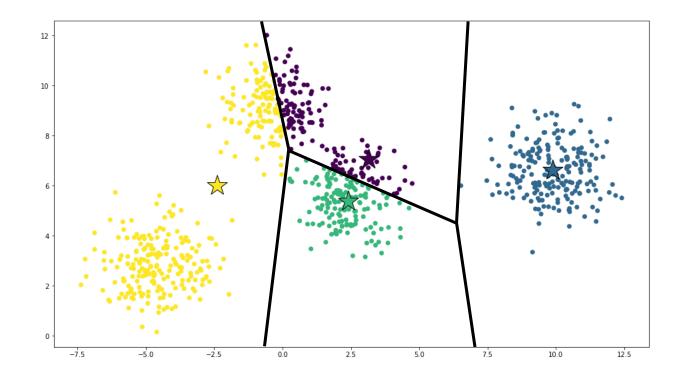


Kmeans(Z):

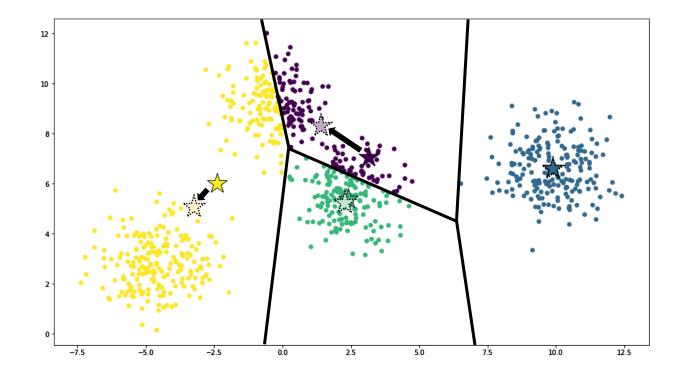
```
for j \in \{1, ..., k\}:
      \mu_{1,i} \leftarrow \text{Random}(Z)
for t \in \{1, 2, ...\}:
      for i \in \{1, ..., n\}:
          j_{t,i} \leftarrow f_{\mu_t}(x_i)
      for j \in \{1, ..., k\}:
           \mu_{t,j} \leftarrow \operatorname{mean}(\{x_i \mid j_{t,i} = j\})
      if \mu_t = \mu_{t-1}:
           return \mu_t
```

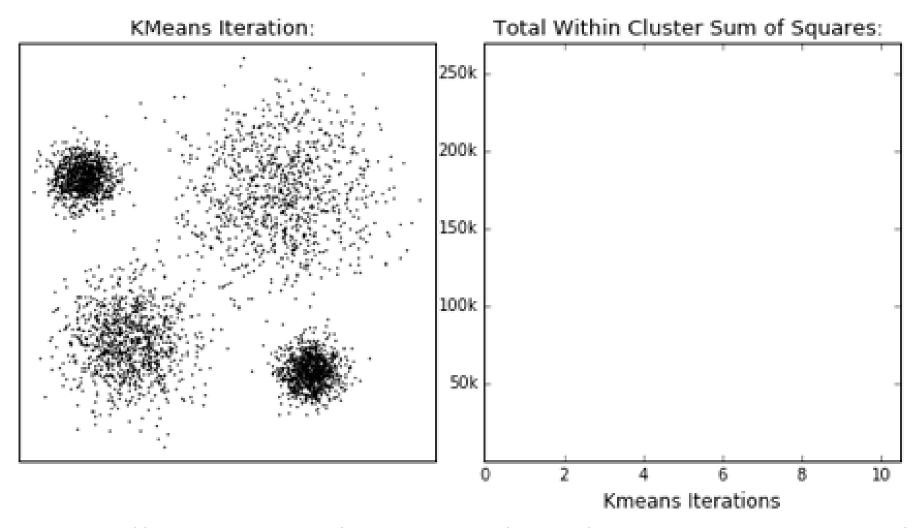


```
Kmeans(Z):
     for j \in \{1, ..., k\}:
          \mu_{1,j} \leftarrow \text{Random}(Z)
     for t \in \{1, 2, ...\}:
          for i \in \{1, ..., n\}:
j_{t,i} \leftarrow f_{\mu_t}(x_i)
           for j \in \{1, ..., k\}:
                \mu_{t,i} \leftarrow \operatorname{mean}(\{x_i \mid j_{t,i} = j\})
          if \mu_t = \mu_{t-1}:
                 return \mu_t
```



```
Kmeans(Z):
     for j \in \{1, ..., k\}:
          \mu_{1,j} \leftarrow \text{Random}(Z)
     for t \in \{1, 2, ...\}:
          for i \in \{1, ..., n\}:
              j_{t,i} \leftarrow f_{\mu_t}(x_i)
         for j \in \{1, ..., k\}:
               \mu_{t,j} \leftarrow \operatorname{mean}(\{x_i \mid j_{t,i} = j\})
          if \mu_t = \mu_{t-1}:
               return \mu_t
```





https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/

Example: K-Means for Image Segmentation

Goal of Segmentation is to partition an image into regions each of which has reasonably homogenous visual appearance.

Example: K-Means for Image Segmentation

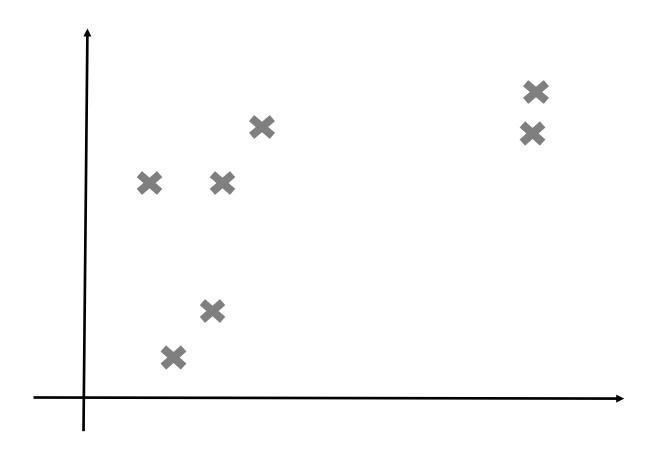
K-Means Convergence

- K-Means take an alternating optimization approach
- Each step is guaranteed to decrease the loss objective thus guaranteed to converge

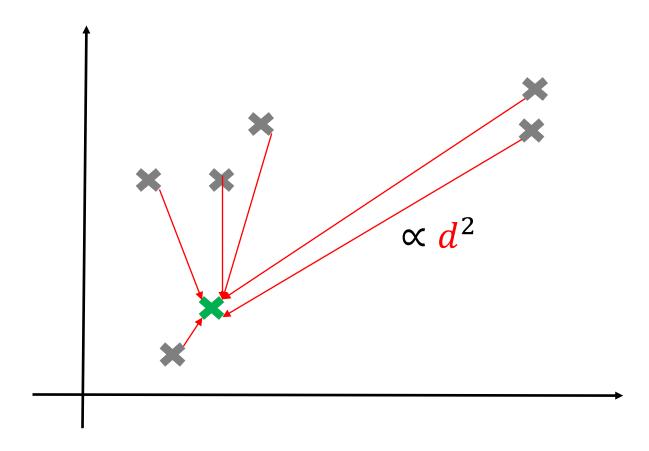
Random Initialization

- Sensitive to initialization
- One strategy is to run multiple times with different random centroids and choose the model with lowest MSE
- Alternative: K-means++
 - Randomly initialize first centroid to some $x \in Z$
 - Subsequently, choose centroid randomly according to $p(x) \propto d_x^2$, where d_x is the distance to the nearest centroid so far
 - Upweights points that are farther from existing centroids

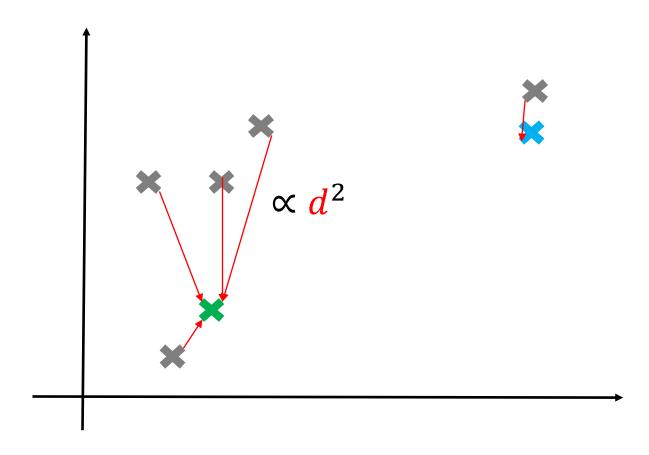
K-Means++: Address initialization challenge



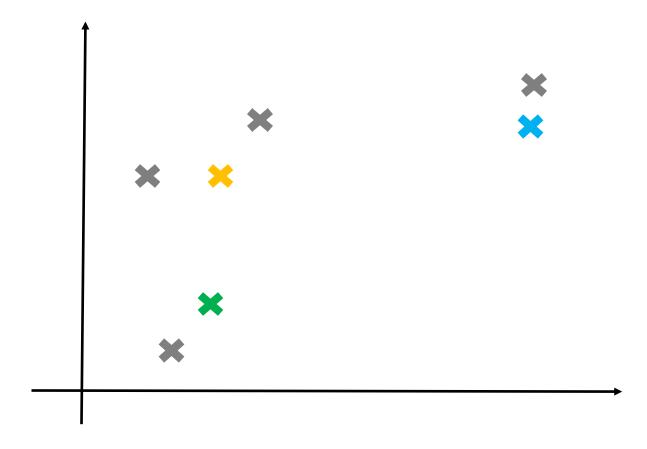
K-Means++



K-Means++



K-Means++

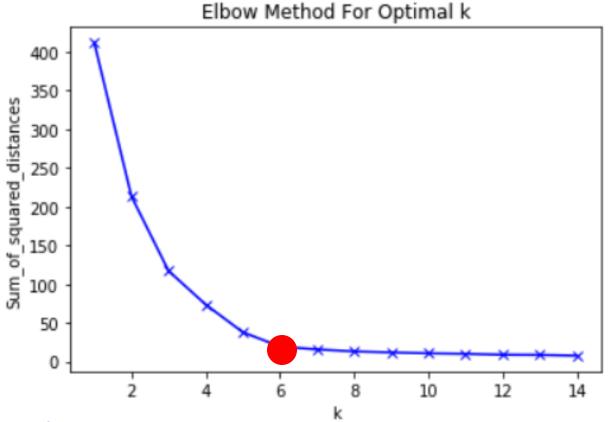


Then, run alternating minimization

Number of Clusters

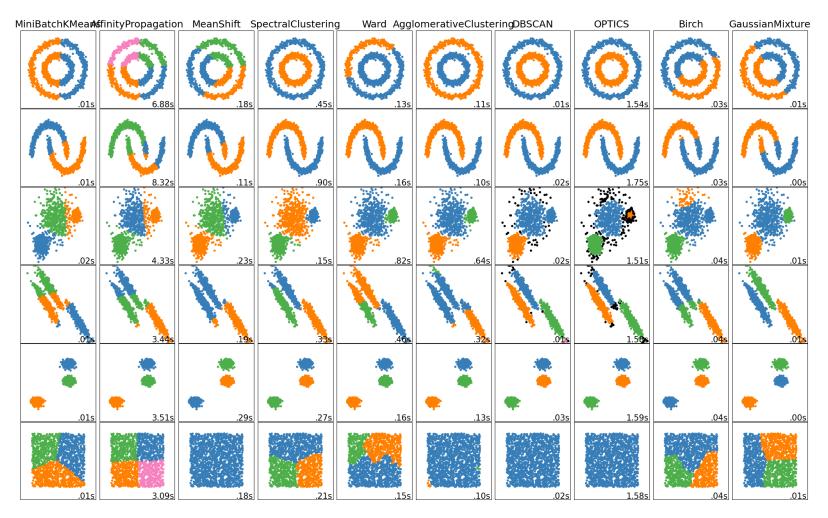
- As *K* becomes large
 - MSE becomes small
 - Many clusters → might be less useful
- Choice of *K* is subjective

Number of Clusters



https://blog.cambridgespark.com/how-to-determine-the-optimal-number-of-clusters-for-k-means-clustering-14f27070048f

Many Clustering Algorithms



https://scikit-learn.org/stable/modules/clustering.html#clustering