
Lecture 15: Computer Vision (Part 1)

CIS 4190/5190

Spring 2025

Agenda

• Computer vision
• Prior to deep learning

• Convolutional layers

• Convolutional neural networks

• Feature visualization

Images as 2D Arrays

• Grayscale image is a 2D array of
pixel values

• Color images are 3D array
• 3rd dimension is color (e.g., RGB)

• Called “channels”

Source: S. Narasimhan, S. Lazebnik

Structure in Images

Structure in Images

Structure in Images

building

person

trashcan

car
car

ground

tree sky

door

window

building

chimney

Outdoor scene

City
European

History of Computer Vision

• Deceptively challenging task
• In the 1960s, Marvin Minsky assigned some undergrads to program a

computer to use a camera to identify objects in a scene

• Half a century later, we are still working on it

• Moravec’s paradox
• Motor and perception skills require enormous computational resources

• Largely unconscious, biasing our intuition

• Likely innate to some degree

History of Computer Vision

Old: Mid 90’s – 2012

Image → hand-def. features → learned classifier

Very old: 60’s – Mid 90’s

Image → hand-def. features → hand-def. classifier

Current: 2012 – Present

Image → jointly learned features + classifier

Prior to Deep Learning

• Step 1: Find “pixels of interest”
• E.g., corner points or “difference of gaussians”

• Step 2: Compute features at these points
• E.g., “SIFT”, “HOG”, “SURF”, etc.

• Step 3: Convert to feature vector via
statistics of features such as histograms
• E.g., “Bag of Words”, “Spatial Pyramids”, etc.

• Step 4: Use standard ML algorithm
…

Bag-of-Words histogram

Prior to Deep Learning

Viola-Jones face detector
(with AdaBoost!)

~2000

https://github.com/alexdemartos/ViolaAndJones

Deformable Parts Model
object detection

(with linear classifiers!)
~2010

GIST
Scene retrieval

(with nearest neighbors!)
~2006

See libraries such as VLFeat and OpenCV

https://github.com/alexdemartos/ViolaAndJones

Impact of Deep Learning

0

5

10

15

20

25

30

2011 2012 2013 2014 2015 2016

ImageNet top-5 object recognition
error (%)

ImageNet 1000-object category recognition challenge

Deep learning breakthrough

Agenda

• Neural networks
• Hyperparameter tuning

• Implementation

• Computer vision
• Prior to deep learning

• Convolutional & pooling layers

• Convolutional neural networks

Representation Learning

𝑑-length
“feature vector” 𝑥

image

“dog”

Representing Images as Inputs

• Naïve strategy
• Feed image to neural network as a vector of pixels

𝑑-length
feature 𝒙

image
𝑑

𝑑

Representing Images as Inputs

• Shortcomings
• Very high dimensional! 32 × 32 × 3 = 3072 dimensions

Representing Images as Inputs

• Shortcomings
• Ignores spatial structure!

cat

running

tongue

lawn

Structure in Images

• 2D image structure
• Location associations and spatial neighborhoods are meaningful

• So far, we can shuffle the features without changing the problem (e.g., 𝛽⊤𝑥)

• Not true for images!

Structure in Images

• Translation invariance
• Consider image classification (e.g., labels are cat, dog, etc.)

• Invariance: If we translate an image, it does not change the category label

Source: Ott et al., Learning in the machine: To share or not to share?

Structure in Images

• Translation equivariance
• Consider object detection (e.g., find the position of the cat in an image)

• Equivariance: If we translate an image, the the object is translated similarly

Structure in Images

• Use layers that capture structure

Convolution layers
(Capture equivariance)

Pooling layers
(Capture invariance)

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

Convolution Filters

graphic credit: S. Lazebnik

Convolution Filters

graphic credit: S. Lazebnik

output 0,0 =

𝜏=0

𝑘−1

𝛾=0

𝑘−1

filter 𝜏, 𝛾 ⋅ image 0 + 𝜏, 0 + 𝛾

Convolution Filters

graphic credit: S. Lazebnik

output 0,1 =

𝜏=0

𝑘−1

𝛾=0

𝑘−1

filter 𝜏, 𝛾 ⋅ image 0 + 𝜏, 1 + 𝛾

Convolution Filters

graphic credit: S. Lazebnik

output 0,2 =

𝜏=0

𝑘−1

𝛾=0

𝑘−1

filter 𝜏, 𝛾 ⋅ image 0 + 𝜏, 2 + 𝛾

Convolution Filters

graphic credit: S. Lazebnik

output 𝑖, 𝑗 =

𝜏=0

𝑘−1

𝛾=0

𝑘−1

filter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾

Convolution Filters

graphic credit: S. Lazebnik

output 𝑖, 𝑗 =

𝜏=0

𝑘−1

𝛾=0

𝑘−1

filter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾

Convolution Filters

graphic credit: S. Lazebnik

output 𝑖, 𝑗 =

𝜏=0

𝑘−1

𝛾=0

𝑘−1

filter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾

Convolution Filters

graphic credit: S. Lazebnik

Convolution Filters

graphic credit: S. Lazebnik

output 𝑖, 𝑗 =

𝜏=0

𝑘−1

𝛾=0

𝑘−1

filter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾

Convolution Filters

graphic credit: S. Lazebnik

output 𝑖, 𝑗 =

𝜏=0

𝑘−1

𝛾=0

𝑘−1

filter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾

1D Convolution Filters

• Given:
• 1D sequence 𝑥is 1D

• 1D kernel 𝑘

• Convolution is the following:

𝑦 𝑡 =

𝜏=0

𝑘 −1

𝑘 𝜏 ⋅ 𝑥[𝑡 + 𝜏]

• Technically cross-correlation

1D Convolution Filters

• Example:
• 𝑥 = 25000, 28000, 30000, 21000, 18000, …

• 𝑘 = −1, 1, −1

• Convolution:

𝑦 𝑡 =

𝜏=0

𝑘 −1

𝑘 𝜏 ⋅ 𝑥[𝑡 + 𝜏]

𝑦 0 = 𝑘 0 𝑥 0 + 𝑘 1 𝑥 1 + 𝑘 2 𝑥 2 = −25000 + 28000 − 30000
𝑦 1 = 𝑘 0 𝑥 1 + 𝑘 1 𝑥 2 + 𝑘 2 𝑥 3 = −28000 + 30000 − 21000
𝑦 2 = 𝑘 0 𝑥 2 + 𝑘 1 𝑥 3 + 𝑘 2 𝑥 4 = −30000 + 21000 − 18000

1D Convolution Filters

https://gitlab.com/brohrer/

https://gitlab.com/brohrer/

1D Convolution Filters

https://gitlab.com/brohrer/

https://gitlab.com/brohrer/

1D Convolution Filters

https://gitlab.com/brohrer/

https://gitlab.com/brohrer/

2D Convolution Filters

• Given:
• A 2D input 𝑥

• A 2D ℎ × 𝑤 kernel 𝑘

• The 2D convolution is:

𝑦 𝑠, 𝑡 =

𝜏=0

ℎ−1

𝛾=0

𝑤−1

𝑘 𝜏, 𝛾 ⋅ 𝑥 𝑠 + 𝜏, 𝑡 + 𝛾

2D Convolution Filters

2D Convolution Filters

• Historically (until late 1980s), kernel parameters were handcrafted
• E.g., “edge detectors”

2D Convolution Filters

https://aishack.in/tutorials/image-convolution-examples/

Example Edge Detection Kernels Result of Convolution with Horizontal Kernel

https://aishack.in/tutorials/image-convolution-examples/

2D Convolution Filters

• Historically (until late 1980s), kernel parameters were handcrafted
• E.g., “edge detectors”

• In convolutional neural networks, they are learned
• Essentially a linear layer with fewer “connections”

• Backpropagate as usual!

Convolution Layers

Learnable
parameters

Convolution Layers

Fully connected
(3 input × 7 output = 21 parameters)

Locally connected
(3 input × 3 output = 9 parameters)

Input layer

Hidden layer

Slide credit: Jia-Bin Huang

Convolution Layers

Input layer

Hidden layer

w1

w2

w3

w4

w5

w6

w7

w8

w9

Without weight sharing
(3 input × 3 output = 9 parameters)

With weight sharing
(3 parameters)

w1

w2

w3 w1

w2

w3

w1

w2

w3

Slide credit: Jia-Bin Huang

Convolution Layers

Single input channel Multiple input channels

Channel 2

Channel 1

Filter weights Filter weights

Slide credit: Jia-Bin Huang

Convolution Layers

Single output map Multiple output maps

Channel 1

Channel 2

Filter 1 Weights Filter 2 WeightsFilter weights

Slide credit: Jia-Bin Huang

Convolution Layers

• Summary
• Local connectivity

• Weight sharing

• Handling multiple input/output channels

• Retains location associations

Convolution Layer Parameters

• Stride: How many pixels to skip (if any)
• Default: Stride of 1 (no skipping)

Filter

OutDimension =
InputDimension

StrideDimension

https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

Convolution Layer Parameters

• Padding: Add zeros to edges of image to capture ends
• Default: No padding

https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

stride = 1, zero-padding = 1 stride = 2, zero-padding = 1

https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

Convolution Layer Parameters

• Summary: Hyperparameters
• Kernel size

• Stride

• Amount of zero-padding

• Output channels

• Together, these determine the relationship between the input tensor
shape and the output tensor shape

• Typically, also use a single bias term for each convolution filter

Convolution Layers

Slide credit: Jia-Bin Huang

filters = #output (activation) maps # input channels

Local connectivity

Weight sharing

filter size,
stride

Image credit: A. Karpathy

Example

• Kernel size 3, stride 2,
padding 1

• 3 input channels
• Hence kernel size 3×3×3

• 2 output channels
• Hence 2 kernels

• Total # of parameters:
• (3 × 3 × 3 + 1) × 2 = 56

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

Pooling Layers

Pooling Layers

output 0,0 = max
0≤𝜏<𝑘

max
0≤𝛾<𝑘

image 0 + 𝜏, 0 + 𝛾

Pooling Layers

output 0,1 = max
0≤𝜏<𝑘

max
0≤𝛾<𝑘

image 0 + 𝜏, 1 + 𝛾

Pooling Layers

output 0,2 = max
0≤𝜏<𝑘

max
0≤𝛾<𝑘

image 0 + 𝜏, 2 + 𝛾

Pooling Layers

output 𝑖, 𝑗 = max
0≤𝜏<𝑘

max
0≤𝛾<𝑘

image 𝑖 + 𝜏, 𝑗 + 𝛾

Pooling Layers

• Summary: Hyperparameters
• Kernel size

• Stride (usually >1)

• Amount of zero-padding

• Pooling function (almost always “max”)

• Together, these determine the relationship between the input tensor
shape and the output tensor shape

• Note: Unlike convolution, pooling operates on channels separately
• Thus, 𝑛 input channels → 𝑛 output channels

Summary: Convolution vs. Pooling

• Convolution layers: Translation equivariant
• If object is translated, convolution output is translated by same amount

• Produce “image-shaped” features that retain associations with input pixels

• Pooling layers: Translation invariant
• Binning to make outputs insensitive to translation

• Also reduces dimensionality

• Combined in modern architectures
• Convolution to construct equivariant features

• Pooling to enable invariance

	Slide 1: Lecture 15: Computer Vision (Part 1)
	Slide 2: Agenda
	Slide 3: Images as 2D Arrays
	Slide 4: Structure in Images
	Slide 5: Structure in Images
	Slide 6: Structure in Images
	Slide 7: History of Computer Vision
	Slide 8: History of Computer Vision
	Slide 9: Prior to Deep Learning
	Slide 10: Prior to Deep Learning
	Slide 11: Impact of Deep Learning
	Slide 12: Agenda
	Slide 13: Representation Learning
	Slide 14: Representing Images as Inputs
	Slide 15: Representing Images as Inputs
	Slide 16: Representing Images as Inputs
	Slide 17: Structure in Images
	Slide 18: Structure in Images
	Slide 19: Structure in Images
	Slide 20: Structure in Images
	Slide 21: Convolution Filters
	Slide 22: Convolution Filters
	Slide 23: Convolution Filters
	Slide 24: Convolution Filters
	Slide 25: Convolution Filters
	Slide 26: Convolution Filters
	Slide 27: Convolution Filters
	Slide 28: Convolution Filters
	Slide 29: Convolution Filters
	Slide 30: Convolution Filters
	Slide 31: 1D Convolution Filters
	Slide 32: 1D Convolution Filters
	Slide 33: 1D Convolution Filters
	Slide 34: 1D Convolution Filters
	Slide 35: 1D Convolution Filters
	Slide 36: 2D Convolution Filters
	Slide 37: 2D Convolution Filters
	Slide 38: 2D Convolution Filters
	Slide 39: 2D Convolution Filters
	Slide 40: 2D Convolution Filters
	Slide 41: Convolution Layers
	Slide 42: Convolution Layers
	Slide 43: Convolution Layers
	Slide 44: Convolution Layers
	Slide 45: Convolution Layers
	Slide 46: Convolution Layers
	Slide 47: Convolution Layer Parameters
	Slide 48: Convolution Layer Parameters
	Slide 49: Convolution Layer Parameters
	Slide 50: Convolution Layers
	Slide 51: Example
	Slide 52: Pooling Layers
	Slide 53: Pooling Layers
	Slide 54: Pooling Layers
	Slide 55: Pooling Layers
	Slide 56: Pooling Layers
	Slide 57: Pooling Layers
	Slide 58: Summary: Convolution vs. Pooling

