Lecture 15: Computer Vision (Part 1)

CIS 4190/5190 Spring 2025

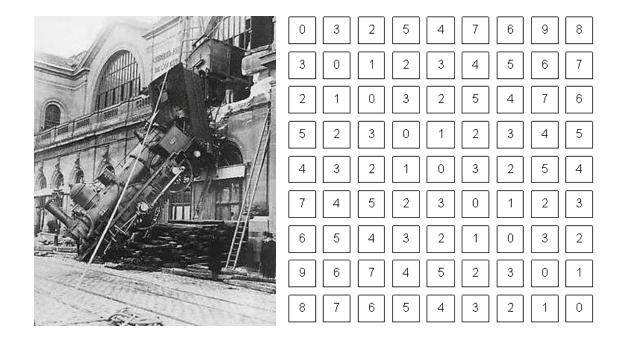
Agenda

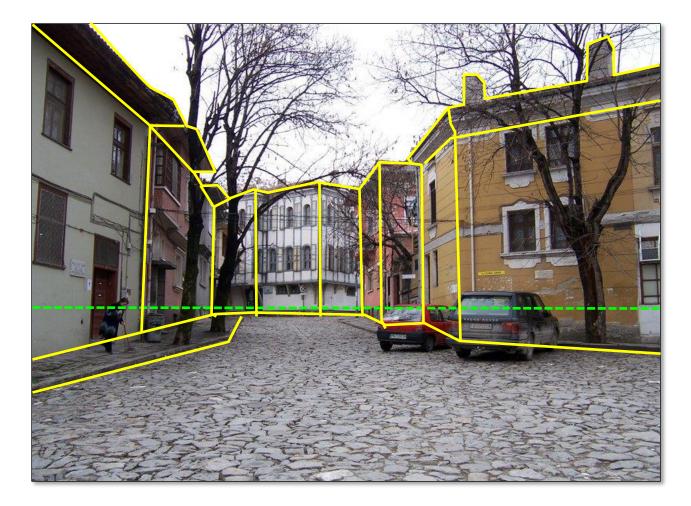
Computer vision

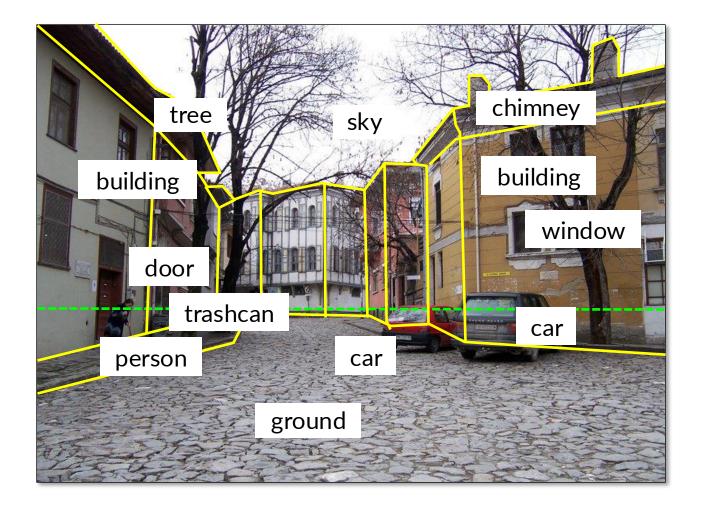
- Prior to deep learning
- Convolutional layers
- Convolutional neural networks
- Feature visualization

Images as 2D Arrays

- Grayscale image is a 2D array of pixel values
- Color images are 3D array
 - 3rd dimension is color (e.g., RGB)
 - Called "channels"







Outdoor scene City European

History of Computer Vision

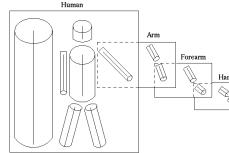
Deceptively challenging task

- In the 1960s, Marvin Minsky assigned some undergrads to program a computer to use a camera to identify objects in a scene
- Half a century later, we are still working on it

Moravec's paradox

- Motor and perception skills require enormous computational resources
- Largely unconscious, biasing our intuition
- Likely innate to some degree

History of Computer Vision



Very old: 60's – Mid 90's

Image \rightarrow hand-def. features \rightarrow hand-def. classifier

Old: Mid 90's – 2012

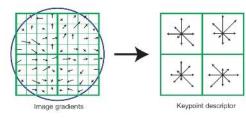


Image \rightarrow hand-def. features \rightarrow learned classifier

Current: 2012 – Present

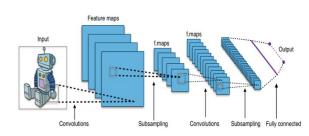
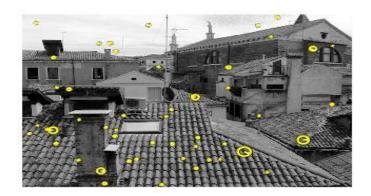


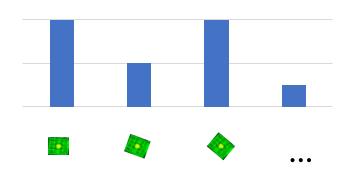
Image \rightarrow jointly learned features + classifier

Prior to Deep Learning

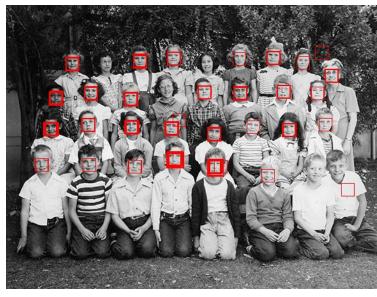
- Step 1: Find "pixels of interest"
 - E.g., corner points or "difference of gaussians"
- Step 2: Compute features at these points
 E.g., "SIFT", "HOG", "SURF", etc.
- Step 3: Convert to feature vector via statistics of features such as histograms
 - E.g., "Bag of Words", "Spatial Pyramids", etc.
- Step 4: Use standard ML algorithm



Bag-of-Words histogram

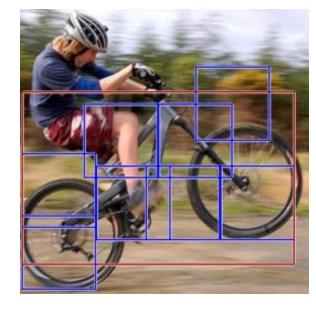


Prior to Deep Learning



https://github.com/alexdemartos/ViolaAndJones

Viola-Jones face detector (with AdaBoost!) ~2000



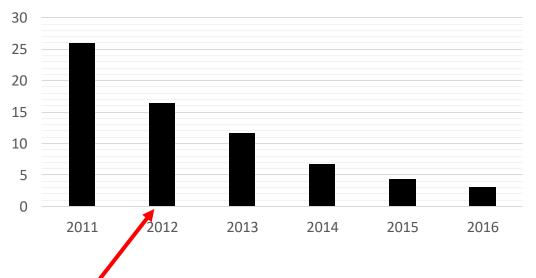
Deformable Parts Model object detection (with linear classifiers!) ~2010

GIST Scene retrieval (with nearest neighbors!) ~2006

See libraries such as VLFeat and OpenCV

Impact of Deep Learning

ImageNet top-5 object recognition error (%)



ImageNet 1000-object category recognition challenge

Deep learning breakthrough

Agenda

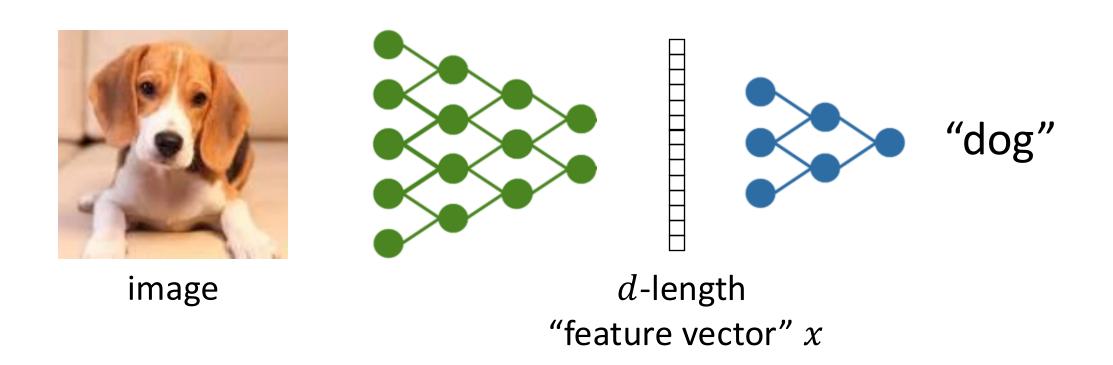
Neural networks

- Hyperparameter tuning
- Implementation

Computer vision

- Prior to deep learning
- Convolutional & pooling layers
- Convolutional neural networks

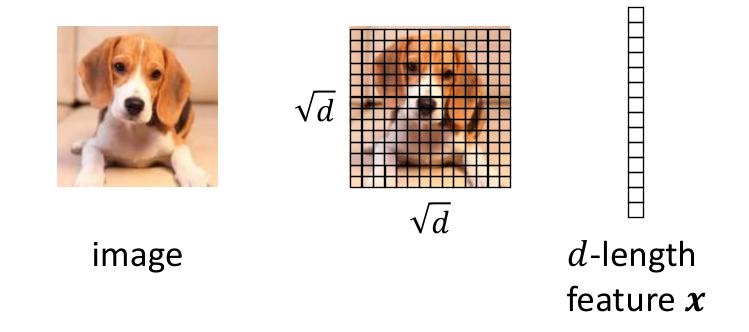
Representation Learning



Representing Images as Inputs

Naïve strategy

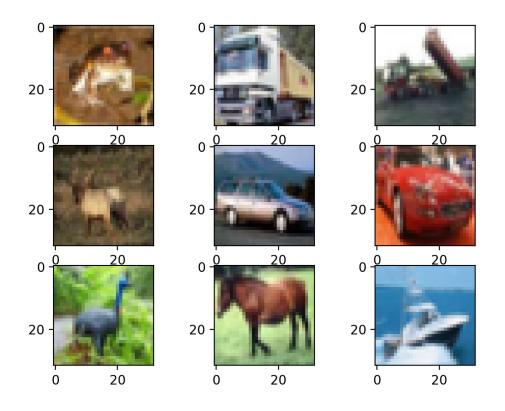
• Feed image to neural network as a vector of pixels



Representing Images as Inputs

• Shortcomings

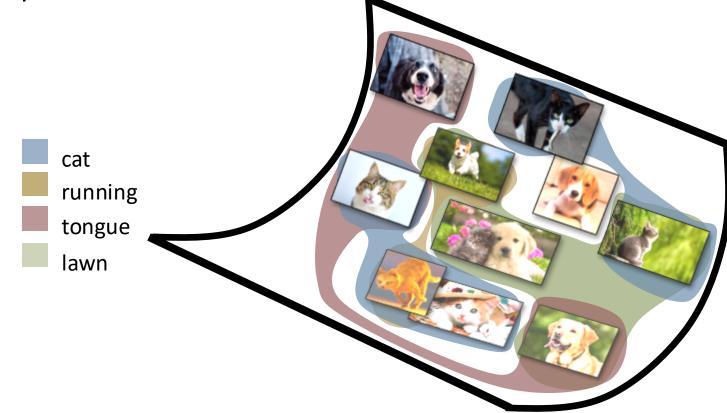
• Very high dimensional! $32 \times 32 \times 3 = 3072$ dimensions



Representing Images as Inputs

• Shortcomings

• Ignores spatial structure!

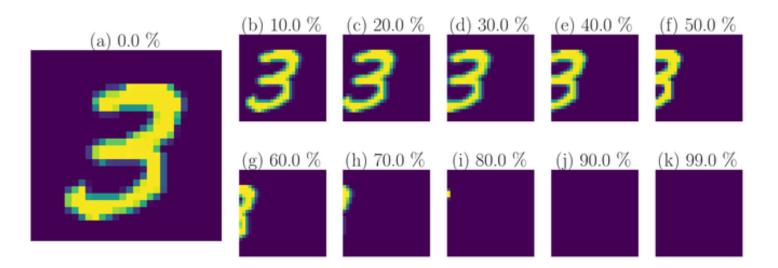


• 2D image structure

- Location associations and spatial neighborhoods are meaningful
- So far, we can shuffle the features without changing the problem (e.g., $\beta^{\top}x$)
- Not true for images!

Translation invariance

- Consider image classification (e.g., labels are cat, dog, etc.)
- Invariance: If we translate an image, it does not change the category label

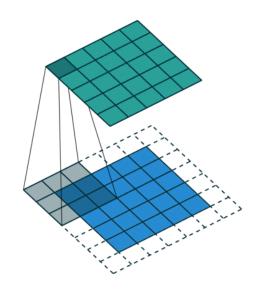


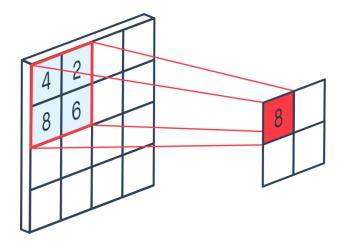
Source: Ott et al., Learning in the machine: To share or not to share?

• Translation equivariance

- Consider object detection (e.g., find the position of the cat in an image)
- Equivariance: If we translate an image, the the object is translated similarly

• Use layers that capture structure

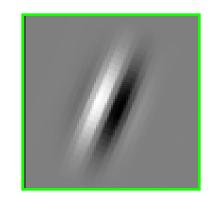


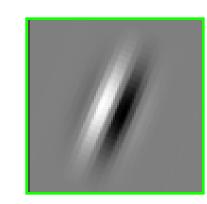


Convolution layers (Capture equivariance)

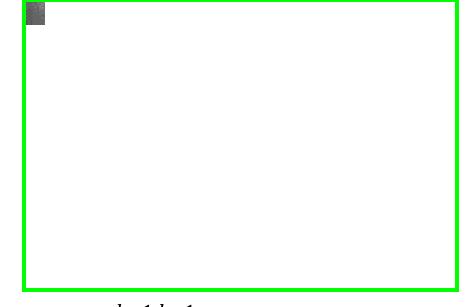
Pooling layers (Capture invariance)

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d https://peltarion.com/static/2d_max_pooling_pa1.png

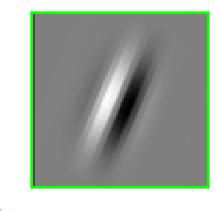


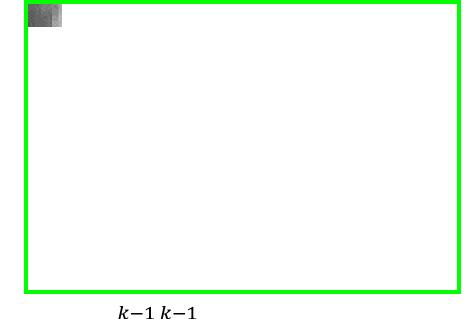




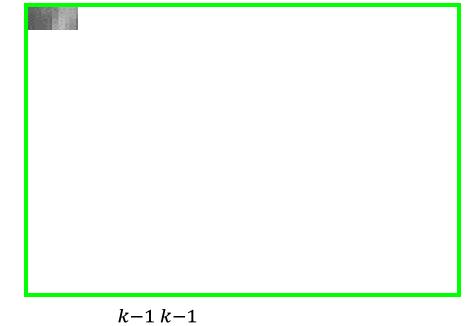


output[0,0] = $\sum_{\tau=0}^{k-1} \sum_{\gamma=0}^{k-1} \operatorname{filter}[\tau, \gamma] \cdot \operatorname{image}[0 + \tau, 0 + \gamma]$

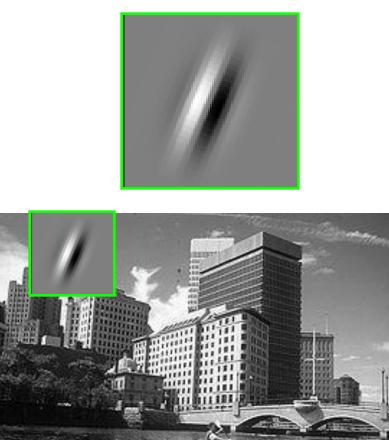


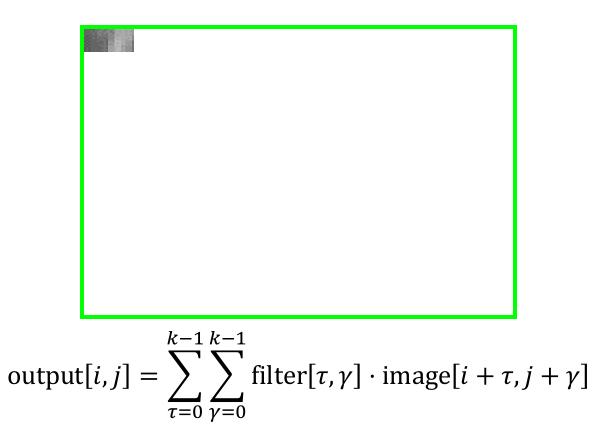


output[0,1] =
$$\sum_{\tau=0}^{\kappa-1} \sum_{\gamma=0}^{\kappa-1} \text{filter}[\tau, \gamma] \cdot \text{image}[0 + \tau, 1 + \gamma]$$

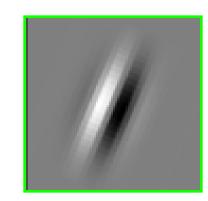


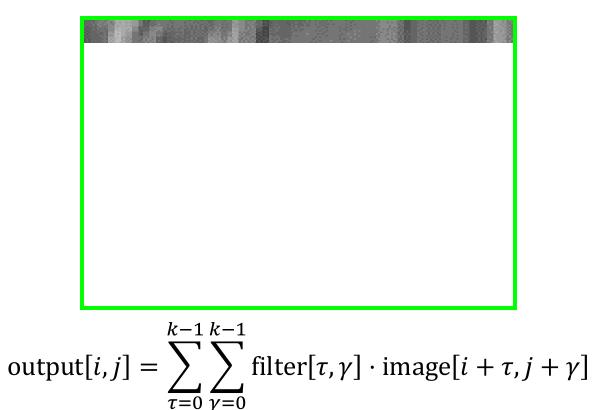
output[0,2] = $\sum_{\tau=0}^{k-1} \sum_{\gamma=0}^{k-1} \text{filter}[\tau,\gamma] \cdot \text{image}[0+\tau,2+\gamma]$

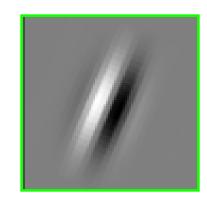




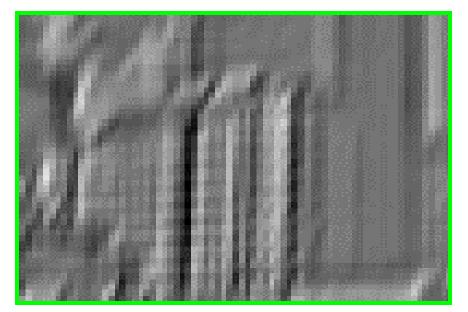
graphic credit: S. Lazebnik



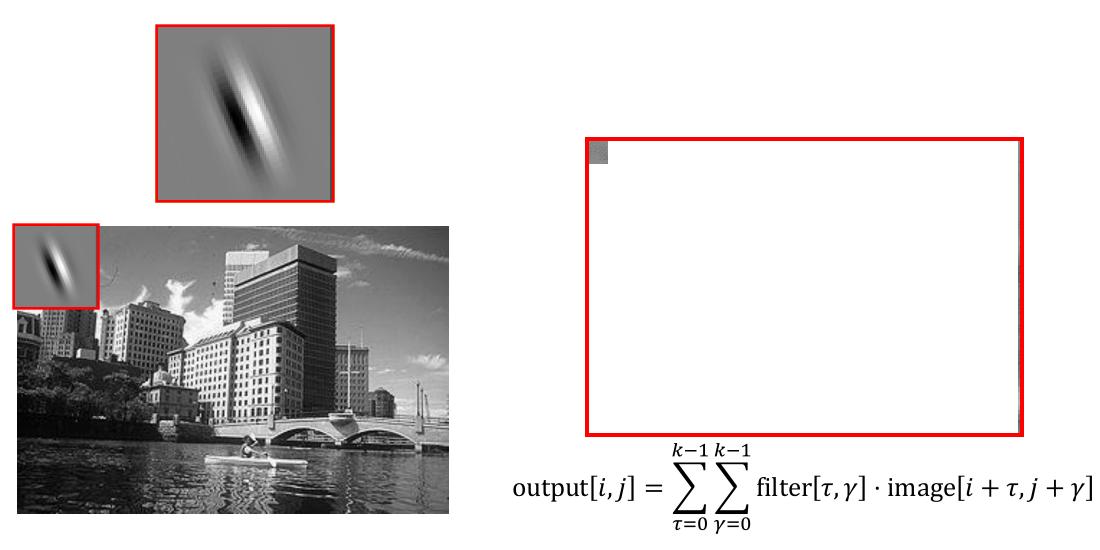








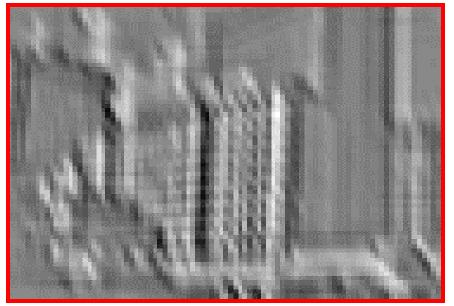
output[*i*, *j*] =
$$\sum_{\tau=0}^{k-1} \sum_{\gamma=0}^{k-1} \text{filter}[\tau, \gamma] \cdot \text{image}[i + \tau, j + \gamma]$$



graphic credit: S. Lazebnik







output[*i*, *j*] =
$$\sum_{\tau=0}^{k-1} \sum_{\gamma=0}^{k-1} \text{filter}[\tau, \gamma] \cdot \text{image}[i + \tau, j + \gamma]$$

• Given:

- 1D sequence *x* is 1D
- 1D kernel k
- Convolution is the following:

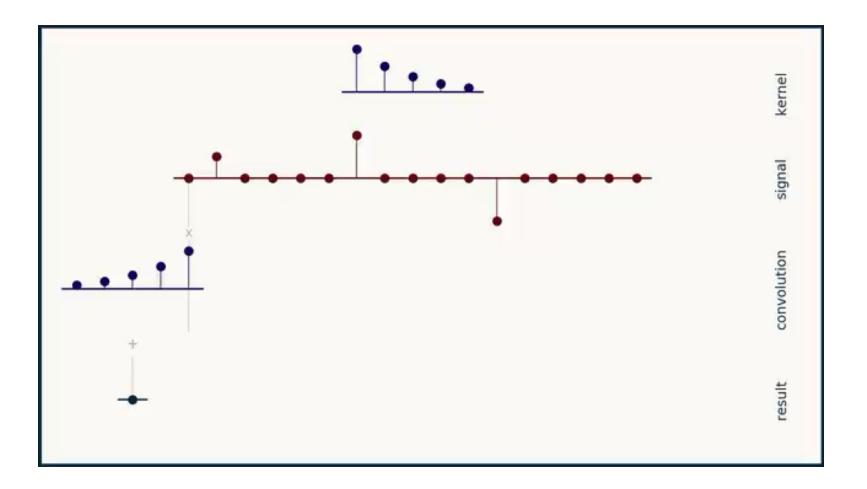
$$y[t] = \sum_{\tau=0}^{|k|-1} k[\tau] \cdot x[t+\tau]$$

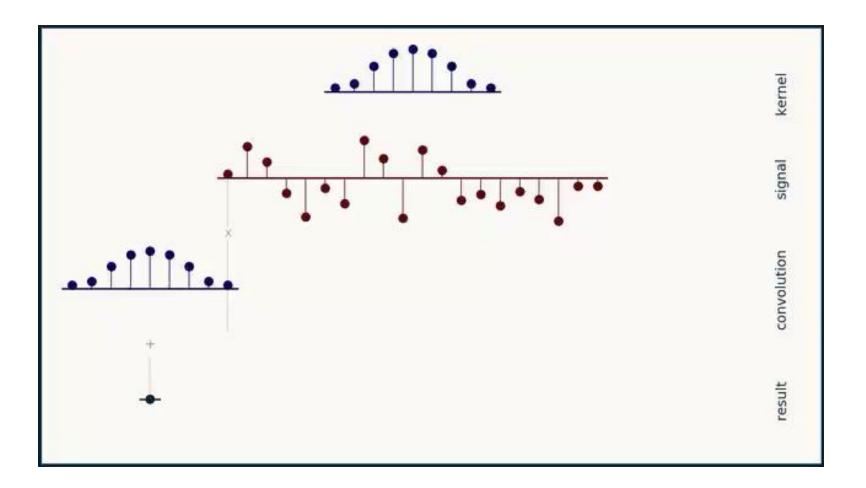
• Technically cross-correlation

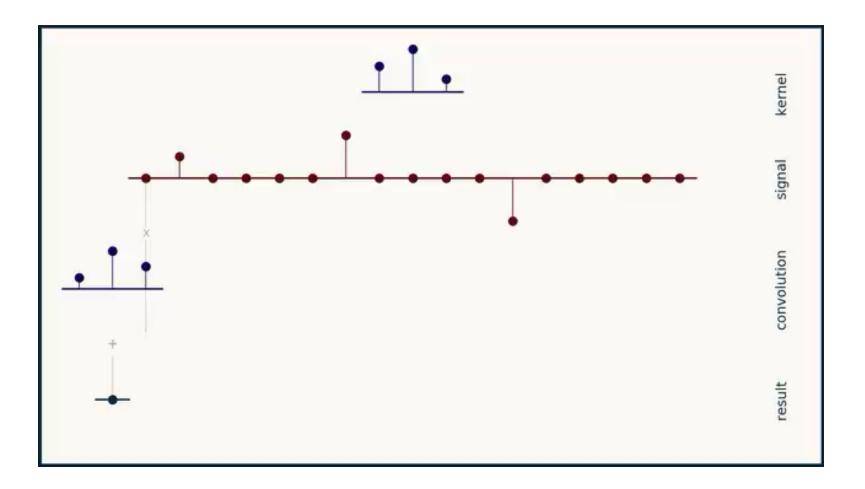
- Example:
 - x = [25000, 28000, 30000, 21000, 18000, ...]
 - k = [-1, 1, -1]
- Convolution:

$$y[t] = \sum_{\tau=0}^{|k|-1} k[\tau] \cdot x[t+\tau]$$

y[0] = k[0]x[0] + k[1]x[1] + k[2]x[2] = -25000 + 28000 - 30000 y[1] = k[0]x[1] + k[1]x[2] + k[2]x[3] = -28000 + 30000 - 21000y[2] = k[0]x[2] + k[1]x[3] + k[2]x[4] = -30000 + 21000 - 18000







• Given:

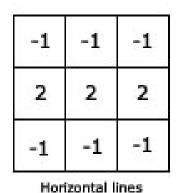
- A 2D input *x*
- A 2D $h \times w$ kernel k
- The 2D convolution is:

$$y[s,t] = \sum_{\tau=0}^{h-1} \sum_{\gamma=0}^{w-1} k[\tau,\gamma] \cdot x[s+\tau,t+\gamma]$$

30	3_1	2_{2}	1	0
0_2	0_2	1_0	3	1
3	1_1	2_{2}	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

- Historically (until late 1980s), kernel parameters were handcrafted
 - E.g., "edge detectors"



-1

2

-1

2

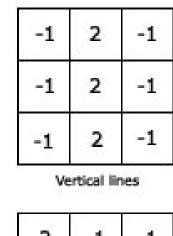
-1

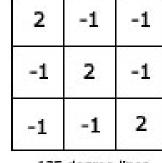
-1

-1

-1

2





45 degree lines

135 degree lines

Example Edge Detection Kernels

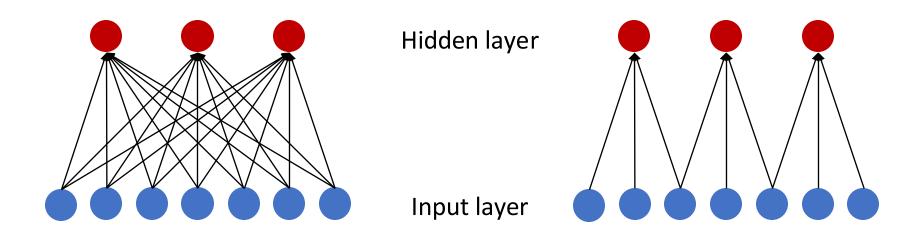
Result of Convolution with Horizontal Kernel

- Historically (until late 1980s), kernel parameters were handcrafted
 - E.g., "edge detectors"
- In convolutional neural networks, they are learned
 - Essentially a linear layer with fewer "connections"
 - Backpropagate as usual!

Learnable parameters

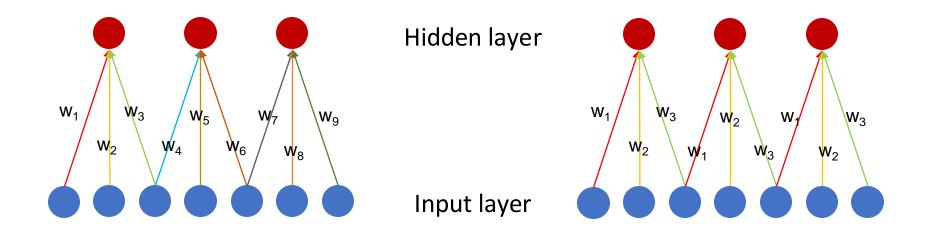
-	3_0	31	2_{2}	1	0
	0_2	0_2	1	3	1
	30	1_1	2_{2}	2	3
	2	0	0	2	2
	2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

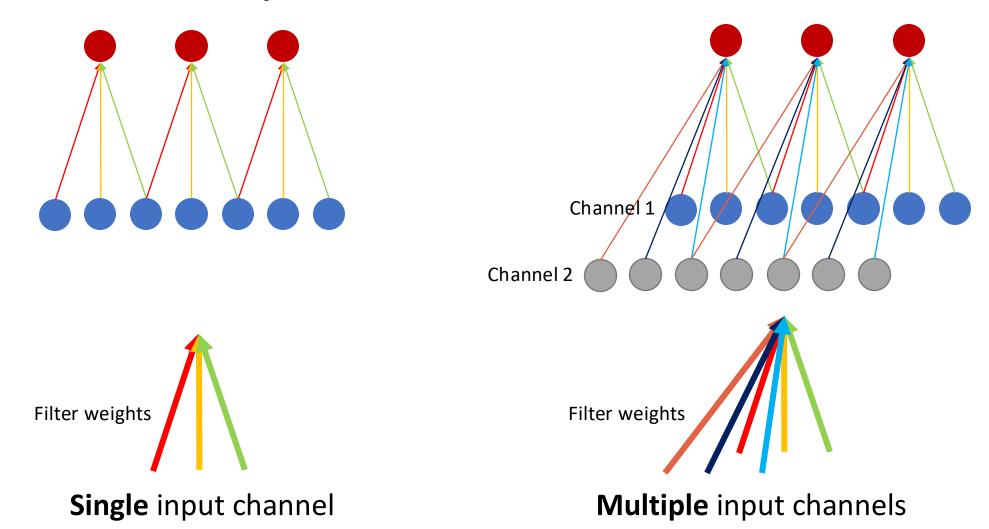


Fully connected (3 input × 7 output = 21 parameters)

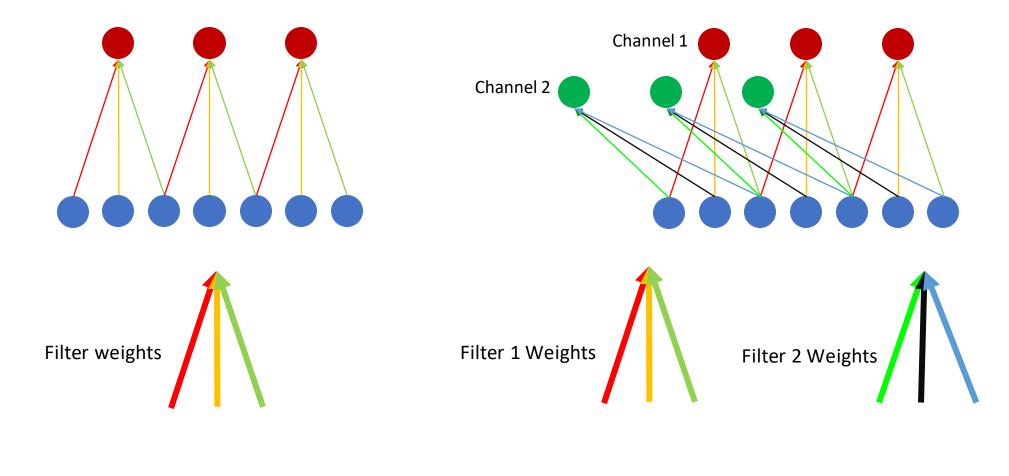
Locally connected (3 input × 3 output = 9 parameters)



Without weight sharing (3 input × 3 output = 9 parameters) With weight sharing (3 parameters)



Slide credit: Jia-Bin Huang



Single output map

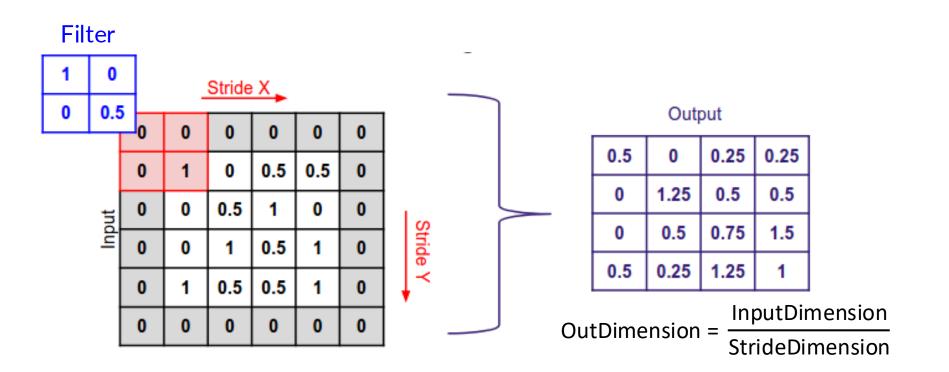
Multiple output maps

• Summary

- Local connectivity
- Weight sharing
- Handling multiple input/output channels
- Retains location associations

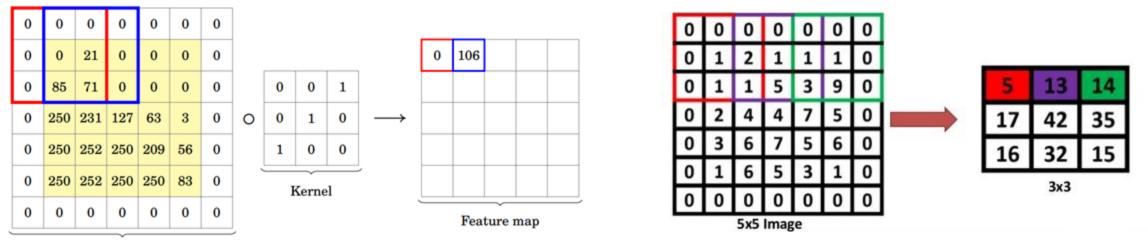
Convolution Layer Parameters

- Stride: How many pixels to skip (if any)
 - **Default:** Stride of 1 (no skipping)



Convolution Layer Parameters

- Padding: Add zeros to edges of image to capture ends
 - Default: No padding



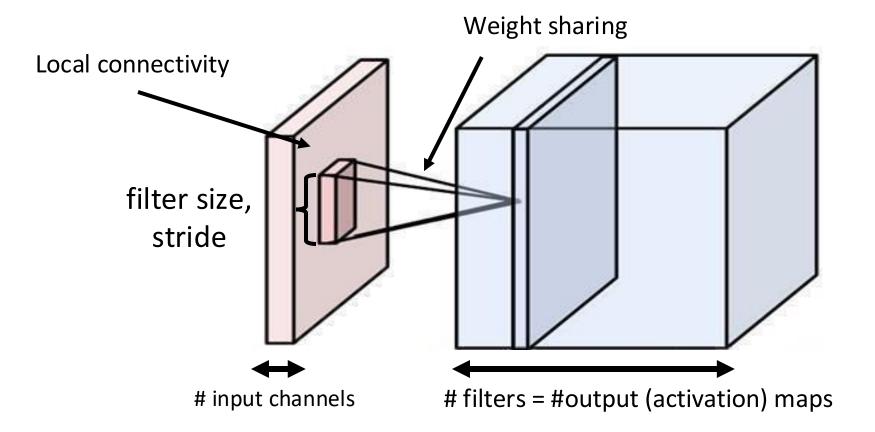
Image

stride = 1, zero-padding = 1

stride = 2, zero-padding = 1

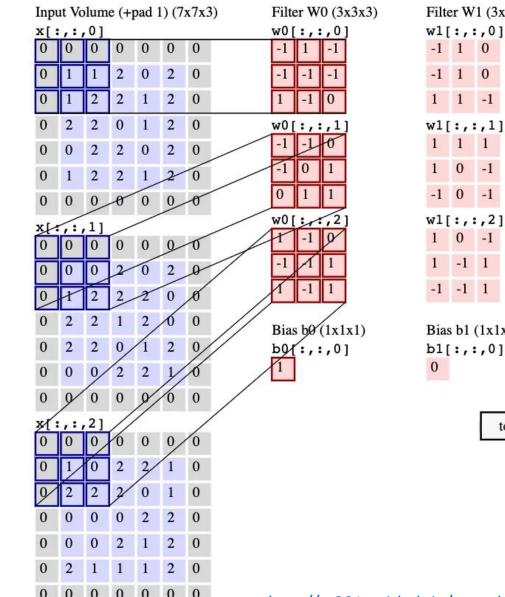
Convolution Layer Parameters

- Summary: Hyperparameters
 - Kernel size
 - Stride
 - Amount of zero-padding
 - Output channels
- Together, these determine the relationship between the input tensor shape and the output tensor shape
- Typically, also use a single bias term for each convolution filter



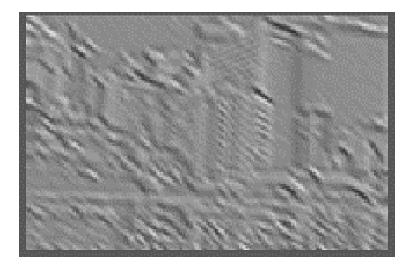
Example

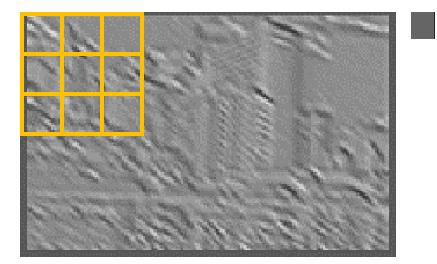
- Kernel size 3, stride 2, padding 1
- 3 input channels
 - Hence kernel size 3×3×3
- 2 output channels
 - Hence 2 kernels
- Total # of parameters:
 - $(3 \times 3 \times 3 + 1) \times 2 = 56$



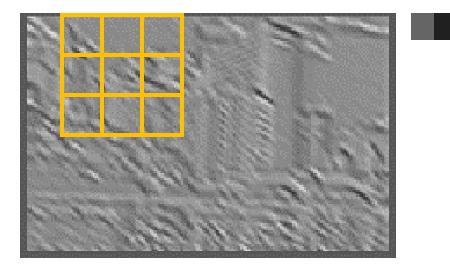
Filter W1 (3x3x3) Output Volume (3x3x2) 0[:,:,0] 2 -6 0 -1 -5 -11 -7 -7 -9 0[:,:,1] -3 -4 3 -2 8 4 1 8 Bias b1 (1x1x1)

toggle movement

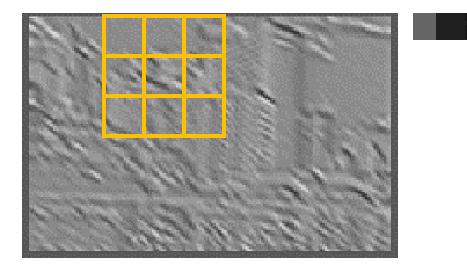




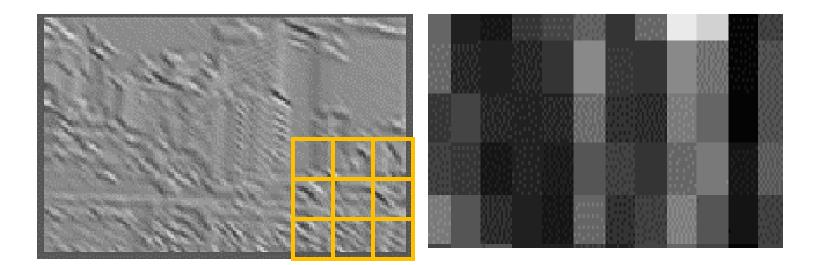
 $\text{output}[0,0] = \max_{0 \le \tau < k} \max_{0 \le \gamma < k} \text{image}[0 + \tau, 0 + \gamma]$



 $output[0,1] = \max_{0 \le \tau < k} \max_{0 \le \gamma < k} \operatorname{image}[0 + \tau, 1 + \gamma]$



 $output[0,2] = \max_{0 \le \tau < k} \max_{0 \le \gamma < k} \operatorname{image}[0 + \tau, 2 + \gamma]$



output[*i*, *j*] = $\max_{0 \le \tau < k} \max_{0 \le \gamma < k} \operatorname{image}[i + \tau, j + \gamma]$

- Summary: Hyperparameters
 - Kernel size
 - Stride (usually >1)
 - Amount of zero-padding
 - Pooling function (almost always "max")
- Together, these determine the relationship between the input tensor shape and the output tensor shape
- Note: Unlike convolution, pooling operates on channels separately
 - Thus, *n* input channels $\rightarrow n$ output channels

Summary: Convolution vs. Pooling

- Convolution layers: Translation equivariant
 - If object is translated, convolution output is translated by same amount
 - Produce "image-shaped" features that retain associations with input pixels
- Pooling layers: Translation invariant
 - Binning to make outputs insensitive to translation
 - Also reduces dimensionality
- Combined in modern architectures
 - Convolution to construct equivariant features
 - Pooling to enable invariance