
Lecture 16: Computer Vision (Part 2)

CIS 4190/5190

Spring 2025

Agenda

• Convolutional & pooling layers

• Convolutional neural networks

• Feature visualization

• Applications

Images as 2D Arrays

• Grayscale image is a 2D array of
pixel values

• Color images are 3D array
• 3rd dimension is color (e.g., RGB)

• Called “channels”

Source: S. Narasimhan, S. Lazebnik

Structure in Images

• Translation invariance
• Consider image classification (e.g., labels are cat, dog, etc.)

• Invariance: If we translate an image, it does not change the category label

Source: Ott et al., Learning in the machine: To share or not to share?

Structure in Images

• Translation equivariance
• Consider object detection (e.g., find the position of the cat in an image)

• Equivariance: If we translate an image, the the object is translated similarly

Structure in Images

• Use layers that capture structure

Convolution layers
(Capture equivariance)

Pooling layers
(Capture invariance)

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

Convolution Filters

graphic credit: S. Lazebnik

output 𝑖, 𝑗 = ෍

𝜏=0

𝑘−1

෍

𝛾=0

𝑘−1

filter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾

Example

• Kernel size 3, stride 2,
padding 1

• 3 input channels
• Hence kernel size 3×3×3

• 2 output channels
• Hence 2 kernels

• Total # of parameters:
• (3 × 3 × 3 + 1) × 2 = 56

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

Pooling Layers

Pooling Layers

output 0,0 = max
0≤𝜏<𝑘

max
0≤𝛾<𝑘

image 0 + 𝜏, 0 + 𝛾

Pooling Layers

output 0,1 = max
0≤𝜏<𝑘

max
0≤𝛾<𝑘

image 0 + 𝜏, 1 + 𝛾

Pooling Layers

output 0,2 = max
0≤𝜏<𝑘

max
0≤𝛾<𝑘

image 0 + 𝜏, 2 + 𝛾

Pooling Layers

output 𝑖, 𝑗 = max
0≤𝜏<𝑘

max
0≤𝛾<𝑘

image 𝑖 + 𝜏, 𝑗 + 𝛾

Pooling Layers

• Summary: Hyperparameters
• Kernel size

• Stride (usually >1)

• Amount of zero-padding

• Pooling function (almost always “max”)

• Together, these determine the relationship between the input tensor
shape and the output tensor shape

• Note: Unlike convolution, pooling operates on channels separately
• Thus, 𝑛 input channels → 𝑛 output channels

Summary: Convolution vs. Pooling

• Convolution layers: Translation equivariant
• If object is translated, convolution output is translated by same amount

• Produce “image-shaped” features that retain associations with input pixels

• Pooling layers: Translation invariant
• Binning to make outputs insensitive to translation

• Also reduces dimensionality

• Combined in modern architectures
• Convolution to construct equivariant features

• Pooling to enable invariance

Example

• Suppose we want to predict whether an image depicts Cartesian axes

?

input image target (binary) label

Example

• Step 1: Convolve the image with two filters
• No padding, stride 1

• Step 2: Run max pooling

convolution filters

Example

Example

Example

Example

Example

Example

Input image Convolution Features

Example

Input image Convolution Features Pooling

Example

Input image Convolution Features Pooling

Clear vertical line

Clear horizontal line

Agenda

• Convolutional & pooling layers

• Convolutional neural networks

• Feature visualization

• Applications

Example Architecture: AlexNet

• ImageNet dataset
• 1000 class image classification problem (e.g., grey fox, tabby cat, barber chair)

• >1M image-label pairs gathered from internet and crowdsourced labels

• AlexNet Architecture (Krizhevsky 2012)
• Historically important architecture

• Image classification network (~60M parameters)

• Trained using GPUs on ImageNet dataset

• Huge improvement in performance compared to prior state-of-the-art

Example Architecture: AlexNet

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000Fully connected
(i.e., linear) layers

output

input

Convolution (kernel size 11, stride 4,
96 output channels, no padding)

ReLU Activation

Pooling (kernel size 3, stride 2,
no padding)

Local Response Normalization

Input

slide credit: S. Lazebnik

Example Architecture: AlexNet

Aside: Local Response Normalization

• Highlights areas where the feature maps change

• Historically a standard layer, but no longer used

• Also called “contrastive normalization”

Convolutional Neural Networks

• “Convolutional layer” often refers to sequence of layers

• Modern sequence of layers
• Convolution → Batch Normalization → Pooling → ReLU

• Convolution → Batch Normalization → ReLU → Pooling

• Can also omit pooling (especially for very deep neural networks)

Evolution of Neural Networks

Source: MSRA slides at ILSVRC15

http://research.microsoft.com/en-us/um/people/kahe/ilsvrc15/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

Less computation

in forward pass
than VGGNet!

~60M params ~140M params

~5M params

Back to 60M params

Evolution of Neural Networks

Source: MSRA slides at ILSVRC15

http://research.microsoft.com/en-us/um/people/kahe/ilsvrc15/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

Residual Connections

• Challenges with deeper networks
• Overfitting?

• No, 56 layer network underfits!

Image credit: He et al, Residual Nets, 2015

Residual Connections

• Challenges with deep networks
• Overfitting?

• No, 56 layer network underfits!

• Optimization/representation
• Difficulty representing the identity

function!

• Solution: “Skip” connections
• Facilitate direct feedback from loss

• Easy to represent identity function

Image credit: Fei-Fei Li, Justin Johnson, Serena Yeung

Residual Connections

• Residual layers: Given any convolutional layer 𝐹 𝑥 , use

𝐻 𝑥 = 𝐹 𝑥 + 𝑥

• Two views of residual connections:
• View 1: Providing shortcuts to gradients on the backward pass

• View 2: Allow each “residual block” to fit the residual error (boosting!)

𝐹 𝑥 = 𝐻 𝑥 − 𝑥

Residual Networks

• Stack lots of residual blocks!
• Kernel size 3, no padding, stride 1, no pooling

• Reduce feature dimensions by using stride 2 once every 𝐾 blocks

• Maintains feature size to build very deep nets

Image credit: He et al, Residual Nets, 2015

Conv stride 2 + 2x filters Avg pooling + a single
FC layer, no dropout

Larger conv kernel
before residual blocks

Residual Networks

• For deeper networks, improve efficiency through 1x1 convolutions

• Many other improvements since 2015!
• E.g., “ResNeXt”, “Identity Mappings”, “ConvNeXt” etc.

Image credit: He et al, Residual Nets, 2015

Agenda

• Convolutional & pooling layers

• Convolutional neural networks

• Feature visualization

• Applications

Feature Visualization

Slide credit: Yann LeCun

Layer 1

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
Slide credit: Jia-Bin Huang

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 2

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
Slide credit: Jia-Bin Huang

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 3

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
Slide credit: Jia-Bin Huang

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 3

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
Slide credit: Jia-Bin Huang

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Neural Network Dissection

http://netdissect.csail.mit.edu/

http://netdissect.csail.mit.edu/

What About Small Datasets?

• Transfer learning: We can reuse trained concepts!
• Since CNNs trained on ImageNet appear to learn general features

• We can reuse these models in some way to perform new tasks

• Strategy 1: Feature extraction
• Remove final (softmax) layer and replace with a new one

• Train only the new layer

• Strategy 2: Finetuning
• Do the same thing but train end-to-end

What About Small Datasets?

• New dataset is similar to the original dataset
• Can use very small datasets

• Both strategies work

• New dataset is different from original dataset
• Transfer learning still works!

• Moderate-sized datasets

• Finetune end-to-end

• Examples: Medical images, audio spectrograms, etc.

Agenda

• Convolutional & pooling layers

• Convolutional neural networks

• Feature visualization

• Applications

Applications

[G
ir

sh
ic

k
e

t
al

.
C

V
P

R
1

4
]

[L
o

n
g

e
t

a
l.

C
V

PR
15

]
[T

o
sh

ev
 e

t
a

l.
C

V
PR

14
]

Object detection

Pose detection (regression)

Semantic segmentation

Examples courtesy Jia-Bin Huang

http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf
http://www.cs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
http://arxiv.org/pdf/1312.4659v3.pdf

Applications

[G
ir

sh
ic

k
e

t
al

.
C

V
P

R
1

4
]

Examples courtesy Jia-Bin Huang

Similarity metric learning

[C
h

o
p

ra
 e

t
a
l.
 C

V
P

R
0

5
]

Picture source

[D
o

s
o

v
it
s
k
iy

 e
t

a
l.
 C

V
P

R
1

5
]

Image generation

[D
o

n
g

 e
t

a
l.
 E

C
C

V
 2

0
1

4
]

Low-level image processing: (superresolution,
deblurring, image quality etc.)

http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf
http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf
http://arxiv.org/pdf/1412.6537v2.pdf
http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf
http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepresolution.pdf

Applications: Game Playing

[S
ilv

er
 e

t
al

, N
at

u
re

 ‘
16

]

CNN + Reinforcement learning
[M

ni
h

 e
t

al
, N

at
u

re
’

15
]

http://www.nature.com/nature/journal/v529/n7587/pdf/nature16961.pdf
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

Applications: Art Generation

See if you can tell artist
originals from machine
style imitations at:
http://turing.deepart.io/

Paper: Gatys et al, “Neural ... Style”, arXiv ‘15
Code (torch): https://github.com/jcjohnson/neural-style

http://turing.deepart.io/
http://arxiv.org/abs/1508.06576
https://github.com/jcjohnson/neural-style

	Slide 1: Lecture 16: Computer Vision (Part 2)
	Slide 2: Agenda
	Slide 3: Images as 2D Arrays
	Slide 4: Structure in Images
	Slide 5: Structure in Images
	Slide 6: Structure in Images
	Slide 7: Convolution Filters
	Slide 8: Example
	Slide 9: Pooling Layers
	Slide 10: Pooling Layers
	Slide 11: Pooling Layers
	Slide 12: Pooling Layers
	Slide 13: Pooling Layers
	Slide 14: Pooling Layers
	Slide 15: Summary: Convolution vs. Pooling
	Slide 16: Example
	Slide 17: Example
	Slide 18: Example
	Slide 19: Example
	Slide 20: Example
	Slide 21: Example
	Slide 22: Example
	Slide 23: Example
	Slide 24: Example
	Slide 25: Example
	Slide 26: Agenda
	Slide 27: Example Architecture: AlexNet
	Slide 28: Example Architecture: AlexNet
	Slide 29: Example Architecture: AlexNet
	Slide 30: Aside: Local Response Normalization
	Slide 31: Convolutional Neural Networks
	Slide 32: Evolution of Neural Networks
	Slide 33: Evolution of Neural Networks
	Slide 34: Residual Connections
	Slide 35: Residual Connections
	Slide 36: Residual Connections
	Slide 37: Residual Networks
	Slide 38: Residual Networks
	Slide 39: Agenda
	Slide 40: Feature Visualization
	Slide 41: Layer 1
	Slide 42: Layer 2
	Slide 43: Layer 3
	Slide 44: Layer 3
	Slide 45: Neural Network Dissection
	Slide 46: What About Small Datasets?
	Slide 47: What About Small Datasets?
	Slide 48: Agenda
	Slide 49: Applications
	Slide 50: Applications
	Slide 51: Applications: Game Playing
	Slide 52: Applications: Art Generation

