Lecture 16: NLP (Part 2)
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Recap: Bag of Words Representation

Assumption: The ordering of words does not matter, only what occurred
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Recap: Word2Vec

Idea: Given a word, predict the words you expect to see in the context
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We can concatenate the target and context embeddings to form our final word embedding



Deep Averaging Networks

e Deep Averaging Networks (DAN) for Text Classification
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(Iyyer et 2015): Deep Unordered Composition Rivals Syntactic Methods for Text Classification



Words in Context

* While word2vec is trained based on context, after training, it is
applied independently to each word
e E.g., train linear regression of sum of word vectors, or n-grams

 Why is this problematic?

* “He ate a tasty apple”
* “He wrote his essay on his Apple computer”

* Both use the same embedding!



Updating Word Embeddings

e Word embeddings can be treated as parameters too!

H — {W(l),b(l),W(2),b(2),w(o), b(o), E.np}

e When the training set is small, don’t re-train word
embeddings (think of them as features!).

e Most cases: initialize word embeddings using pre-
trained ones (word2vec, Glove) and re-train them
for the task

e When you have enough data, you can just randomly
initialize them and train from scratch (e.g. machine
translation)



So far

* Classical approach: Feature engineering + Standard ML model

* Semi-Classical approach: Word2Vec + Standard ML model

* Sum embeddings of words to get document features
* Still “bag-of-words” like model! (Embed(i) = OneHot(i)) is bag of words)



This Lecture: Sequence Models

e Recurrent Neural Networks
e Attention and Transformers

The Matrix will always delight
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Sequence models have produced huge advances in NLP




Recurrent Neural Networks (RNN)

* A class of NNs allowing to handle variable length inputs
 Why variable length: Relationships in sentences can be extremely long distance

* Process input sequentially



Abstract RNN

A function which takes some input x (i.e. vector for a word) and some
previous state h, and outputs a vector y and updates the hidden state
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Abstract RNN - Unrolled in Time

A function which takes some input x (i.e. vector for a word) and some
previous state h, and outputs a vector y and updates the hidden state

Input sequence of any length — treat as one giant neural network
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The Matrix  never fails to delight




Abstract RNN - Unrolled in Time

Sentiment Analysis:
Did the writer like the movie?
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Abstract RNN - Unrolled in Time

Named Entity Recognition:
Which words are movies?
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Abstract RNN - Unrolled in Time

Language Modeling:
Which word comes next?

Matrix never fails to delight END

tot ot ot
~L LA
LR S S S s

The Matrix  never fails to delight




Recurrent Neural Networks

many to one one to many many to many many to many

Sentiment Image Machine Video
prediction captioning translation captioning

Fei-Fei Li, Justin Johnson, Serena Yeung



Simple RNN

Next state : non-linearity applied to sum of projections of input and previous state

y h,= g(Vx,+ Uh,_, + b,) € R*

T g: Non-linearity ( tanh )
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Simple RNN

Next state : non-linearity applied to sum of projections of input and previous state

Uh,_,+b;,) € R?

g: Non-linearity ( tanh )

How interested is a cell in the
features of the previous state?

_-_-f' “How interested is a cell in
{ the features of the input? |

T Embeddings

Elman (1990)



Simple RNN

Next state : non-linearity applied to sum of projections of input and previous state

y h,= g(Vx,+ Uh,_, + b,) € R?

T g: Non-linearity ( tanh )
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Elman (1990)



Training RNNSs

* Backpropagation works as before

* For shared parameters, we can show that the overall gradient is the sum of
gradient at each usage

* Exploding/vanishing gradients can be particularly problematic

e LSTM (“long short-term memory”) and GRU (“gated recurrent unit”)
do clever things to better maintain hidden state



Training RNNSs
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Exploding & Vanishing Gradients

0L  OL Ohs . 0L dhs 0h, . 0L dhz Oh, Oh,
0U 0hs OU  0hg 0h, 0U = 0hs 0h, 0h, OU

e Multiplicative contributions cause exploding/vanishing gradients
* If too large — Large gradients will destabilize gradient descent algorithms.
* If too small — History doesn’t matter anymore in the optimization!

Solution: Change the form of the recurrent cell



Long Short Term Memory (LSTM)

Replace multiplicative relationships in hidden state with additive ones.
Introduce second hidden state cell memory (c)

Output ( vy )

Previous Memory ( c) LSTM - \oxt Memory ( ¢ )
Previous State (h) el Cell m——lp- N\ ext State ( h )

I

Input ( x )



Long Short Term Memory (LSTM)

Replace multiplicative relationships in hidden state with additive ones.
Introduce second hidden state cell memory (c)
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Pretraining RNNs

* Unsupervised pretraining (Next word/token prediction)

* Train on dataset of text to predict next word (classification problem)
* X = wWyw, ..w; and y = w4 (usually y is one-hot even if x is not)

* Finetune pretrained RNN on downstream task



Pretraining RNNs

e Step 0: Pretrained on a large unlabeled text dataset

e Also called “self-supervised”
* Trained using supervised learning, but labels are predicting data itself

e Step 1: Replace next-word prediction layer with new layer for task

e Step 2: Train new layer or finetune end-to-end
e Can think of last layer of pretrained RNN as a “contextual word embedding”



Shortcomings of RNNs

e Shortcomings

* Unidirectional information flow (must remember everything relevant)
* Need to remember everything until it is needed

* Improvements/alternatives
e Stacked/Bidirectional models

e LSTMs/GRUs
 Transformers



Stacked RNN

Allow multiple levels of pro
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Bidirectional RNN

Run both ways, and then concat the outputs together

?f t 1t t if if
t

t t t t 1



Stacked + Bidirectional RNN




ELMo Word Embeddings

 Bidirectional LSTM: Combine one LSTM to predict next word given
previous words, another to predict previous word given later words




Sequence to Sequence Model — RNNs for String-to-String Problems
(i.e Translation)
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Sequence to Sequence Model — RNNs for String-to-String Problems

(i.e Translation)

i Target Sentence (Output)
a
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Sequence to Sequence Model — RNNs for String-to-String Problems

(i.e Translation)
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Problems that Can Be Written as String to String Transformation

e Sequence-to-sequence is useful for more than just MT

* Many NLP tasks can be phrased as sequence-to-sequence:
* Summarization (long text - short text)
* Dialogue (previous utterances - next utterance)

* Parsing (input text - output parse as sequence)
e Code generation (natural language - Python code)

Model had huge impact on many structured problems



Encoder RNN

Sequence-to-sequence: the bottleneck problem
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Attention

* RNNs have trouble propagating information forwards

* Solution: Let RNN “pay attention” to past sequence



Attention
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Attention

dot product
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Attention
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distribution
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Attention
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Attention

Attention money
output A
c 5 — Ve
C 5 R
= 5 A
S 3
AR
E % A | '
c
e 92
g
S o SH
(@]
Y
<
o o) o) o} 0 0 0 o 0 0 0
e o| o Jo| .|@ Jol Jol ol Jo| Jof o
o< e le@ e| ‘| o e[ le[ lel “le|[ e
S o) o} o 0 o 0 o} 0 0 0

les pauvres sont démunis

\ J
Y

Source sentence (input)

<START> the

poor don’t have any

NNY J8p0dag



Attention Equations

e We have encoder hidden states hq,..., Ay € R"
e Ontimestep t, we have decoder hidden state s: € R
* We get the attention scores e! for this step:

el =[s!hy,...,slhy] e RY

e We take softmax to get the attention distribution /! for this step (this is a
probability distribution and sums to 1)

o = softmax(e’) € RY

e Weuse o totakea weighted sum of the encoder hidden states to get the
attention output a;

N
a; = E Oéfhz = ]Rh
i=1

* Finally we concatenate the attention output a; with the decoder hidden
state s; and proceed as in the non-attention seq2seq model

[at; St] = RQh,



Transformers

 Composition of self-attention layers
Self-attention
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Self-Attention Layer

* Self-attention layer:

T
— z attention(x[s], x[t]) - f(x[s])
s=1

* Input first processed by local layer [
* All inputs can affect y|t]
* But weighted by attention(x|[s], x[t])

e Resembles convolution but connection is
learned instead of hardcoded

Self-attention
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Figure credit to d2l.ai


http://d2l.ai/

Self-Attention Layer

* Self-attention layer:

T
ylt] = Z softmax([query(x[t]) Tkey(x[s])]) - value(x[s])

s=1
* Here, we have (learnable parameters are W, Wy, and Wy):

query(x[s]) = Wyx|s]
key(x[s]) = Wix|s]
value(x[s]) = Wy x]|s]



Self-Attention Layer
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Self-Attention Layer
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Self-Attention Layer
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Self-Attention Layer
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Multi-Head Self-Attention
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Multi-Head Self-Attention
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Transformers

 Stack self-attention layers to form a neural network architecture

* Examples:

* BERT: Bidirectional transformer, useful for prediction
* GPT: Unidirectional model suited to text generation

* Aside: Self-attention layers subsume convolutional layers

* Use “positional encodings” as auxiliary input so each input knows its position

e https://d2l.ai/chapter attention-mechanisms/self-attention-and-positional-
encoding.html#

 Then, the attention mechanism can learn convolutional connection structure


https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html
https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html

Visualizing Attention Outputs

As aliens entered our planet and began to colonized Earth, a certain group of
extraterrestrials began to manipulate our seciety through theirinfluences of a certain
number of the elite to keep and iron grip over the populace.

|-'||'I- cregnshol r"F

As aliens entered our planet

https://transformer.huggingface.co/
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f7487652 2bc0



Applications: Spam Detection

* “Bag of words” + SVMs for spam classification

”n

* Features: Words like “western union”, “wire
transfer”, “bank” are suggestive of spam

Data Collection of Emails

Spam Email




Applications: Search

e Use “bag of words” + TF-IDF to identify
relevant documents for a search query

Search
Queries

Data Preprocessing: remove punctuations,
stop words, to lower
Term Document Matrix

Queries Tfidf

Document Tfidf

I

A v

Calculate Cosine similarity between each

document and each query

Sort and select Top K relevant documents with
large cosine similarity values




Applications: Virtual Assistants

* Use word vectors to predict intent of queries users ask

NLU Engine

Pattern Matching

“What will be the
weather in London
tomorrow at 9am?”

v

Regular Expressions

Deterministic Intent Parser

___________________________

Intent Slot Filling
Classification
Logistic CRFs
Regression

Probabilistic Intent Parser

e e e e e e e — —

A J

Entity Resolution

Rustling

Y

Intent: GetWeather

Slots:
Location: London
Time: 2018-03-06 09:00:00




Applications: Question Answering

* Language models can be used to
answer questions based on a given
passage

Passage Sentence

In meteorology, precipitation is any
product of the condensation of
atmospheric water vapor that falls
under gravity.

Question
What causes precipitation to fall?
Answer Candidate

gravity




Applications: Generation

* Language models can automatically generate text for applications
such as video games

Title: United Methodists Agree to Historic Split

Subtitle: Those who oppose gay marriage will form their own denomination
Article: After two days of intense debate, the United Methodist Church

has agreed to a historic split - one that is expected to end in the

creation of a new denomination, one that will be "theologically and
socially conservative," according to The Washington Post. The majority of
delegates attending the church’s annual General Conference in May voted to
strengthen a ban on the ordination of LGBTQ clergy and to write new rules
that will "discipline" clergy who officiate at same-sex weddings. But

those who opposed these measures have a new plan: They say they will form a
separate denomination by 2020, calling their church the Christian Methodist
denomination.

The Post notes that the denomination, which claims 12.5 million members, was
in the early 20th century the "largest Protestant denomination in the U.S.,"
but that it has been shrinking in recent decades. The new split will be the
second in the church’s history. The first occurred in 1968, when roughly

10 percent of the denomination left to form the Evangelical United Brethren
Church. The Post notes that the proposed split "comes at a critical time

A/ Dungeon, an [nﬁn[tely for the church, which has been losing members for years," which has been
"pushed toward the brink of a schism over the role of LGBTQ people in the
generated text adventure church." Gay marriage is not the only issue that has divided the church. In
2016, the denomination was split over ordination of transgender clergy, with
powered by deep /earning. the North Pacific regional conference voting to ban them from serving as

clergy, and the South Pacific regional conference voting to allow them.




Transformers for Computer Vision

transformer
encoder-
decoder

Figure credit to “End-to-End Object Detection with Transformers”



https://arxiv.org/pdf/2005.12872.pdf
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