Announcements

* Homework 3 due Wednesday at 8pm

Lecture 19: Reinforcement Learning

CIS 4190/5190
Spring 2025

Three Kinds of Learning

* Supervised learning
* Given labeled examples (x, y), learn to predict y given x

* Unsupervised learning
* Given unlabeled examples x, uncover structure in x

* Reinforcement learning
* Learning from sequence of interactions with the environment

Sequential Decision Making

* Make a sequence of decisions to maximize a real-valued reward

 Examples
* Driving a car
* Making movie recommendations
* Treating a patient over time
* Navigating a webpage

Sequential Decision Making

* Machine learning almost always aims to inform decision making
* Only show user an image if it contains a pet
* Help a doctor make a treatment decision

* Reinforcement learning is about sequences of decisions

* Naive strategy: Predict future and optimize decisions accordingly
* But decisions affect forecasts
* If we show the user too many cats, they might get bored of cats!

 Solution: Jointly perform prediction and optimization

What makes RL hard?

Ross & Bagnell 2011

What makes RL hard?

Ross & Bagnell 2011

What makes RL hard?

~not in training set

goal

Ross & Bagnell 2011

What makes RL hard?

* Distribution shift is fundamental to the problem
* Repeat: Improve policy = distribution shifts = improve policy =2 ...

* This is with a human expert in the loop! Without the expert, we must start off
acting randomly

* Generally, using expert data where available is promising (called
“imitation learning”)

e Caveat: Limited by human performance (e.g., AlphaGo Zero significantly
outperforms AlphaGo, which was pretrained on expert games)

Reinforcement Learning Problem

 Ateachstept € {1,...,T}:
* Observe state s; € Sand reward 7 € R

action a
* Take actiona, = (s;) € A I_‘ﬁ
4) 4 N

* Goal: Learn a policy m: S = A that

maximizes discounted reward sum: agent environment
T _ J _ _J
T reward 7 T

=1 state s; S¢41

Reinforcement Learning Problem

state: joint angles state: current stock
actions: motor torques actions: how much to purchase
dynamics: robot physics dynamics: demand at each store

reward: average speed reward: profit

Reinforcement Learning Successes

oogle DeepMind

Challenge Match
8-15March 2016

Y

v b Y

1
T
I

o

Playing board games and videogames

fmias of pansergery
VAT
I

Deal of the Day

(g workaladon

Gt i by

iyt

Conatt Ciard
Dedst Carcd

L3t hilwmep

Fryl Mame

Paryrranl

Craclt Card
Dl Gt

Fram

Reinforcement Learning Successes

Pasiad

Rafrarribenl =u
Sty loggesdn
Ener Caplohs

(a) Early training

(b) Mid training

Web navigation (e.g., book a flight)

(c) Late training

(d) Test

Reinforcement Learning Successes

FINGER PIVOTING SLIDING FINGER GAITING

Robotics (e.g., Rubik’s cube manipulation)

Reinforcement Learning Successes

. Bond brok F d D
=== en‘\" i a Learning loop Actor Mossurements | b
L 1 Simulated environment a
! A 4 +
Control | ¢
Learner — p‘;’n:: — | Envircnment Control w—md Sensor Physical Power
parameters | polcy model parameters supply
o St — ——
5 Violtaga commands Terminale . ‘ \ 4 o 3 .
t — 2 Forward V¥
Replay : J| 3 {
g e - P HE xS | | e
= -—r Roward | @ | Neural net: MLP = 3 x 256
Neural : Outputs: a = 19
network
d Deployment h Vessel cross section
e Our architecture -
- m Isofux line
Yargets J t °°‘|'"°' X-paint
i T n vacum
Aeal-time Plasma
control poundary
f Conventional control System — Vessel —|
2\; (S, @, 11, S1) m Piiing = AxisR. Z
= (Sy, @4, 15, S;) position
| Ip, R. Z. shape| eorf .
e
'g (S, @y, I3, S3) targats ol _—
[' -
3 ofth N - . Strike
s foedlormerd ¥ DU poinks = Logs
) Experiment/ Experi e N\ Vo i
xperimen xperien a = 16 Polcidal _ Ohmic Fast
0 2 4 6 8 10 12 14 penme pernence feid coils ~ colls | ool
environment

Tip height z (A)

Steering microscope to separate molecules Controlling magnetic fields to stabilize plasma (in simulation)

https://www.science.org/doi/10.1126/sciadv.abb6987 Degrave et al 2022, Magnetic control of tokamak plasmas through deep reinforcement learning

https://www.science.org/doi/10.1126/sciadv.abb6987

Reinforcement Learning Successes

* Power grids: Reinforcement learning for demand response
* Areview of algorithms and modeling techniques, J. Vazquez-Canteli, Z. Nagy

 Recommender systems
* https://github.com/google-research/recsim

* Many potential applications
* https://arxiv.org/abs/1904.12901

https://arxiv.org/abs/1904.12901

Reinforcement Learning Problem

* At a high level, we need to specify the following:
» State space: What are the observations the agent may encounter?
* Action space: What are the actions the agent can take?
 Transitions/dynamics: How the state is updated when taking an action
 Rewards: What rewards the agent receives for taking an action in a state

* For most of today, assume state and action spaces are finite

Toy Example

* Grid map with solid/open cells

 State: An open grid cell

e Actions: Move North, East,
South, West B

Based on slide by Dan Klein

Toy Example

* Dynamics
 Move in chosen direction, but not
deterministically!
e Succeeds 80% of the time
* 10% of the time, end up 90° off
* 10% of the time, end up —90° off

* The agent stays put if it tries to
move into a solid cell or outside 1 2 3 4
the world 0.8

* At terminal states, any action ends 0.1 0.1
episode (or rollout)

1 START

Based on slide by Dan Klein

Toy Example

e Rewards

* At terminal state, agent receives
the specified reward

* For each timestep outside terminal
states, the agent pays a small cost,
e.g., a “reward” of —0.03

3
2 1]
1 START

1 2 3 4

0.8

0.1 0.1

Based on slide by Dan Klein

Example Episode (Random Policy)

3 +1

Based on slide by Dan Klein

Example Episode (Random Policy)

3 +1

Action= “N”" 1

Based on slide by Dan Klein

Example Episode (Random Policy)

3

2

Action= “N”"
Result = “N” 1
Reward =-0.03

+1
START
1 2 3 4

Based on slide by Dan Klein

Example Episode (Random Policy)

3 T

Action= “N” 2 ‘ - —
1 START

1 2 3 4

0.8
0.1% 0.1

Based on slide by Dan Klein

Example Episode (Random Policy)

(stays still because blocked)

Action= “N"
Result="E"
Reward =-0.03

3

2

1

+1
START
1 2 3 4

0.8

Based on slide by Dan Klein

Example Episode (Random Policy)

3 T
Action= “N” 2 —
Result=“N"

Reward =-0.03

1 START
1 2 3 4

Based on slide by Dan Klein

Example Episode (Random Policy)

Action= “N"
Result="E"
Reward =-0.03

3

2

T

+1

START

0.8
0.1

Based on slide by Dan Klein

Example Episode (Random Policy)

Action= “E”
Result="E"
Reward =-0.03

3

2

+1

START

Based on slide by Dan Klein

Example Episode (Random Policy)

Action= “E”
Result="E"
Reward =-0.03

3

2

START

Based on slide by Dan Klein

Example Episode (Random Policy)

Action=“N" T . ~| @
Result="“the end”
Reward = +1

2

Based on slide by Dan Klein

Example Episode (Random Policy)

 Our random trajectory happened
to end in the right place!

* Optimal policy? No!
* Only succeeded by random chance

3

e
-1
t
START
1 2 4

Based on slide by Dan Klein

Optimal Policy

e Optimal policy: Following "
maximizes total reward received

* Discounted: Future rewards are
downweighted

* In expectation: On average across

randomness of environment and
actions

+ 1

Based on slide by Dan Klein

Markov Decision Process (MDP)

* An MDP (S,4, P,R,y) is defined by: +5
e Set of statess € S
 Set of actionsa € A

* Transition function P(s’ | s,a) (also
called “dynamics” or the “model”)

e Reward function R(s,a,s’)
* Discount factory <1

e Also assume an initial state
distribution D(s)

e Often omitted since optimal policy
does not depend on D

https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690
https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690

Markov Decision Process (MDP)

e Goal: Maximize cumulative expected discounted reward:

I mgx](ﬂ) where](T[) — [E(Z]/t)
Lt=0

* Expectation over episodes { = (sy, ag, 7y, S1, ...), Where
*So~D
* a; = m(se)
* Sey1 ~ PClsear)
* 1t = R(S¢, ag, Sp41)

Markov Decision Process (MDP)

* Planning: Given P and R, compute the optimal policy "
* Purely an optimization problem! No learning

* Reinforcement learning: Compute the optimal policy 7" without
prior knowledge of P and R

Policy Value Function

* Policy Value Function: Expected reward if we start in s and use :

VT(s) = E(Zyt-rt | 5o = S)
t=0

* Bellman equation:

VT(s) = Z P(s'15,m(s)) - (R(s,m(s),) +7 - V(")
— .

current value expectation current reward +
over next state discounted future reward

Optimal Value Function

e Optimal value function: Expected reward if we start in s and use ™:

V*(s) = E Eyt-rtls() =5
t=0

* Bellman equation: Optimal policy selects action that maximizes
future expected reward from state s

V*(s) = max P(s'"|s,a) - (R(S, as')+vy: V*(S'))
a
H_/ S’ES\ ~ J ~ %

current value expectation current reward +
over next state discounted future reward

Optimal Value Function

* Bellman equation:

V* (S)—maxz P(s'1s,a) - (R(Sas’)+y v (S’))

s'eSs

* Do not need to know the optimal policy 7 ™!

 Strategy: Compute V™ and then use it to compute 7~
e Caveat: Latter step requires knowing P

Policy Action-Value Function

* Policy Action-Value Function (or Q function): Expected reward if we
start in s, take action a, and then use T thereafter:

QTL’(S’a) — E(Eyt g, | Sop = S,Ap = a)
t=0

* Bellman equation:

0"(s,) =) P(s'15,0)-(RGs,0,5") +7-Q7(s", ("))

s'es

Optimal Action-Value Function

* Optimal Action-Value Function (or Q function): Expected reward if
we start in s, take action a, and then act optimally thereafter:

Q*(SJa) — E(E]/t g, | So = S,Qp = a>
t=0

* Bellman equation:

Q*(s,a) = z P(s'|s,a)- (R(S, as')+y: g}gﬁQ*(s’, a'))

s'es

Relationship
* We have
V™ (s) = Q" (s, m(s))

e Similarly, we have

V:(s) = max Q*(s,a)

Q Iteration

e We have

w(s) = maxQ*(s, a)

 Strategy: Compute Q" and then use it to compute 7~

Q Iteration

* Initialize Q,(s,a) « O forall s,a
* Fori € {1,2, ... } until convergence:

Qina(5,@) «) P(s'15,0) - (R(s,a,5") + - max Qu(s’,a))

s'es

[r—

»
.m/m
-N —
—! S
i
tm R%

< N’

Q,

PNk

J

Ve

S

o

L

—

x

S

+
R
ﬂ >v)

B I
N

1

CIET)
W
K
LT

EIET)
§ImE
&
L

S EIET)
S EEE
&
L

EIET)
R
K
EEX|

S EIET)
§ K
&
REE

EIET)
KX
W
BEE

EIET)
KX
K
REE

EIET)
 KNE,
K
EEX|

aaf)
KN
K
REE

aaf)
§ W
K
HEE

iaaf)
S ENE
&
L

After 1000 iterations:

0 0.9
Y

—

Qui(5@) <) P(s'15,0) [R(s,a,5) +|max:(s’, @)

Q Iteration

* Information propagates outward from terminal states

* Eventually all state-action pairs converge to correct Q-value estimates

Aside: Value Iteration

* Analogous to Q-Policy iteration but for computing the value function

* Initialize VV;(s) « O for all s

* Fori € {1,2, ...} until convergence:

Viel(S) < max 2 P(s"Is,a) - (R(s,a,s")+y Vi(s))

s'es

0 0.9

/ /
Viii(s) « max z P(s'|s,a)[R(s,a,s") + yV;(s")]
s'es
Example MDP Vo Vy

221 0[O0 O] 0| 1 0] 00|+

0 0.9

/ /
Viii(s) « max z P(s'|s,a)[R(s,a,s") + yV;(s")]
s'es
Example MDP Vi V;

+ 3101 01O [+1f 2| O

OJ|-1| 2] O

'"f O[O OO "1 O Of OO

2 3 4 1 2 3 4 1 2 3 4

V,({(4,3) < 1 V,((4,2)) « -1

Example MDP

0 0.9

1

/ /
Viii(s) « max z P(s'|s,a)[R(s,a,s") + yV;(s")]
s'es
V, Vs
0 3 [O 10.52(0.78]| +1
0 21 0 0.43| -1

O[O0 0] O "1 O Of OO

Reinforcement Learning

e Q iteration can be used to compute the optimal Q function when P
and R are known

* How can we adapt it to the setting where these are unknown?

* Observation: Every time you take action a from state s, you obtain one
sample s’ ~ P(-] s,a) and observe R(s,a,s’)

e Use single sample instead of full P

Q Learning

e Can we learn ™™ without explicitly learning P and R?

Qir1(s,a) « Z P(s'|s,a)- (R(S, as')+y- {{r‘é‘i‘ Q;(s’, a’))

s'es

Q Learning

e Can we learn ™™ without explicitly learning P and R?

Qi+1(s,a) « Eg_pris a) [R(S, a,s')+vy- max Qi(s’, a’)]

Q Learning

* Q Learning update:
Qi+1(s,a) « R(s,a,s") +y - maxQy(s’,a’)
a €
 Q Iteration: Update for all (s, a,s’) at each step

e Q Learning: Update just for current (s, a), and approximate with the
state s’ we actually reached (i.e., a single sample s’ ~ P(:| s,a))

Q Learning

* Problem: Forget everything we learned before (i.e., Q;(s, a))

* Solution: Incremental update:

Qie1(s,@) « (1-a) - Qi(s,@) + @~ (R(s,a,5") +v - max Q;(s’, a))

3 0 0 0.72
\ 0

2 [« o 0| =11
1 0 0 0 009 () oo

Sample R + ymaxQ =
0+0.9x0.78 = 0.702

New Q =
0.09+0.1X(0.702-0.09)
=(0.1512

Q(s,a) < Q(s,a) + a

0.1 0.9

/
(R(s, a,s)+y max Q(s',a") — Q(s, a))

[E[ELE)

Policy for Gathering Data

e Strategy 1: Randomly explore all (s, a) pairs
 Not obvious how to do so!

e E.g., if we act randomly, it may take a very long
time to explore states that are difficult to reach

 Strategy 2: Use current best policy

* Can get stuck in local minima

* E.g., we may never discover a shortcut if it
sticks to a known route to the goal

Policy for Gathering Data

* e-greedy:
* Play current best with probability 1 — € and randomly with probability €
* Can reduce € over time
* Works okay, but exploration is undirected

* Visitation counts:
* Maintain a count N(s, a) of number of times we tried action a in state s

1). . .
* Choose a* = arg max e {Q(s, a) + m}, i.e., inflate less visited states

Summary

e Qiteration: Compute optimal Q function when the transitions and
rewards are known

* Q learning: Compute optimal Q function when the transitions and
rewards are unknown

e Extensions

* Various strategies for exploring the state space during learning
* Handling large or continuous state spaces

Curse of Dimensionality

* How large is the state space?

e Gridworld: One for each of the n cells

* Pacman: State is (player, ghost,, ..., ghosty,),
so there are n* states!

* Problem: Learning in one state does not
tell us anything about the other states!

* Many states = learn very slowly

State-Action Features

* Can we learn across state-action pairs?

* Yes, use features!
* ¢(s,a) € R?

* Then, learn to predict Q*(s,a) = Qg(s,a) = f4 (gb(s, a))
* Enables generalization to similar states

	Slide 1: Announcements
	Slide 2: Lecture 19: Reinforcement Learning
	Slide 3: Three Kinds of Learning
	Slide 4: Sequential Decision Making
	Slide 5: Sequential Decision Making
	Slide 6: What makes RL hard?
	Slide 7: What makes RL hard?
	Slide 8: What makes RL hard?
	Slide 9: What makes RL hard?
	Slide 10: Reinforcement Learning Problem
	Slide 11: Reinforcement Learning Problem
	Slide 12: Reinforcement Learning Successes
	Slide 13: Reinforcement Learning Successes
	Slide 14: Reinforcement Learning Successes
	Slide 15: Reinforcement Learning Successes
	Slide 16: Reinforcement Learning Successes
	Slide 17: Reinforcement Learning Problem
	Slide 18: Toy Example
	Slide 19: Toy Example
	Slide 20: Toy Example
	Slide 21: Example Episode (Random Policy)
	Slide 22: Example Episode (Random Policy)
	Slide 23: Example Episode (Random Policy)
	Slide 24: Example Episode (Random Policy)
	Slide 25: Example Episode (Random Policy)
	Slide 26: Example Episode (Random Policy)
	Slide 27: Example Episode (Random Policy)
	Slide 28: Example Episode (Random Policy)
	Slide 29: Example Episode (Random Policy)
	Slide 30: Example Episode (Random Policy)
	Slide 31: Example Episode (Random Policy)
	Slide 32: Optimal Policy
	Slide 33: Markov Decision Process (MDP)
	Slide 34: Markov Decision Process (MDP)
	Slide 35: Markov Decision Process (MDP)
	Slide 36: Policy Value Function
	Slide 37: Optimal Value Function
	Slide 38: Optimal Value Function
	Slide 39: Policy Action-Value Function
	Slide 40: Optimal Action-Value Function
	Slide 41: Relationship
	Slide 42: Q Iteration
	Slide 43: Q Iteration
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57: Q Iteration
	Slide 58: Aside: Value Iteration
	Slide 59
	Slide 60
	Slide 61
	Slide 62: Reinforcement Learning
	Slide 63: Q Learning
	Slide 64: Q Learning
	Slide 65: Q Learning
	Slide 66: Q Learning
	Slide 67
	Slide 68
	Slide 69: Policy for Gathering Data
	Slide 70: Policy for Gathering Data
	Slide 71: Summary
	Slide 72: Curse of Dimensionality
	Slide 73: State-Action Features

