Instructor Introductions

Osbert Bastani Assistant Professor, CIS Mingmin Zhao Assistant Professor, CIS

https://obastani.github.io/

https://www.cis.upenn.edu/~mingminz/

Research Area: Multimodal Learning and Sensing

In addition to:

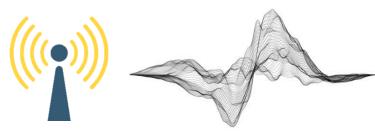
Vision

Text

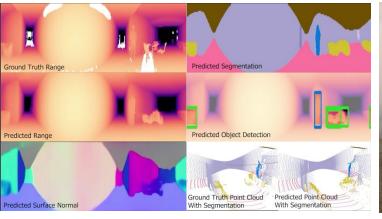
| Control of the Contr

We also look at:

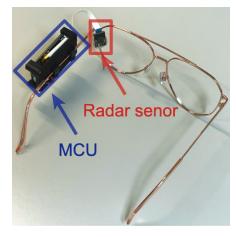
Radio/Wireless Acoustic/Ultrasound



See Through Occlusions & X-Ray Vision

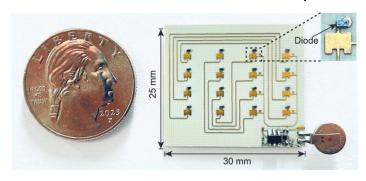


Smart Eyeglasses for Ocular Health & Cognitive State Tracking



Sound Rendering / Acoustic Modeling

Sub-mm and NLOS Motion Capture



Life & Hobbies

Moko

Moki

Announcements

- Homework 0: Due in 1 week (Wed 1/29 8 pm).
 - Should only take you a few hours. Primers on various topics on the class website.
- OH time and location will be posted soon.
 - After HW0 is due and HW1 is released.
 - 20+ hours every week from instructors and TAs.

Waitlist

- Some movement on add/drop, some of you added. Prioritizing by date of graduation, and when you came on the waitlist.
- Email instructors if you have an extraordinary need to take the class.
- If you have been accepted off the waitlist, please enroll by Friday

Lecture 2: Linear Regression (Part 1)

CIS 4190/5190 Spring 2025

Recap: Types of Machine Learning

Supervised learning

- Input: Examples of inputs and desired outputs
- Output: Model that predicts output given a new input

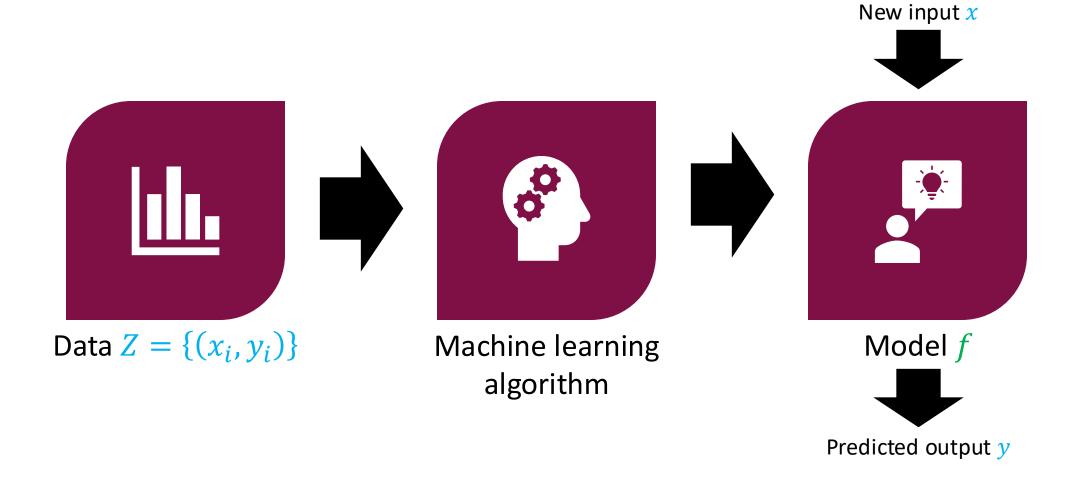
Unsupervised learning

- Input: Examples of some data (no "outputs")
- Output: Representation of structure in the data

Reinforcement learning

- Input: Sequence of interactions with an environment
- Output: Policy that performs a desired task

Supervised Learning



Question: What model family (a.k.a. hypothesis class) to consider?

Linear Functions

• Consider the space of linear functions $f_{\beta}(x)$ defined by

$$f_{\beta}(x) = \beta^{\mathsf{T}} x$$

Linear Functions

• Consider the space of linear functions $f_{\beta}(x)$ defined by

$$f_{\beta}(x) = \beta^{\mathsf{T}} x = [\beta_1 \quad \cdots \quad \beta_d] \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} = \beta_1 x_1 + \cdots + \beta_d x_d$$

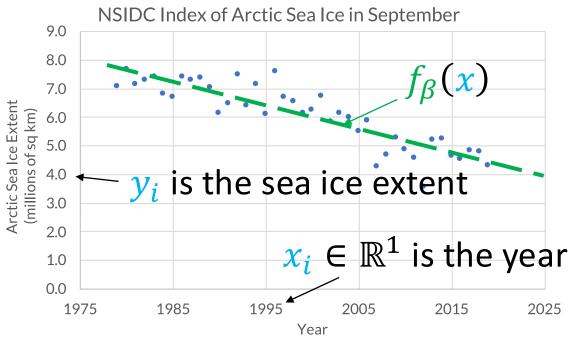
- $x \in \mathbb{R}^d$ is called an **input** (a.k.a. **features** or **covariates**)
- $\beta \in \mathbb{R}^d$ is called the **parameters** (a.k.a. **parameter vector**)
- $y = f_{\beta}(x)$ is called the **label** (a.k.a. **output** or **response**)

- Input: Dataset $Z = \{(x_1, y_1), \dots, (x_n, y_n)\}$, where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$
- Output: A linear function $f_{\beta}(x) = \beta^{\top} x$ such that $y_i \approx \beta^{\top} x_i$

Typical notation

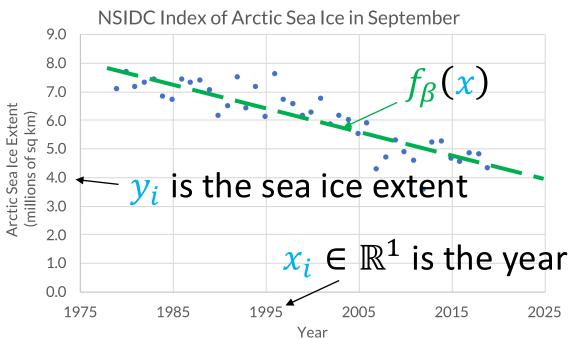
- Use i to index examples (x_i, y_i) in data Z
- Use j to index components x_i of $x \in \mathbb{R}^d$
- x_{ij} is component j of input example i
- Goal: Estimate $\beta \in \mathbb{R}^d$

- Input: Dataset $Z = \{(x_1, y_1), \dots, (x_n, y_n)\}$, where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$
- Output: A linear function $f_{\beta}(x) = \beta^{\top} x$ such that $y_i \approx \beta^{\top} x_i$



What does this mean?

- Input: Dataset $Z = \{(x_1, y_1), \dots, (x_n, y_n)\}$, where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$ Output: A linear function $f_{\beta}(x) = \beta^{\top} x$ such that $y_i \approx \beta^{\top} x_i$

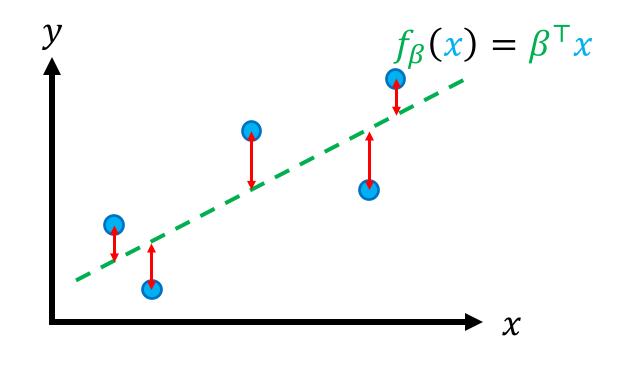


Choice of Loss Function

- $y_i \approx \beta^T x_i$ if $(y_i \beta^T x_i)^2$ small
- Mean squared error (MSE):

$$L(\beta; \mathbf{Z}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_i - \beta^{\mathsf{T}} \mathbf{x}_i)^2$$

 Computationally convenient and works well in practice



$$L(\beta; \mathbf{Z}) = \frac{\mathbf{1}^2 + \mathbf{1}^2 + \mathbf{1}^2 + \mathbf{1}^2 + \mathbf{1}^2}{n}$$

- Input: Data $Z = \{(x_1, y_1), \dots, (x_n, y_n)\}$, where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$
- Output: A linear function $f_{\beta}(x) = \beta^{\top} x$ such that $y_i \approx \beta^{\top} x_i$

- Input: Data $Z = \{(x_1, y_1), \dots, (x_n, y_n)\}$, where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$
- Output: A linear function $f_{\beta}(x) = \beta^{T}x$ that minimizes the MSE:

$$L(\beta; \mathbf{Z}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_i - \beta^{\mathsf{T}} \mathbf{x}_i)^2$$

Linear Regression Algorithm

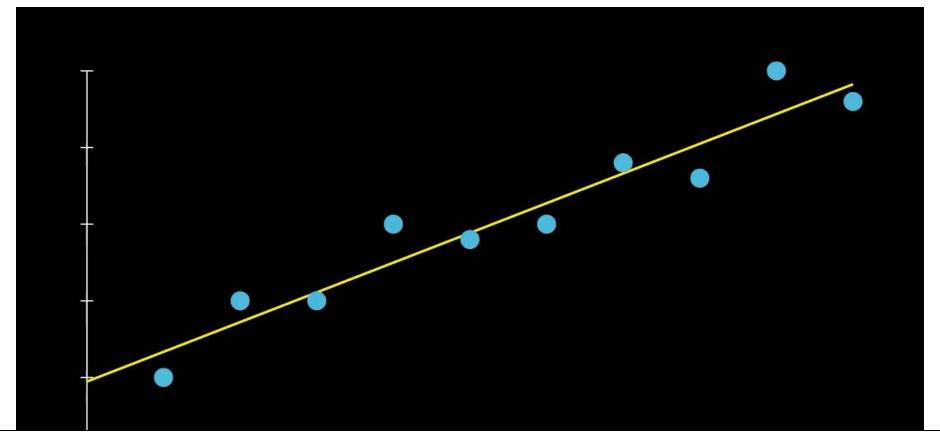
- **Input:** Dataset $Z = \{(x_1, y_1), ..., (x_n, y_n)\}$
- Compute

$$\hat{\beta}(Z) = \underset{\beta \in \mathbb{R}^d}{\arg \min} L(\beta; Z)$$

$$= \underset{\beta \in \mathbb{R}^d}{\arg \min} \frac{1}{n} \sum_{i=1}^n (y_i - \beta^\top x_i)^2$$

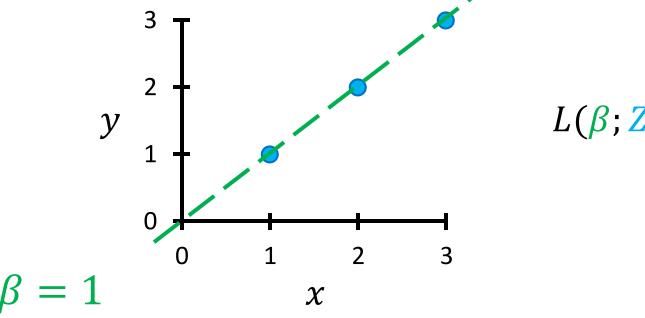
- Output: $f_{\widehat{\beta}(Z)}(x) = \widehat{\beta}(Z)^{\top}x$
- Discuss algorithm for computing the minimal β later

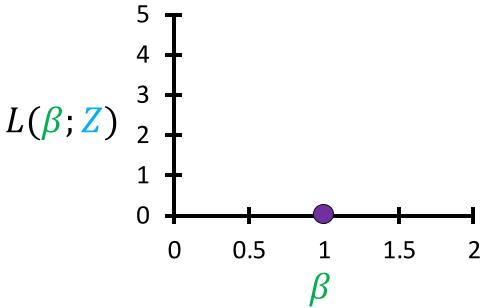
Minimizing the Mean Squared Error

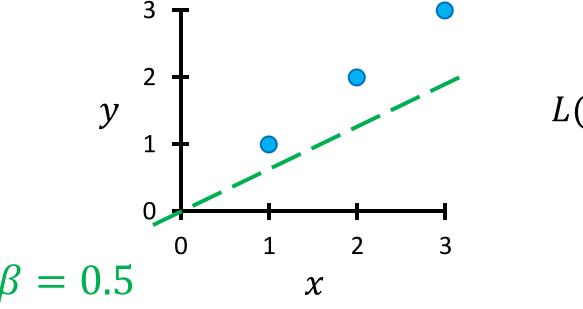


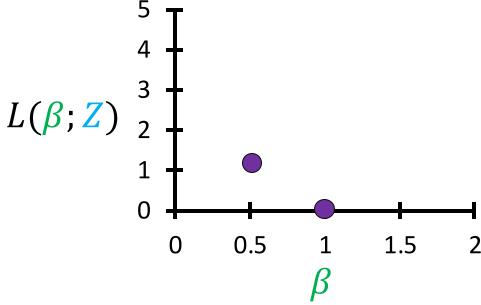
Q: What is depicted here is actually the "sum" of squared errors (SSE), but it doesn't really matter. Why?

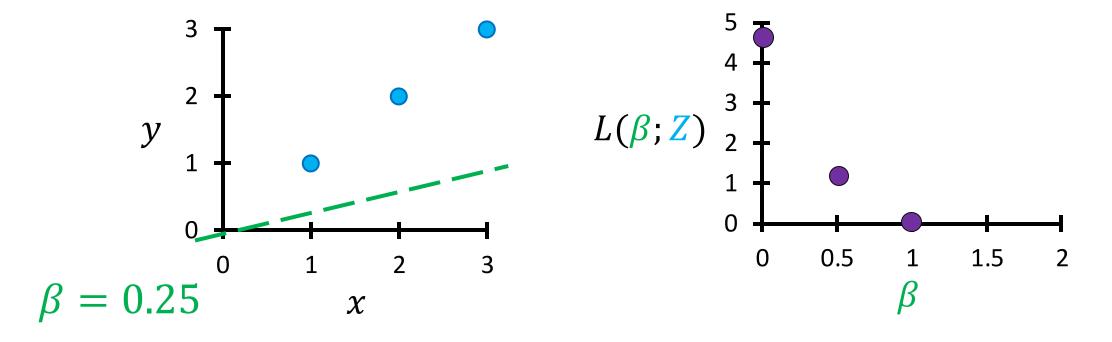
Youtube: 3-Minute Data Science

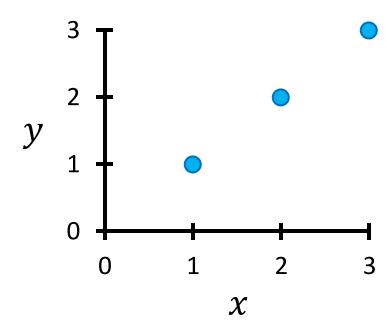


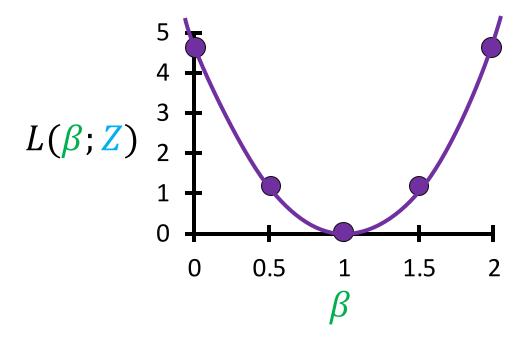




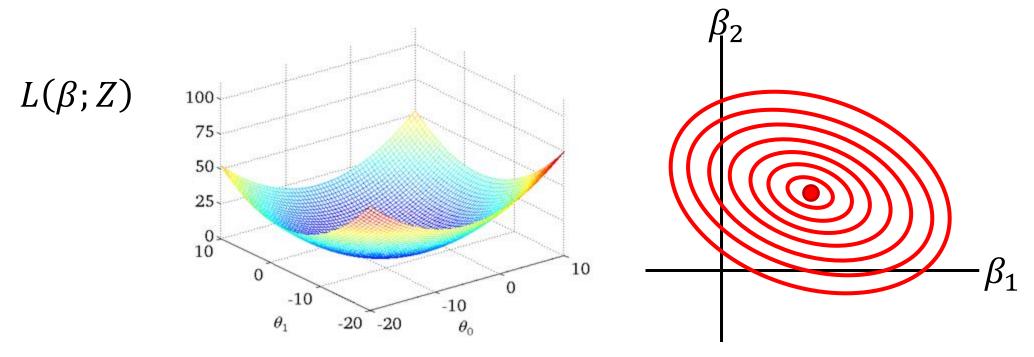








• Convex ("bowl shaped") in general



Later, we will discuss how to find the parameters β that minimize the MSE loss L

What Is A "Good" Mean Squared Error?

- Zero MSE is rarely achievable. How do we know that the linear regression algorithm worked well?
- Compare to simple baselines: "Is my ML algorithm giving me more than what I could easily have coded up?" For example,
 - Constant prediction, e.g., predicting the mean of the training dataset target labels
 - Handcrafted model
 - ...
- A suite of performance metrics: There's no reason to solely rely on MSE for performance evaluation, even if you use MSE as the loss function.
- Evaluate beyond the training examples: (more on this soon)

Alternative Functions to Measure Performance

$$\frac{1}{n}\sum_{i=1}^{n}|\hat{y}_i-y_i|$$

• Mean relative error:

$$\frac{1}{n}\sum_{i=1}^{n}\frac{|\widehat{y_i}-y_i|}{|y_i|}$$

• R^2 score:

- "Coefficient of determination"
- Higher is better, $R^2 = 1$ is perfect

Alternative Functions to Measure Performance

• Pearson correlation:

$$\frac{1}{n} \sum_{i=1}^{n} \frac{(\hat{y}_i - \hat{\mu})(y_i - \mu)}{\hat{\sigma}\sigma}$$

• Usually estimated from some sampled measurements of those variables, and denoted as R (related to R^2 on the last slide!)

Rank-order correlation:

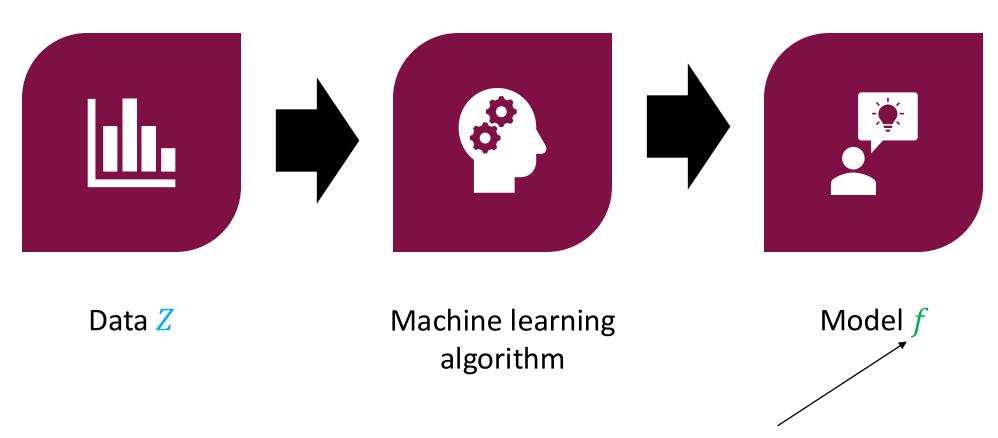
- First rank the measurements of \hat{y}_i and y separately, then replace each value in y by its rank, and ditto for \hat{y}
- Then measure the linear correlation between those ranks

Performance Metrics

- Loss functions are special performance metrics.
 - Every loss function, e.g. MSE, is a performance metric, but not every performance metric is a convenient loss function for ML. (Reasons later)
- Always think carefully about the useful performance metric(s) for your ML problem. Use them to iterate on your ML design choices.
 - E.g. For an ML model that makes car driving decisions,
 - How frequently did it successfully get from A to B?
 - How fast did it get there?
 - How many traffic violations did it commit?
- The loss function is a single scalar function. A good choice of loss function:
 - expresses all the performance metrics.
 - is "convenient for machine learning." More on this later.

Zooming Out of Linear Regression To The Big Picture For a Bit ...

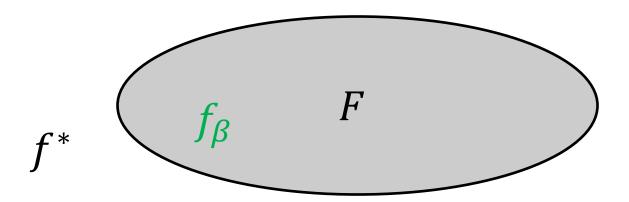
Function Approximation View of ML



ML algorithm outputs a model f that best "approximates" the given data Z

The "True Function" f^*

- Input: Dataset Z
 - Presume there is an unknown function f^* that **generates** Z
- Goal: Find an approximation $f_{\beta} \approx f^*$ in our model family $f_{\beta} \in F$
 - Typically, f^* not in our model family F



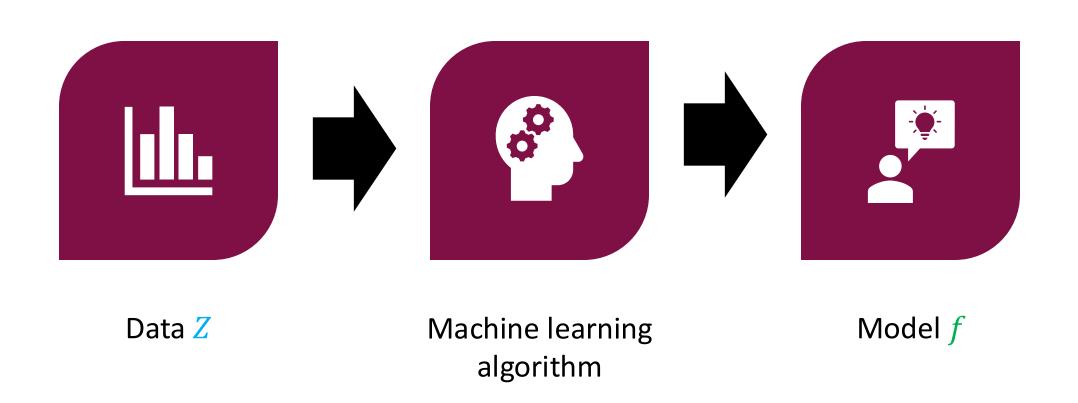
Function Approximation View of ML

Framework for designing machine learning algorithms

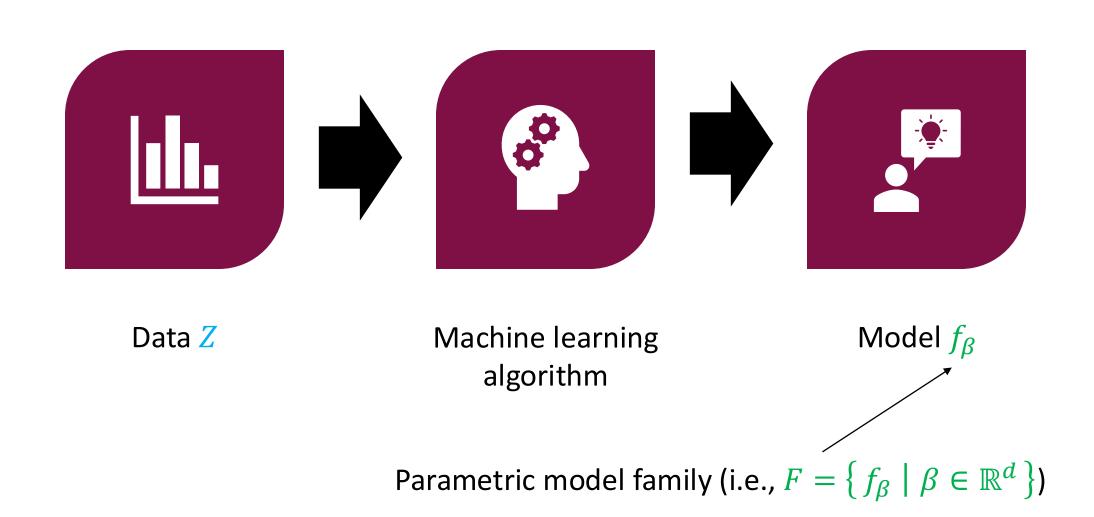
- Two key design decisions:
 - What is the family of candidate models f?
 - How to define "approximating"?

Let us see how linear regression fits in this framework.

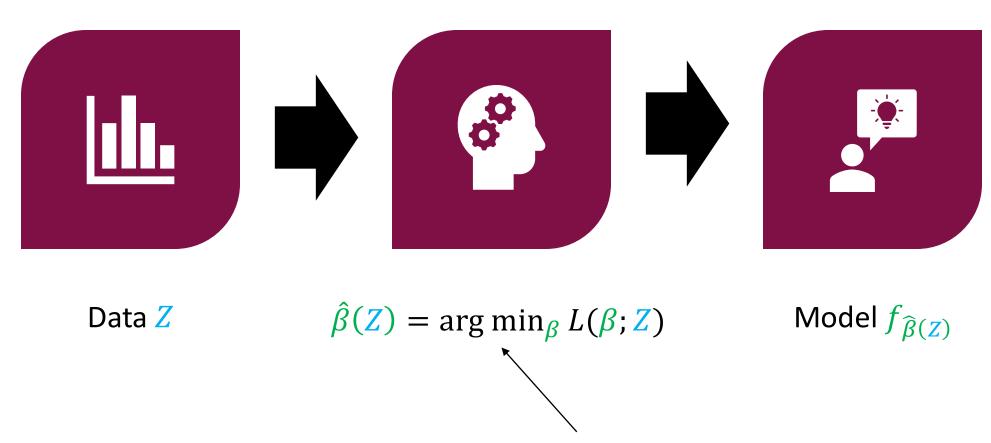
Machine Learning



Machine Learning as Parametric Function Approximation

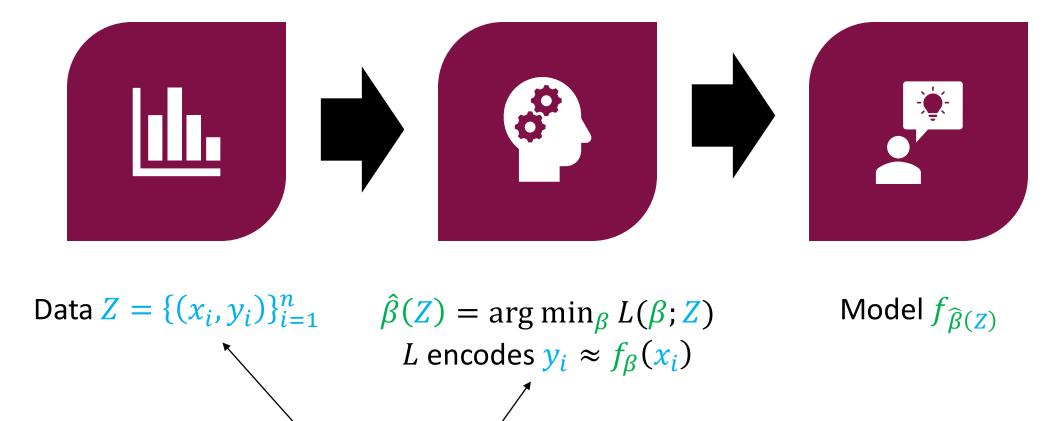


Machine Learning as Parametric Function Approximation



ML algorithm minimizes loss of parameters β over data Z

... For Supervised Learning



Goal is for function to approximate label y given input x

... Specifically, For Regression

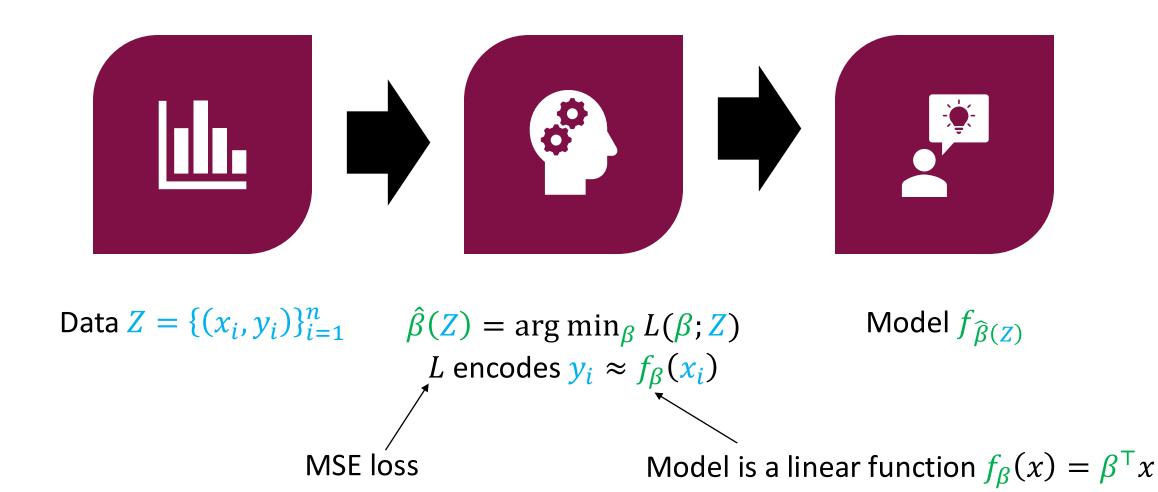
Data
$$Z = \{(x_i, y_i)\}_{i=1}^n$$
 $\hat{\beta}(Z) = \arg\min_{\beta} L(\beta; Z)$

$$L \text{ encodes } y_i \approx f_{\beta}(x_i)$$

Model $f_{\widehat{eta}(\mathbf{Z})}$

Label is a real number $y_i \in \mathbb{R}$

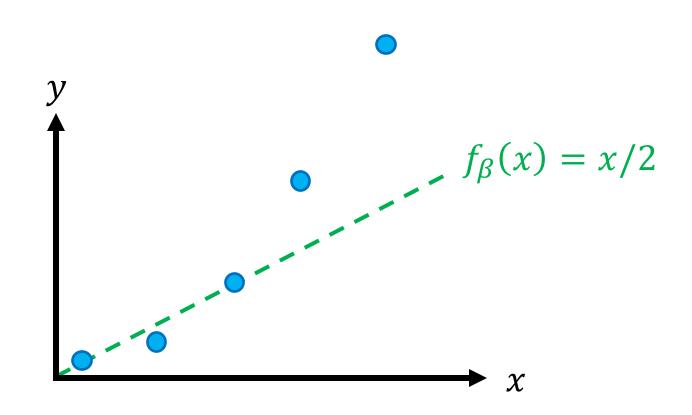
... Specifically, For Linear Regression



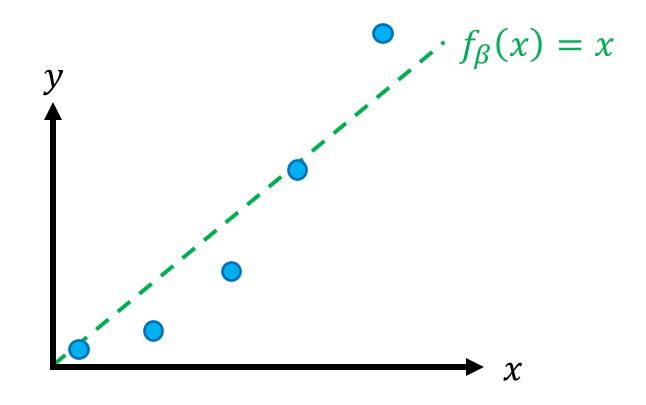
Linear Regression With Feature Maps

Linear Regression When Data is Non-Linear?

Example: Quadratic Function



Example: Quadratic Function



Can we get a better fit?

Feature Maps

General strategy

- Model family $F = \{f_{\beta}\}_{\beta}$
- Loss function $L(\beta; Z)$

Linear regression with feature map

• Linear functions over a given **feature** $\operatorname{map} \phi \colon X \to \mathbb{R}^d$

$$F = \{ f_{\beta}(x) = \beta^{\mathsf{T}} \phi(x) \}$$

• MSE $L(\beta; \mathbf{Z}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y_i} - \boldsymbol{\beta}^{\mathsf{T}} \phi(\mathbf{x_i}))^2$

Quadratic Feature Map

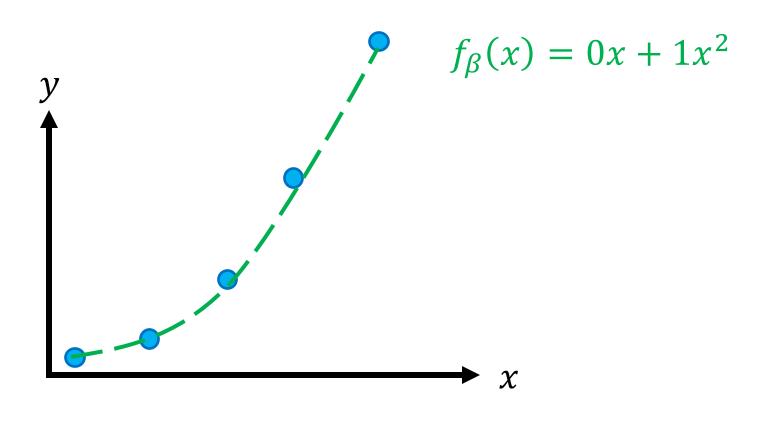
• Consider the feature map $\phi \colon \mathbb{R} \to \mathbb{R}^2$ given by

$$\phi(x) = \begin{bmatrix} x \\ x^2 \end{bmatrix}$$

• Then, the model family is

$$f_{\beta}(x) = \beta_1 x + \beta_2 x^2$$

Quadratic Feature Map



In our family for
$$\beta = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
!

Feature Maps

• Effectively changes the hypothesis space! This is a powerful strategy for encoding "prior knowledge" about the function we are looking to approximate.

Terminology

- x is the **input** and $\phi(x)$ is the **features**
- Often used interchangeably

Examples of Feature Maps

- Polynomial features
 - $\phi(x) = [1, x_1, x_2, x_1^2, x_1x_2, x_2^2]$
 - $f_{\beta}(x) = \beta_1 + \beta_2 x_1 + \beta_3 x_2 + \beta_4 x_1^2 + \beta_5 x_1 x_2 + \beta_6 x_2^2 + \cdots$
 - Quadratic features are very common; capture "feature interactions"
 - Can use other nonlinearities (exponential, logarithm, square root, etc.
- Note the intercept term (in red)
 - $\phi(x) = \begin{bmatrix} 1 & x_1 & \dots & x_d \end{bmatrix}^\mathsf{T}$
 - Almost always used; captures constant effect
- Encoding non-real inputs
 - E.g. Education level $x \in \{\text{"high school"}, \text{"college"}, \text{"masters"}, \text{"doctoral"}\} \phi(x)$ maps to $\{1, 2, 3, 4\}$

Examples of Feature Maps

- Feature maps can also help handle very complex data like text and images
 - E.g., x = "the food was good" and y = 4 stars
 - $\phi(x) = [1(\text{"good"} \in x) \ 1(\text{"bad"} \in x) \ ...]^{T}$

More on features for text and images later in the course!

Algorithm for Non-Linear Regression

First, select an appropriate feature map:

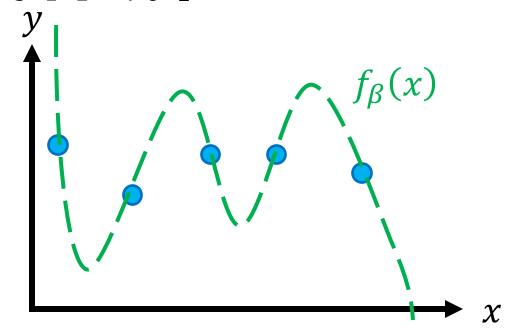
$$\boldsymbol{\phi}(x) = \begin{bmatrix} \phi_1(x) \\ \vdots \\ \phi_{d'}(x) \end{bmatrix}$$

Then, non-linear regression reduces to linear regression!

- Step 1: Compute $\phi_i = \phi(x_i)$ for each x_i in Z
- Step 2: Run linear regression with $Z' = \{(\boldsymbol{\phi}_1, y_1), ..., (\boldsymbol{\phi}_n, y_n)\}$

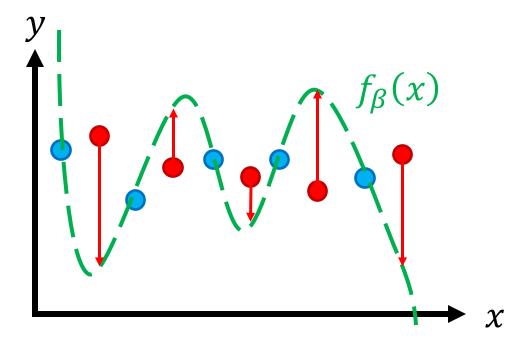
Question

- Why not always throw in lots of features?
 - After all, more features => more expressive hypothesis space!
 - For example, if $\phi(x) = [1, x_1, x_2, x_1^2, x_1x_2, x_2^2, ...]$
 - Can fit any n points using an n-th degree polynomial $f(x)=\beta_1+\beta_2x_1+\beta_3x_2+\beta_4x_1^2+\beta_5x_1x_2+\beta_6x_2^2+\cdots$



Prediction

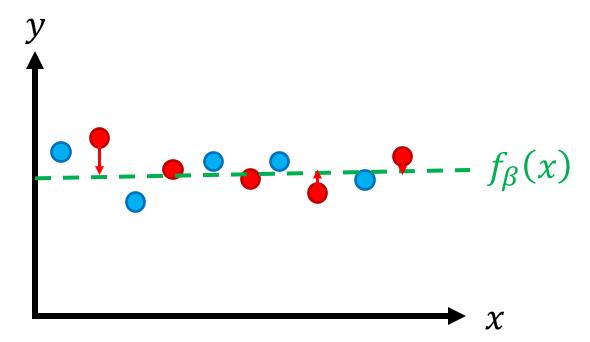
- Issue: The goal in machine learning is prediction
 - Given a **new** input x, predict the label $\hat{y} = f_{\beta}(x)$



The errors on new inputs is very large!

Prediction

- Issue: The goal in machine learning is prediction
 - Given a **new** input x, predict the label $\hat{y} = f_{\beta}(x)$



Vanilla linear regression actually works better!

Training vs. Test Data

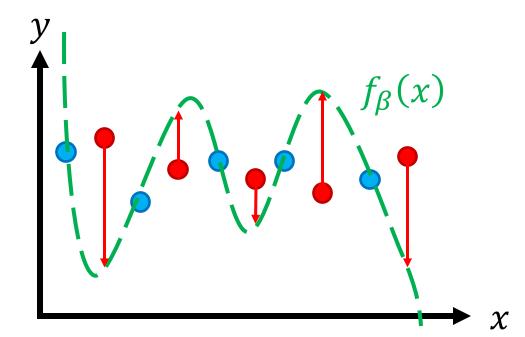
• Training data: Examples $Z = \{(x, y)\}$ used to fit our model

• **Test data:** New inputs x whose labels y we want to predict

Overfitting vs. Underfitting

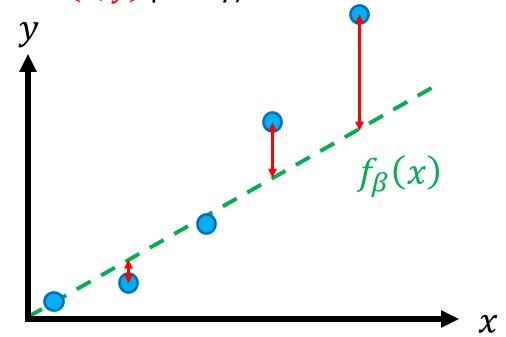
Overfitting

- Fit the training data Z well
- Fit new **test data** (x, y) poorly



Underfitting

- Fit the training data Z poorly
- (Necessarily also fit new test data (x, y) poorly)

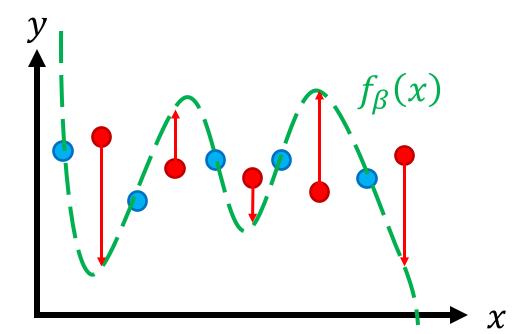


Role of Capacity

- Capacity of a model family captures "complexity" of data it can fit
 - Higher capacity \rightarrow more likely to overfit (model family has high variance)
 - Lower capacity → more likely to underfit (model family has high bias)
- ullet For linear regression, capacity roughly corresponds to feature dimension d
 - I.e., number of features in $\phi(x)$

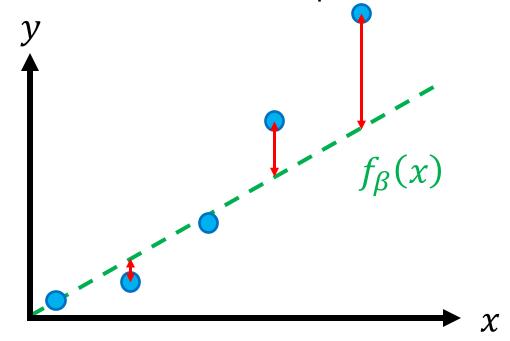
Bias-Variance Tradeoff

- Overfitting (high variance)
 - High capacity model capable of fitting complex data
 - Insufficient data to constrain it

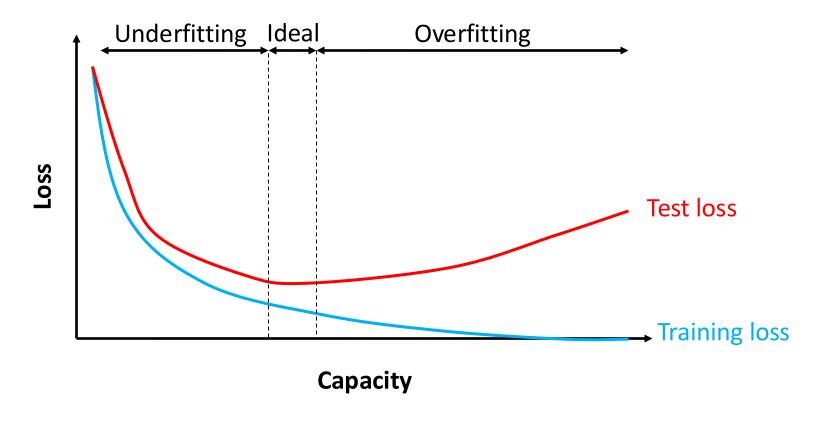


Underfitting (high bias)

- Low capacity model that can only fit simple data
- Sufficient data but poor fit



Bias-Variance Tradeoff



Warning: Very stylized plot!