
Announcements

• Homework 3 due tonight at 8pm



Lecture 20: Reinforcement Learning

CIS 4190/5190

Spring 2025



Optimal Action-Value Function

• Optimal Action-Value Function (or Q function): Expected reward if 
we start in 𝑠, take action 𝑎, and then act optimally thereafter:

𝑄∗ 𝑠, 𝑎 = 𝔼 

𝑡=0

∞

𝛾𝑡 ⋅ 𝑟𝑡 ∣ 𝑠0 = 𝑠, 𝑎0 = 𝑎

• Bellman equation:

𝑄∗ 𝑠, 𝑎 = 

𝑠′∈𝑆

𝑃 𝑠′ 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄∗ 𝑠′, 𝑎′



Q Iteration

• We have

𝜋∗ 𝑠 = max
𝑎∈𝐴

𝑄∗ 𝑠, 𝑎

• Strategy: Compute 𝑄∗ and then use it to compute 𝜋∗



Q Iteration

• Initialize 𝑄1 𝑠, 𝑎 ← 0 for all 𝑠, 𝑎

• For 𝑖 ∈ 1,2, … until convergence:

𝑄𝑖+1 𝑠, 𝑎 ← 

𝑠′∈𝑆

𝑃 𝑠′ 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄𝑖 𝑠′, 𝑎′
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Q Iteration

• Information propagates outward from terminal states

• Eventually all state-action pairs converge to correct Q-value estimates



Aside: Value Iteration

• Analogous to Q-Policy iteration but for computing the value function

• Initialize 𝑉1 𝑠 ← 0 for all 𝑠

• For 𝑖 ∈ 1,2, …  until convergence:

𝑉𝑖+1 𝑠 ← max
𝑎∈𝐴



𝑠′∈𝑆

𝑃 𝑠′ 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 ⋅ 𝑉𝑖 𝑠′



Example MDP V0 V1
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+1

-1

𝑉𝑖+1 𝑠 ← max
𝑎∈𝐴



𝑠′∈𝑆

𝑃(𝑠′|𝑠, 𝑎) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑖(𝑠′)  
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Example MDP V1
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𝑉2 4,3 ← 1 𝑉2 4,2 ← −1

𝑉𝑖+1 𝑠 ← max
𝑎∈𝐴



𝑠′∈𝑆

𝑃(𝑠′|𝑠, 𝑎) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑖(𝑠′)  
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Example MDP V2
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𝑠′∈𝑆

𝑃(𝑠′|𝑠, 𝑎) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑖(𝑠′)  
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Reinforcement Learning

• Q iteration can be used to compute the optimal Q function when 𝑃 
and 𝑅 are known

• How can we adapt it to the setting where these are unknown?
• Observation: Every time you take action 𝑎 from state 𝑠, you obtain one 

sample 𝑠′ ∼ 𝑃 ⋅ 𝑠, 𝑎  and observe 𝑅 𝑠, 𝑎, 𝑠′

• Use single sample instead of full 𝑃



Q Learning

• Can we learn 𝜋∗ without explicitly learning 𝑃 and 𝑅?

𝑄𝑖+1 𝑠, 𝑎 ← 

𝑠′∈𝑆

𝑃 𝑠′ 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄𝑖 𝑠′, 𝑎′



Q Learning

• Can we learn 𝜋∗ without explicitly learning 𝑃 and 𝑅?

𝑄𝑖+1 𝑠, 𝑎 ← 𝔼𝑠′∼𝑃 ⋅ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄𝑖 𝑠′, 𝑎′



Q Learning

• Q Learning update:

𝑄𝑖+1 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄𝑖 𝑠′, 𝑎′

• Q Iteration: Update for all 𝑠, 𝑎, 𝑠′  at each step

• Q Learning: Update just for current 𝑠, 𝑎 , and approximate with the 
state 𝑠′ we actually reached (i.e., a single sample 𝑠′ ∼ 𝑃 ⋅ 𝑠, 𝑎 )



Q Learning

• Problem: Forget everything we learned before (i.e., 𝑄𝑖 𝑠, 𝑎 )

• Solution: Incremental update:

𝑄𝑖+1 𝑠, 𝑎 ← 1 − 𝛼 ⋅ 𝑄𝑖 𝑠, 𝑎 + 𝛼 ⋅ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄𝑖 𝑠′, 𝑎′
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Policy for Gathering Data

• Strategy 1: Randomly explore all 𝑠, 𝑎  pairs
• Not obvious how to do so!

• E.g., if we act randomly, it may take a very long 
time to explore states that are difficult to reach

• Strategy 2: Use current best policy
• Can get stuck in local minima

• E.g., we may never discover a shortcut if it 
sticks to a known route to the goal

• Return to this question later



Summary

• Q iteration: Compute optimal Q function when the transitions and 
rewards are known

• Q learning: Compute optimal Q function when the transitions and 
rewards are unknown

• Extensions 
• Various strategies for exploring the state space during learning

• Handling large or continuous state spaces



Curse of Dimensionality

• How large is the state space?
• Gridworld: One for each of the 𝑛 cells

• Pacman: State is player, ghost1, … , ghost𝑘 , 
so there are 𝑛𝑘  states!

• Problem: Learning in one state does not 
tell us anything about the other states!

• Many states → learn very slowly



State-Action Features

• Can we learn across state-action pairs?

• Yes, use features!
• 𝜙 𝑠, 𝑎 ∈ ℝ𝑑

• Then, learn to predict 𝑄∗ 𝑠, 𝑎 ≈ 𝑄𝜃 𝑠, 𝑎 = 𝑓𝜃 𝜙 𝑠, 𝑎

• Enables generalization to similar states



Neural Network 𝑄 Function

• Examples: Distance to closest ghost, distance to closest dot, etc.
• Can also use neural networks to learn features (e.g., represent Pacman game 

state as an image and feed to CNN)!

𝑄𝜃 𝑠, 𝑎1

𝑄𝜃 𝑠, 𝑎2

:
:

𝑠



Deep Q Learning

• Learning: Gradient descent with the squared Bellman error loss:

𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 ⋅ max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ − 𝑄𝜃 𝑠, 𝑎

2

Based on slide by Sergey Levine

“Label” 𝑦



Deep Q Learning

• Iteratively perform the following:
• Take an action 𝑎𝑖  and observe 𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1, 𝑟𝑖

• 𝑦𝑖 ← 𝑟𝑖 + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄𝜃 𝑠𝑖+1, 𝑎′

• 𝜃 ← 𝜃 − 𝛼 ⋅
𝑑

𝑑𝜃
𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑦𝑖

2

• Note: Pretend like 𝑦𝑖  is constant when taking the gradient

• For finite state setting, recover incremental update if the 
“parameters” are the Q values for each state-action pair

Based on slide by Sergey Levine



Experience Replay Buffer

• Problem
• Sequences of states are highly correlated

• Tend to overfit to current states and forget older states

• Solution
• Keep a replay buffer of observations (as a priority queue)

• Gradient updates on samples from replay buffer instead 
of current state

• Advantages
• Breaks correlations between consecutive samples

• Can take multiple gradient steps on each observation
Based on slide by Sergey Levine

Replay Buffer

Priority Queue

𝑠1, 𝑎1, 𝑟1, 𝑠2

𝑠2, 𝑎2, 𝑟2, 𝑠3

𝑠𝑗, 𝑎𝑗, 𝑟𝑗, 𝑠𝑗+1

⋯



Deep Q Learning with Replay Buffer

• Iteratively perform the following:
• Take an action 𝑎𝑖  and add observation 𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1, 𝑟𝑖  to replay buffer 𝐷

• For 𝑘 ∈ 1, … , 𝐾 :

• Sample 𝑠𝑖,𝑘, 𝑎𝑖,𝑘, 𝑠𝑖+1,𝑘, 𝑟𝑖,𝑘  from 𝐷

• 𝑦𝑖,𝑘 ← 𝑟𝑖,𝑘 + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄𝜃 𝑠𝑖+1,𝑘, 𝑎′

• 𝜃 ← 𝜃 − 𝛼 ⋅
𝑑

𝑑𝜃
𝑄𝜃 𝑠𝑖,𝑘, 𝑎𝑖,𝑘 − 𝑦𝑖,𝑘

2

Based on slide by Sergey Levine

replay buffer

Q learning
(off-policy)

𝑠, 𝑎, 𝑠′, 𝑟

𝜋 𝑠



Target Q Network

• Problem
• Q network occurs in the label 𝑦𝑖!

• 𝜃 ← 𝜃 − 𝛼 ⋅
𝑑

𝑑𝜃
𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾 ⋅ max

𝑎′∈𝐴
𝑄𝜃 𝑠𝑖+1, 𝑎′

2

• Thus, labels change as Q network changes (distribution shift)

• Solution
• Use a separate target Q network for the occurrence in 𝑦𝑖

• Only update target network occasionally

• 𝜃 ← 𝜃 − 𝛼 ⋅
𝑑

𝑑𝜃
𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖𝛾 ⋅ max

𝑎′∈𝐴
𝑄𝜃′ 𝑠𝑖+1, 𝑎′

2

Based on slide by Sergey Levine
Original Q Network Target Q Network



Deep Q Learning with Target Q Network

• Iteratively perform the following:
• Take an action 𝑎𝑖  and add observation 𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1, 𝑟𝑖  to replay buffer 𝐷

• For 𝑘 ∈ 1, … , 𝐾 :

• Sample 𝑠𝑖,𝑘, 𝑎𝑖,𝑘, 𝑠𝑖+1,𝑘, 𝑟𝑖,𝑘  from 𝐷

• 𝑦𝑖,𝑘 ← 𝑟𝑖,𝑘 + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄𝜃′ 𝑠𝑖+1,𝑘, 𝑎′

• 𝜃 ← 𝜃 − 𝛼 ⋅
𝑑

𝑑𝜃
𝑄𝜃 𝑠𝑖,𝑘, 𝑎𝑖,𝑘 − 𝑦𝑖,𝑘

2

• Every 𝑁 steps, 𝜃′ ← 𝜃

Based on slide by Sergey Levine



Deep Q Learning for Atari Games

Image Sources:
https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/
https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/

https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/


Aside: Policy Gradient Algorithm

• Directly train policy 𝜋𝜃 𝑎 𝑠  mapping states to action distributions

• Policy gradient theorem gives the gradient update:

𝜃 ← 𝜃 + 𝜂 ⋅
1

𝑁


𝑖=1

𝑁



𝑡=1

𝑇

∇𝜃 log 𝜋𝜃 𝑎𝑖,𝑡 𝑠𝑖,𝑡 

𝑡′=𝑡

𝑇

𝛾𝑡′−𝑡𝑟𝑡′

• Can be combined with Q learning to form “actor-critic algorithms”



Policy for Gathering Data

• First, detour on multi-armed bandits



Multi-Armed Bandits

• State: None! (To be precise, a single state 𝑆 = 𝑠0 )

• Action: Item to recommend (often called arms)

• Transitions: Just stay in the same state

• Rewards: Random payoff for each arm
• Denote 𝑅 𝑎 = 𝑅 𝑠0, 𝑎 , where 𝑎 is the chosen action



Application: Ad Targeting

• Setting
• Google wants to show the most popular ad for a search term (e.g., “lawyer”)

• There are a fixed number of ads to choose from

Ad 3

Click

Ad 1

No Click

Ad 2

Click

Ad 3

No Click

Ad 2

Click

Ad 3

??



Application: Targeted COVID-19 Testing

Test Blue

Negative

Test Green

Positive

Test Green

Negative

Test Brown

Negative

H. Bastani, K. Drakopoulos, V. Gupta, et al. Efficient and Targeted COVID-19 Border Testing via Reinforcement Learning.



EVA

PLF form 

EVA
test

(6k-8k)
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with ~2-day delay

QR code scanned to link 
sample with PLF info

30k-100k
passengers

24 hours prior
to travel

Use prior testing 
results to allocate 
tests efficiently at 

every point of entry



Why Bandits?

• Bandit feedback
• Only observe positive/negative if the traveler is tested

• Technically “semi-bandit feedback”

• Nonstationarity
• Infection rate for different passenger types changes over time

• Need to continue to explore and collect data over time



Cases Caught

• 1.85 × improvement compared 
to random testing

• 1.25-1.45 × improvement vs. 
targeting based on public data
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Application: Content Moderation

• Problem
• Millions of pieces of content are posted on Meta platforms each day

• Too much to manually review all content

• How to moderate to make sure no harmful?

• Solution
• ML to prioritize potentially harmful content for manual review

• Featurize content and predict likelihood that it is harmful

V. Avadhanula, O. Baki, H. Bastani, O. Bastani, et al. Bandits for Online Calibration: An Application to 
Content Moderation on Social Media Platforms



Application: Content Moderation

Content Reported by 

Users

(Reactive)

Content Flagged by 
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(Proactive)

Generating scores from 

different ML models 

+ 
Filtering, De-duping

Auto-delete

Unambiguously violating 

content with high-risk scores

Ambiguous content with low 

precision/uncertain risk scores

Enqueue for 

Human Review

Ranking to 

optimize reviewer 

capacity



Application: Content Moderation

• What about new “types” of content?
• E.g., new kind of racial slur

• Cold start problem!

• Use multi-armed bandits!



Application: Content Moderation

• Multi-armed bandit
• Each “step” corresponds to one piece of content

• Action: Whether to manually review content

• Reward: 1 if content is harmful, 0 otherwise
• Intuition: Goal is to maximize amount of harmful content caught

• Include an 𝛼 penalty for flagging content to avoid flagging everything



Multi-Armed Bandits

• Many applications
• Cold-start for news/ad/movie recommendations

• A/B testing

• Flagging potentially harmful content on a social media platform

• Prioritizing medical tests

• Learning dynamically

• Many practical RL problems are multi-armed bandits



Exploration-Exploitation Tradeoff

• For 𝑡 ∈ 1,2, … , 𝑇

• Compute reward estimates 𝑟𝑡,𝑎 =
σ𝑖=1

𝑡−1 𝑟𝑖⋅1 𝑎𝑖=𝑎

σ𝑖=1
𝑡−1 1 𝑎𝑖=𝑎

• Choose action 𝑎𝑡  based on reward estimates

• Add 𝑎𝑡 , 𝑟𝑡  to replay buffer

• Question: How to choose actions?
• Exploration: Try actions to better estimate their rewards

• Exploitation: Use action with the best estimated reward to maximize payoff



Multi-Armed Bandit Algorithms

• Naïve strategy: 𝜖-Greedy
• Choose action 𝑎𝑡 ∼ Uniform 𝐴  with probability 𝜖

• Choose action 𝑎𝑡 = arg max
𝑎∈𝐴

𝑟𝑡,𝑎  with probability 1 − 𝜖

• Can we do better?



Multi-Armed Bandit Algorithms

• Upper confidence bound (UCB)

• Choose action 𝑎𝑡 = arg max
𝑎∈𝐴

𝑟𝑡,𝑎 +
const

𝑁𝑡 𝑎

• 𝑁𝑡 𝑎 = σ𝑖=1
𝑡−1 1 𝑎𝑖 = 𝑎  is the number of times action 𝑎 has been played

• Thompson sampling

• Choose action 𝑎𝑡 = arg max
𝑎∈𝐴

𝑟𝑡,𝑎 + 𝜖𝑡,𝑎 , where 𝜖𝑡,𝑎 ∼ 𝑁 0,
const

𝑁𝑡 𝑎

• Both come with theoretical guarantees



Exploration in Reinforcement Learning

• 𝝐-greedy:
• Play current best with probability 1 − 𝜖 and randomly with probability 𝜖

• Can reduce 𝜖 over time

• Works okay, but exploration is undirected



Exploration in Reinforcement Learning

• 𝜖-greedy suffers additional 
issues due to state space

• Policy learning is an effective 
practical solution
• No theoretical guarantees due to 

local minima



Exploration in Finite MDPs

• Upper confidence bound (UCB)

• Choose action 𝑎𝑡 = arg max
𝑎∈𝐴

𝑄𝑡 𝑠, 𝑎 +
const

𝑁𝑡 𝑠,𝑎
 (inflate less visited states)

• Visitation count 𝑁𝑡 𝑠, 𝑎 = σ𝑖=1
𝑡−1 1 𝑠𝑖 = 𝑠, 𝑎𝑖 = 𝑎  is the number of times 

action 𝑎 has been played in state 𝑠

• Thompson sampling

• Choose action 𝑎𝑡 = arg max
𝑎∈𝐴

𝑄𝑡 𝑠, 𝑎 + 𝜖𝑡,𝑠,𝑎 , where 𝜖𝑡,𝑠,𝑎 ∼ 𝑁 0,
const

𝑁𝑡 𝑠,𝑎

• Both come with theoretical guarantees



Exploration in Continuous MDPs

• Can we adapt these ideas to continuous MDPs?
• Thompson sampling is more suitable

• Bootstrap DQN
• Train ensemble of 𝑘 different 𝑄-function estimates 𝑄𝜃1

, … , 𝑄𝜃𝑘
 in parallel

• Original idea was to use online bootstrap, but training from different random 
initial 𝜃’s worked as well

• In each episode, act optimally according to 𝑄𝜃𝑖
 for 𝑖 ∼ Uniform 1, … , 𝑘



Exploration in Continuous MDPs

• Can we adapt these ideas to continuous MDPs?
• Thompson sampling is more suitable

• Soft Q-learning

• Sample actions according to 𝑎 ∼ Softmax 𝛽 ⋅ 𝑄𝜃 𝑠, 𝑎
𝑎∈𝐴



Curiosity

• Intuition: Rather than focus on optimism with respect to reward, 
focus on exploring where we are uncertain

• How to determine uncertainty?

• Candidate strategy
• Train a dynamics model to predict 𝑠′ = 𝑓 𝑠, 𝑎

• Take actions where 𝑓 𝑠, 𝑎  has high variance (e.g., use bootstrap)

• Problems?
• What if 𝑠′ includes spurious components, like a TV screen playing a movie?



Curiosity

• Learn a feature map 𝜙 𝑠 ∈ ℝ𝑑

• Model 1: Train a model to predict state transitions:

𝜙 𝑠′ = 𝑓𝜃 𝜙 𝑠 , 𝑎

• Feature map lets the model “ignore” spurious components of 𝑠 such as a TV

• Problem: We could just learn 𝜙 𝑠 = 0?



Curiosity

• Learn a feature map 𝜙 𝑠 ∈ ℝ𝑑

• Model 1: Train a model to predict state transitions:

𝜙 𝑠′ = 𝑓𝜃 𝜙 𝑠 , 𝑎

• Model 2: Train a model to predict action to achieve a transition:

ො𝑎 = 𝑔𝜃 𝜙 𝑠 , 𝜙 𝑠′

• “Inverse dynamics model” that avoids collapsing 𝜙



Curiosity

• Curiosity reward is

𝑅 𝑠, 𝑎, 𝑠′ = 𝜙 𝑠′ − 𝜙 𝑠′
2

2

• In other words, reward agent for exercising transitions that 𝑓 cannot 
yet predict accurately



Offline Reinforcement Learning

• Offline reinforcement learning: How can we learn without actively 
gathering new data?
• E.g., learn how to perform a task from videos of humans performing the task

• Also known as off-policy or batch reinforcement learning

• Recall: Drawback of Q learning was we need an exploration strategy

• However, this also enables us to use Q learning with offline data!



Offline Reinforcement Learning

• Iteratively perform the following:
• Take an action 𝑎𝑖  and add observation 𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1, 𝑟𝑖  to replay buffer 𝐷

• For 𝑘 ∈ 1, … , 𝐾 :

• Sample 𝑠𝑖,𝑘, 𝑎𝑖,𝑘, 𝑠𝑖+1,𝑘, 𝑟𝑖,𝑘  from 𝐷

• 𝑦𝑖,𝑘 ← 𝑟𝑖,𝑘 + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄𝜃 𝑠𝑖+1,𝑘, 𝑎′

• 𝜙 ← 𝜙 − 𝛼 ⋅
𝑑

𝑑𝜃
𝑄𝜃 𝑠𝑖,𝑘, 𝑎𝑖,𝑘 − 𝑦𝑖,𝑘

2

replay buffer

Q learning
(off-policy)

𝑠, 𝑎, 𝑠′, 𝑟

𝜋 𝑠



Offline Reinforcement Learning

• Iteratively perform the following:
• Take an action 𝑎𝑖 and add observation 𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1, 𝑟𝑖 to replay buffer 𝐷

• For 𝑘 ∈ 1, … , 𝐾 :

• Sample 𝑠𝑖,𝑘, 𝑎𝑖,𝑘, 𝑠𝑖+1,𝑘, 𝑟𝑖,𝑘  from 𝐷

• 𝑦𝑖,𝑘 ← 𝑟𝑖,𝑘 + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄𝜃 𝑠𝑖+1,𝑘, 𝑎′

• 𝜙 ← 𝜙 − 𝛼 ⋅
𝑑

𝑑𝜃
𝑄𝜃 𝑠𝑖,𝑘, 𝑎𝑖,𝑘 − 𝑦𝑖,𝑘

2

replay buffer

Q learning
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