
Announcements

• Homework 3 due tonight at 8pm

Lecture 20: Reinforcement Learning

CIS 4190/5190

Spring 2025

Optimal Action-Value Function

• Optimal Action-Value Function (or Q function): Expected reward if
we start in 𝑠, take action 𝑎, and then act optimally thereafter:

𝑄∗ 𝑠, 𝑎 = 𝔼

𝑡=0

∞

𝛾𝑡 ⋅ 𝑟𝑡 ∣ 𝑠0 = 𝑠, 𝑎0 = 𝑎

• Bellman equation:

𝑄∗ 𝑠, 𝑎 =

𝑠′∈𝑆

𝑃 𝑠′ 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄∗ 𝑠′, 𝑎′

Q Iteration

• We have

𝜋∗ 𝑠 = max
𝑎∈𝐴

𝑄∗ 𝑠, 𝑎

• Strategy: Compute 𝑄∗ and then use it to compute 𝜋∗

Q Iteration

• Initialize 𝑄1 𝑠, 𝑎 ← 0 for all 𝑠, 𝑎

• For 𝑖 ∈ 1,2, … until convergence:

𝑄𝑖+1 𝑠, 𝑎 ←

𝑠′∈𝑆

𝑃 𝑠′ 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄𝑖 𝑠′, 𝑎′

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Living cost 0 0.9

0

0

0

0

0

0

0

0

0

0.72

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0.9x1]
+ 0.1x[0 + 0]
+0.1x[0+0]

=0.72

0 0.9

0

0

0

0

0

0

0

0

0.09

0.72

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0.9x1]

+0.1x[0+0]
=0.09

0 0.9

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0.9x1]

+0.1x[0+0]
=0.09

0 0.9

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0]
+0.1x[0+0]

=0

0 0.9

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

0

-0.72

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0.9x-1]
+ 0.1x[0+0]
+0.1x[0+0]

=-0.72

0 0.9

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

0

-0.72

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0]

+0.1x[0+0.9x-1]
=-0.09

0 0.9

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0.9x-1]

+0.1x[0+0]
=-0.09

0 0.9

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0]
+0.1x[0+0]

=0

0 0.9

0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

-0.72

-0.09

0

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

Now we have
𝑄1(𝑠, 𝑎) for all (𝑠, 𝑎)

0 0.9

0

0

0

0

0

0

0

0

0.09

0.78

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

-0.72

-0.09

0

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0.9x1]
+ 0.1x[0+0.9x0.72]

+0.1x[0+0]
=0.7848

0 0.9

0

0

0

0

0

0

0

0

0.09

0.78

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

-0.72

-0.09

0

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0.9x1]

+0.1x[0+0]
=0.09

0 0.9

0.59

0.64

0.53

0.57

0.67

0.74

0.67

0.60

0.77

0.85

0.57

0.66

0.57

-0.60

0.30

0.53

0.48

0.29

0.41

0.40

-0.65

0.13

0.27

0.28

0.40

0.42

0.40

0.43

0.49

0.41

0.44

0.45

0.57

0.51

0.46

0.51

After 1000 iterations:
0 0.9

Q Iteration

• Information propagates outward from terminal states

• Eventually all state-action pairs converge to correct Q-value estimates

Aside: Value Iteration

• Analogous to Q-Policy iteration but for computing the value function

• Initialize 𝑉1 𝑠 ← 0 for all 𝑠

• For 𝑖 ∈ 1,2, … until convergence:

𝑉𝑖+1 𝑠 ← max
𝑎∈𝐴

𝑠′∈𝑆

𝑃 𝑠′ 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 ⋅ 𝑉𝑖 𝑠′

Example MDP V0 V1

0 0

0

0

0

0 0 0

0

0

0 0 0 0

0

0

0

0 0 0

+1

-1

𝑉𝑖+1 𝑠 ← max
𝑎∈𝐴

𝑠′∈𝑆

𝑃(𝑠′|𝑠, 𝑎) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑖(𝑠′)

0 0.9

Example MDP V1

0 0 0

0

0

0

0 0 0

+1

-1

V2

+1

-1

𝑉2 4,3 ← 1 𝑉2 4,2 ← −1

𝑉𝑖+1 𝑠 ← max
𝑎∈𝐴

𝑠′∈𝑆

𝑃(𝑠′|𝑠, 𝑎) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑖(𝑠′)

0 0.9

0 0 0.72

0

0

0

0 0 0

Example MDP V2

0 0 0.72

0

0

0

0 0 0

+1

-1

V3

+1

-1

0 0.52 0.78

0

0

0.43

0 0 0

𝑉𝑖+1 𝑠 ← max
𝑎∈𝐴

𝑠′∈𝑆

𝑃(𝑠′|𝑠, 𝑎) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑖(𝑠′)

0 0.9

Reinforcement Learning

• Q iteration can be used to compute the optimal Q function when 𝑃
and 𝑅 are known

• How can we adapt it to the setting where these are unknown?
• Observation: Every time you take action 𝑎 from state 𝑠, you obtain one

sample 𝑠′ ∼ 𝑃 ⋅ 𝑠, 𝑎 and observe 𝑅 𝑠, 𝑎, 𝑠′

• Use single sample instead of full 𝑃

Q Learning

• Can we learn 𝜋∗ without explicitly learning 𝑃 and 𝑅?

𝑄𝑖+1 𝑠, 𝑎 ←

𝑠′∈𝑆

𝑃 𝑠′ 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄𝑖 𝑠′, 𝑎′

Q Learning

• Can we learn 𝜋∗ without explicitly learning 𝑃 and 𝑅?

𝑄𝑖+1 𝑠, 𝑎 ← 𝔼𝑠′∼𝑃 ⋅ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄𝑖 𝑠′, 𝑎′

Q Learning

• Q Learning update:

𝑄𝑖+1 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄𝑖 𝑠′, 𝑎′

• Q Iteration: Update for all 𝑠, 𝑎, 𝑠′ at each step

• Q Learning: Update just for current 𝑠, 𝑎 , and approximate with the
state 𝑠′ we actually reached (i.e., a single sample 𝑠′ ∼ 𝑃 ⋅ 𝑠, 𝑎)

Q Learning

• Problem: Forget everything we learned before (i.e., 𝑄𝑖 𝑠, 𝑎)

• Solution: Incremental update:

𝑄𝑖+1 𝑠, 𝑎 ← 1 − 𝛼 ⋅ 𝑄𝑖 𝑠, 𝑎 + 𝛼 ⋅ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄𝑖 𝑠′, 𝑎′

0

0

0

0

0

0

0

0

0.15

0.78

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

-0.72

-0.09

0

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

Sample 𝑅 + 𝛾max𝑄 =
0+0.9x0.78 = 0.702

New Q =
0.09+0.1X(0.702-0.09)

= 0.1512

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

0.90.1

0.59

0.64

0.53

0.57

0.67

0.74

0.67

0.60

0.77

0.85

0.57

0.66

0.57

-0.60

0.30

0.53

0.48

0.29

0.41

0.40

-0.65

0.13

0.27

0.28

0.40

0.42

0.40

0.43

0.49

0.41

0.44

0.45

0.57

0.51

0.46

0.51

After 100,000 actions: 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎)

Policy for Gathering Data

• Strategy 1: Randomly explore all 𝑠, 𝑎 pairs
• Not obvious how to do so!

• E.g., if we act randomly, it may take a very long
time to explore states that are difficult to reach

• Strategy 2: Use current best policy
• Can get stuck in local minima

• E.g., we may never discover a shortcut if it
sticks to a known route to the goal

• Return to this question later

Summary

• Q iteration: Compute optimal Q function when the transitions and
rewards are known

• Q learning: Compute optimal Q function when the transitions and
rewards are unknown

• Extensions
• Various strategies for exploring the state space during learning

• Handling large or continuous state spaces

Curse of Dimensionality

• How large is the state space?
• Gridworld: One for each of the 𝑛 cells

• Pacman: State is player, ghost1, … , ghost𝑘 ,
so there are 𝑛𝑘 states!

• Problem: Learning in one state does not
tell us anything about the other states!

• Many states → learn very slowly

State-Action Features

• Can we learn across state-action pairs?

• Yes, use features!
• 𝜙 𝑠, 𝑎 ∈ ℝ𝑑

• Then, learn to predict 𝑄∗ 𝑠, 𝑎 ≈ 𝑄𝜃 𝑠, 𝑎 = 𝑓𝜃 𝜙 𝑠, 𝑎

• Enables generalization to similar states

Neural Network 𝑄 Function

• Examples: Distance to closest ghost, distance to closest dot, etc.
• Can also use neural networks to learn features (e.g., represent Pacman game

state as an image and feed to CNN)!

𝑄𝜃 𝑠, 𝑎1

𝑄𝜃 𝑠, 𝑎2

:
:

𝑠

Deep Q Learning

• Learning: Gradient descent with the squared Bellman error loss:

𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 ⋅ max
𝑎′

𝑄𝜃 𝑠′, 𝑎′ − 𝑄𝜃 𝑠, 𝑎

2

Based on slide by Sergey Levine

“Label” 𝑦

Deep Q Learning

• Iteratively perform the following:
• Take an action 𝑎𝑖 and observe 𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1, 𝑟𝑖

• 𝑦𝑖 ← 𝑟𝑖 + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄𝜃 𝑠𝑖+1, 𝑎′

• 𝜃 ← 𝜃 − 𝛼 ⋅
𝑑

𝑑𝜃
𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑦𝑖

2

• Note: Pretend like 𝑦𝑖 is constant when taking the gradient

• For finite state setting, recover incremental update if the
“parameters” are the Q values for each state-action pair

Based on slide by Sergey Levine

Experience Replay Buffer

• Problem
• Sequences of states are highly correlated

• Tend to overfit to current states and forget older states

• Solution
• Keep a replay buffer of observations (as a priority queue)

• Gradient updates on samples from replay buffer instead
of current state

• Advantages
• Breaks correlations between consecutive samples

• Can take multiple gradient steps on each observation
Based on slide by Sergey Levine

Replay Buffer

Priority Queue

𝑠1, 𝑎1, 𝑟1, 𝑠2

𝑠2, 𝑎2, 𝑟2, 𝑠3

𝑠𝑗, 𝑎𝑗, 𝑟𝑗, 𝑠𝑗+1

⋯

Deep Q Learning with Replay Buffer

• Iteratively perform the following:
• Take an action 𝑎𝑖 and add observation 𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1, 𝑟𝑖 to replay buffer 𝐷

• For 𝑘 ∈ 1, … , 𝐾 :

• Sample 𝑠𝑖,𝑘, 𝑎𝑖,𝑘, 𝑠𝑖+1,𝑘, 𝑟𝑖,𝑘 from 𝐷

• 𝑦𝑖,𝑘 ← 𝑟𝑖,𝑘 + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄𝜃 𝑠𝑖+1,𝑘, 𝑎′

• 𝜃 ← 𝜃 − 𝛼 ⋅
𝑑

𝑑𝜃
𝑄𝜃 𝑠𝑖,𝑘, 𝑎𝑖,𝑘 − 𝑦𝑖,𝑘

2

Based on slide by Sergey Levine

replay buffer

Q learning
(off-policy)

𝑠, 𝑎, 𝑠′, 𝑟

𝜋 𝑠

Target Q Network

• Problem
• Q network occurs in the label 𝑦𝑖!

• 𝜃 ← 𝜃 − 𝛼 ⋅
𝑑

𝑑𝜃
𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾 ⋅ max

𝑎′∈𝐴
𝑄𝜃 𝑠𝑖+1, 𝑎′

2

• Thus, labels change as Q network changes (distribution shift)

• Solution
• Use a separate target Q network for the occurrence in 𝑦𝑖

• Only update target network occasionally

• 𝜃 ← 𝜃 − 𝛼 ⋅
𝑑

𝑑𝜃
𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖𝛾 ⋅ max

𝑎′∈𝐴
𝑄𝜃′ 𝑠𝑖+1, 𝑎′

2

Based on slide by Sergey Levine
Original Q Network Target Q Network

Deep Q Learning with Target Q Network

• Iteratively perform the following:
• Take an action 𝑎𝑖 and add observation 𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1, 𝑟𝑖 to replay buffer 𝐷

• For 𝑘 ∈ 1, … , 𝐾 :

• Sample 𝑠𝑖,𝑘, 𝑎𝑖,𝑘, 𝑠𝑖+1,𝑘, 𝑟𝑖,𝑘 from 𝐷

• 𝑦𝑖,𝑘 ← 𝑟𝑖,𝑘 + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄𝜃′ 𝑠𝑖+1,𝑘, 𝑎′

• 𝜃 ← 𝜃 − 𝛼 ⋅
𝑑

𝑑𝜃
𝑄𝜃 𝑠𝑖,𝑘, 𝑎𝑖,𝑘 − 𝑦𝑖,𝑘

2

• Every 𝑁 steps, 𝜃′ ← 𝜃

Based on slide by Sergey Levine

Deep Q Learning for Atari Games

Image Sources:
https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/
https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/

https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/

Aside: Policy Gradient Algorithm

• Directly train policy 𝜋𝜃 𝑎 𝑠 mapping states to action distributions

• Policy gradient theorem gives the gradient update:

𝜃 ← 𝜃 + 𝜂 ⋅
1

𝑁

𝑖=1

𝑁

𝑡=1

𝑇

∇𝜃 log 𝜋𝜃 𝑎𝑖,𝑡 𝑠𝑖,𝑡

𝑡′=𝑡

𝑇

𝛾𝑡′−𝑡𝑟𝑡′

• Can be combined with Q learning to form “actor-critic algorithms”

Policy for Gathering Data

• First, detour on multi-armed bandits

Multi-Armed Bandits

• State: None! (To be precise, a single state 𝑆 = 𝑠0)

• Action: Item to recommend (often called arms)

• Transitions: Just stay in the same state

• Rewards: Random payoff for each arm
• Denote 𝑅 𝑎 = 𝑅 𝑠0, 𝑎 , where 𝑎 is the chosen action

Application: Ad Targeting

• Setting
• Google wants to show the most popular ad for a search term (e.g., “lawyer”)

• There are a fixed number of ads to choose from

Ad 3

Click

Ad 1

No Click

Ad 2

Click

Ad 3

No Click

Ad 2

Click

Ad 3

??

Application: Targeted COVID-19 Testing

Test Blue

Negative

Test Green

Positive

Test Green

Negative

Test Brown

Negative

H. Bastani, K. Drakopoulos, V. Gupta, et al. Efficient and Targeted COVID-19 Border Testing via Reinforcement Learning.

EVA

PLF form

EVA
test

(6k-8k)

no test

Travelers report:
• Origin
• Demographics
• Destination
• Contact

Labs submit
positive results to
central database

with ~2-day delay

QR code scanned to link
sample with PLF info

30k-100k
passengers

24 hours prior
to travel

Use prior testing
results to allocate
tests efficiently at

every point of entry

Why Bandits?

• Bandit feedback
• Only observe positive/negative if the traveler is tested

• Technically “semi-bandit feedback”

• Nonstationarity
• Infection rate for different passenger types changes over time

• Need to continue to explore and collect data over time

Cases Caught

• 1.85 × improvement compared
to random testing

• 1.25-1.45 × improvement vs.
targeting based on public data

Season

Peak

Improvement

Off−Peak

1.85x

1.36x

Sep Oct Nov

N
o

.
In

fe
ct

io
n

s
C

au
g
h

t
(A

n
o
n
y

m
iz

ed
)

Application: Content Moderation

• Problem
• Millions of pieces of content are posted on Meta platforms each day

• Too much to manually review all content

• How to moderate to make sure no harmful?

• Solution
• ML to prioritize potentially harmful content for manual review

• Featurize content and predict likelihood that it is harmful

V. Avadhanula, O. Baki, H. Bastani, O. Bastani, et al. Bandits for Online Calibration: An Application to
Content Moderation on Social Media Platforms

Application: Content Moderation

Content Reported by

Users

(Reactive)

Content Flagged by

A I Systems

(Proactive)

Generating scores from

different ML models

+
Filtering, De-duping

Auto-delete

Unambiguously violating

content with high-risk scores

Ambiguous content with low

precision/uncertain risk scores

Enqueue for

Human Review

Ranking to

optimize reviewer

capacity

Application: Content Moderation

• What about new “types” of content?
• E.g., new kind of racial slur

• Cold start problem!

• Use multi-armed bandits!

Application: Content Moderation

• Multi-armed bandit
• Each “step” corresponds to one piece of content

• Action: Whether to manually review content

• Reward: 1 if content is harmful, 0 otherwise
• Intuition: Goal is to maximize amount of harmful content caught

• Include an 𝛼 penalty for flagging content to avoid flagging everything

Multi-Armed Bandits

• Many applications
• Cold-start for news/ad/movie recommendations

• A/B testing

• Flagging potentially harmful content on a social media platform

• Prioritizing medical tests

• Learning dynamically

• Many practical RL problems are multi-armed bandits

Exploration-Exploitation Tradeoff

• For 𝑡 ∈ 1,2, … , 𝑇

• Compute reward estimates 𝑟𝑡,𝑎 =
σ𝑖=1

𝑡−1 𝑟𝑖⋅1 𝑎𝑖=𝑎

σ𝑖=1
𝑡−1 1 𝑎𝑖=𝑎

• Choose action 𝑎𝑡 based on reward estimates

• Add 𝑎𝑡 , 𝑟𝑡 to replay buffer

• Question: How to choose actions?
• Exploration: Try actions to better estimate their rewards

• Exploitation: Use action with the best estimated reward to maximize payoff

Multi-Armed Bandit Algorithms

• Naïve strategy: 𝜖-Greedy
• Choose action 𝑎𝑡 ∼ Uniform 𝐴 with probability 𝜖

• Choose action 𝑎𝑡 = arg max
𝑎∈𝐴

𝑟𝑡,𝑎 with probability 1 − 𝜖

• Can we do better?

Multi-Armed Bandit Algorithms

• Upper confidence bound (UCB)

• Choose action 𝑎𝑡 = arg max
𝑎∈𝐴

𝑟𝑡,𝑎 +
const

𝑁𝑡 𝑎

• 𝑁𝑡 𝑎 = σ𝑖=1
𝑡−1 1 𝑎𝑖 = 𝑎 is the number of times action 𝑎 has been played

• Thompson sampling

• Choose action 𝑎𝑡 = arg max
𝑎∈𝐴

𝑟𝑡,𝑎 + 𝜖𝑡,𝑎 , where 𝜖𝑡,𝑎 ∼ 𝑁 0,
const

𝑁𝑡 𝑎

• Both come with theoretical guarantees

Exploration in Reinforcement Learning

• 𝝐-greedy:
• Play current best with probability 1 − 𝜖 and randomly with probability 𝜖

• Can reduce 𝜖 over time

• Works okay, but exploration is undirected

Exploration in Reinforcement Learning

• 𝜖-greedy suffers additional
issues due to state space

• Policy learning is an effective
practical solution
• No theoretical guarantees due to

local minima

Exploration in Finite MDPs

• Upper confidence bound (UCB)

• Choose action 𝑎𝑡 = arg max
𝑎∈𝐴

𝑄𝑡 𝑠, 𝑎 +
const

𝑁𝑡 𝑠,𝑎
 (inflate less visited states)

• Visitation count 𝑁𝑡 𝑠, 𝑎 = σ𝑖=1
𝑡−1 1 𝑠𝑖 = 𝑠, 𝑎𝑖 = 𝑎 is the number of times

action 𝑎 has been played in state 𝑠

• Thompson sampling

• Choose action 𝑎𝑡 = arg max
𝑎∈𝐴

𝑄𝑡 𝑠, 𝑎 + 𝜖𝑡,𝑠,𝑎 , where 𝜖𝑡,𝑠,𝑎 ∼ 𝑁 0,
const

𝑁𝑡 𝑠,𝑎

• Both come with theoretical guarantees

Exploration in Continuous MDPs

• Can we adapt these ideas to continuous MDPs?
• Thompson sampling is more suitable

• Bootstrap DQN
• Train ensemble of 𝑘 different 𝑄-function estimates 𝑄𝜃1

, … , 𝑄𝜃𝑘
 in parallel

• Original idea was to use online bootstrap, but training from different random
initial 𝜃’s worked as well

• In each episode, act optimally according to 𝑄𝜃𝑖
 for 𝑖 ∼ Uniform 1, … , 𝑘

Exploration in Continuous MDPs

• Can we adapt these ideas to continuous MDPs?
• Thompson sampling is more suitable

• Soft Q-learning

• Sample actions according to 𝑎 ∼ Softmax 𝛽 ⋅ 𝑄𝜃 𝑠, 𝑎
𝑎∈𝐴

Curiosity

• Intuition: Rather than focus on optimism with respect to reward,
focus on exploring where we are uncertain

• How to determine uncertainty?

• Candidate strategy
• Train a dynamics model to predict 𝑠′ = 𝑓 𝑠, 𝑎

• Take actions where 𝑓 𝑠, 𝑎 has high variance (e.g., use bootstrap)

• Problems?
• What if 𝑠′ includes spurious components, like a TV screen playing a movie?

Curiosity

• Learn a feature map 𝜙 𝑠 ∈ ℝ𝑑

• Model 1: Train a model to predict state transitions:

𝜙 𝑠′ = 𝑓𝜃 𝜙 𝑠 , 𝑎

• Feature map lets the model “ignore” spurious components of 𝑠 such as a TV

• Problem: We could just learn 𝜙 𝑠 = 0?

Curiosity

• Learn a feature map 𝜙 𝑠 ∈ ℝ𝑑

• Model 1: Train a model to predict state transitions:

𝜙 𝑠′ = 𝑓𝜃 𝜙 𝑠 , 𝑎

• Model 2: Train a model to predict action to achieve a transition:

ො𝑎 = 𝑔𝜃 𝜙 𝑠 , 𝜙 𝑠′

• “Inverse dynamics model” that avoids collapsing 𝜙

Curiosity

• Curiosity reward is

𝑅 𝑠, 𝑎, 𝑠′ = 𝜙 𝑠′ − 𝜙 𝑠′
2

2

• In other words, reward agent for exercising transitions that 𝑓 cannot
yet predict accurately

Offline Reinforcement Learning

• Offline reinforcement learning: How can we learn without actively
gathering new data?
• E.g., learn how to perform a task from videos of humans performing the task

• Also known as off-policy or batch reinforcement learning

• Recall: Drawback of Q learning was we need an exploration strategy

• However, this also enables us to use Q learning with offline data!

Offline Reinforcement Learning

• Iteratively perform the following:
• Take an action 𝑎𝑖 and add observation 𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1, 𝑟𝑖 to replay buffer 𝐷

• For 𝑘 ∈ 1, … , 𝐾 :

• Sample 𝑠𝑖,𝑘, 𝑎𝑖,𝑘, 𝑠𝑖+1,𝑘, 𝑟𝑖,𝑘 from 𝐷

• 𝑦𝑖,𝑘 ← 𝑟𝑖,𝑘 + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄𝜃 𝑠𝑖+1,𝑘, 𝑎′

• 𝜙 ← 𝜙 − 𝛼 ⋅
𝑑

𝑑𝜃
𝑄𝜃 𝑠𝑖,𝑘, 𝑎𝑖,𝑘 − 𝑦𝑖,𝑘

2

replay buffer

Q learning
(off-policy)

𝑠, 𝑎, 𝑠′, 𝑟

𝜋 𝑠

Offline Reinforcement Learning

• Iteratively perform the following:
• Take an action 𝑎𝑖 and add observation 𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1, 𝑟𝑖 to replay buffer 𝐷

• For 𝑘 ∈ 1, … , 𝐾 :

• Sample 𝑠𝑖,𝑘, 𝑎𝑖,𝑘, 𝑠𝑖+1,𝑘, 𝑟𝑖,𝑘 from 𝐷

• 𝑦𝑖,𝑘 ← 𝑟𝑖,𝑘 + 𝛾 ⋅ max
𝑎′∈𝐴

𝑄𝜃 𝑠𝑖+1,𝑘, 𝑎′

• 𝜙 ← 𝜙 − 𝛼 ⋅
𝑑

𝑑𝜃
𝑄𝜃 𝑠𝑖,𝑘, 𝑎𝑖,𝑘 − 𝑦𝑖,𝑘

2

replay buffer

Q learning
(off-policy)

𝑠, 𝑎, 𝑠′, 𝑟

𝜋 𝑠

	Slide 1: Announcements
	Slide 2: Lecture 20: Reinforcement Learning
	Slide 3: Optimal Action-Value Function
	Slide 4: Q Iteration
	Slide 5: Q Iteration
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Q Iteration
	Slide 20: Aside: Value Iteration
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Reinforcement Learning
	Slide 25: Q Learning
	Slide 26: Q Learning
	Slide 27: Q Learning
	Slide 28: Q Learning
	Slide 29
	Slide 30
	Slide 31: Policy for Gathering Data
	Slide 32: Summary
	Slide 33: Curse of Dimensionality
	Slide 34: State-Action Features
	Slide 35: Neural Network Q Function
	Slide 36: Deep Q Learning
	Slide 37: Deep Q Learning
	Slide 38: Experience Replay Buffer
	Slide 39: Deep Q Learning with Replay Buffer
	Slide 40: Target Q Network
	Slide 41: Deep Q Learning with Target Q Network
	Slide 42: Deep Q Learning for Atari Games
	Slide 43: Aside: Policy Gradient Algorithm
	Slide 44: Policy for Gathering Data
	Slide 45: Multi-Armed Bandits
	Slide 46: Application: Ad Targeting
	Slide 47: Application: Targeted COVID-19 Testing
	Slide 48: EVA
	Slide 49: Why Bandits?
	Slide 50: Cases Caught
	Slide 51: Application: Content Moderation
	Slide 52: Application: Content Moderation
	Slide 53: Application: Content Moderation
	Slide 54: Application: Content Moderation
	Slide 55: Multi-Armed Bandits
	Slide 56: Exploration-Exploitation Tradeoff
	Slide 57: Multi-Armed Bandit Algorithms
	Slide 58: Multi-Armed Bandit Algorithms
	Slide 59: Exploration in Reinforcement Learning
	Slide 60: Exploration in Reinforcement Learning
	Slide 61: Exploration in Finite MDPs
	Slide 62: Exploration in Continuous MDPs
	Slide 63: Exploration in Continuous MDPs
	Slide 64: Curiosity
	Slide 65: Curiosity
	Slide 66: Curiosity
	Slide 67: Curiosity
	Slide 68: Offline Reinforcement Learning
	Slide 69: Offline Reinforcement Learning
	Slide 70: Offline Reinforcement Learning

