Announcements

* Homework 3 due tonight at 8pm

Lecture 20: Reinforcement Learning

CIS 4190/5190
Spring 2025

Optimal Action-Value Function

* Optimal Action-Value Function (or Q function): Expected reward if
we start in s, take action a, and then act optimally thereafter:

Q*(SJa) — E(E]/t g, | So = S,Qp = a>
t=0

* Bellman equation:

Q*(s,a) = z P(s'|s,a)- (R(S, as')+y: g}gﬁQ*(s’, a'))

s'es

Q Iteration

e We have

w(s) = maxQ*(s, a)

 Strategy: Compute Q" and then use it to compute 7~

Q Iteration

* Initialize Q,(s,a) « O forall s,a
* Fori € {1,2, ... } until convergence:

Qina(5,@) «) P(s'15,0) - (R(s,a,5") + - max Qu(s’,a))

s'es

[r—

SIEIEN
|
N
B B

HCIETN)
R
&
L

{CIEI,
SRR
i &
SEE

HCIETN)
ERE
&
SEE

HCIETN)
el
N &
ERE,

CIETN)
KW
&
ERE

HCIETN)
R
&
LT

SCIETN)
e
&
ERE

SCIETN)
{ KRR
&
ERE,

HCIET)
KR
&
ERE

Q:(s',a)

afaf]
ncotm|
I

+ 0.1x[0+0.9x0.72]
0.1x[0+0]
=0.7848

0.8x[0+0.9x1]

iaaf7)
{EXE
&
SEE

After 1000 iterations:

0 0.9
Y

—

Qui(5@) <) P(s'15,0) [R(s,a,5) +|max:(s’, @)

Q Iteration

* Information propagates outward from terminal states

* Eventually all state-action pairs converge to correct Q-value estimates

Aside: Value Iteration

* Analogous to Q-Policy iteration but for computing the value function

* Initialize VV;(s) « O for all s

* Fori € {1,2, ...} until convergence:

Viel(S) < max 2 P(s"Is,a) - (R(s,a,s")+y Vi(s))

s'es

0 0.9

/ /
Viii(s) « max z P(s'|s,a)[R(s,a,s") + yV;(s")]
s'es
Example MDP Vo Vy

ik 3101010710 31 O] O O | +1

Example MDP

0 0.9

/ "
Vie1(s) < max z P(s'|s,a)[R(s,a,s") +yVi(s)]
s'es
V, Vs

+ 1 3

O[O0 O[|+1)]] O

O|-1| 2| O

O[O0 0] O "I O Of OO

1 2 3 4 1 2 3 4

V,((4,2)) « —1

Example MDP

0 0.9

+ 1

/ /
Viii(s) « max z P(s'|s,a)[R(s,a,s") + yV;(s")]
s'es
V, Vs
0 3 [O 10.52|0.78| +1
0 2 1 0 0.43| -1

O[O0 0] O "I O Of OO

Reinforcement Learning

e Q iteration can be used to compute the optimal Q function when P
and R are known

* How can we adapt it to the setting where these are unknown?

* Observation: Every time you take action a from state s, you obtain one
sample s’ ~ P(-] s,a) and observe R(s,a,s’)

e Use single sample instead of full P

Q Learning

e Can we learn ™™ without explicitly learning P and R?

Qir1(s,a) « Z P(s'|s,a)- (R(S, as')+y- {{r‘é‘i‘ Q;(s’, a’))

s'es

Q Learning

e Can we learn ™™ without explicitly learning P and R?

Qi+1(s,a) « Eg_pris a) [R(S, a,s')+vy- max Qi(s’, a’)]

Q Learning

* Q Learning update:
Qi+1(s,a) « R(s,a,s") +y - maxQy(s’,a’)
a €
 Q Iteration: Update for all (s, a,s’) at each step

e Q Learning: Update just for current (s, a), and approximate with the
state s’ we actually reached (i.e., a single sample s’ ~ P(:| s,a))

Q Learning

* Problem: Forget everything we learned before (i.e., Q;(s, a))

* Solution: Incremental update:

Qie1(s,@) « (1-a) - Qi(s,@) + @~ (R(s,a,5") +v - max Q;(s’, a))

3 0 0 0.72
\ 0

2 [« o 0| =11
1 0 0 0 009 () oo

Sample R + ymaxQ =
0+0.9x0.78 = 0.702

New Q =
0.09+0.1X(0.702-0.09)
=(0.1512

Q(s,a) < Q(s,a) + a

0.1 0.9

/
(R(s, a,s)+y max Q(s',a") — Q(s, a))

R
LU
| BRI]

Policy for Gathering Data

e Strategy 1: Randomly explore all (s, a) pairs
 Not obvious how to do so!

e E.g., if we act randomly, it may take a very long
time to explore states that are difficult to reach

 Strategy 2: Use current best policy

* Can get stuck in local minima

* E.g., we may never discover a shortcut if it
sticks to a known route to the goal

e Return to this question later

Summary

e Qiteration: Compute optimal Q function when the transitions and
rewards are known

* Q learning: Compute optimal Q function when the transitions and
rewards are unknown

e Extensions

* Various strategies for exploring the state space during learning
* Handling large or continuous state spaces

Curse of Dimensionality

* How large is the state space?

e Gridworld: One for each of the n cells

* Pacman: State is (player, ghost,, ..., ghosty,),
so there are n* states!

* Problem: Learning in one state does not
tell us anything about the other states!

* Many states = learn very slowly

State-Action Features

* Can we learn across state-action pairs?

* Yes, use features!
* ¢(s,a) € R?

* Then, learn to predict Q*(s,a) = Qg(s,a) = f4 (gb(s, a))
* Enables generalization to similar states

Neural Network Q Function

 Examples: Distance to closest ghost, distance to closest dot, etc.

e Can also use neural networks to learn features (e.g., represent Pacman game
state as an image and feed to CNN)!

QQ (Sr al)
QQ (S, Clz)

L]

®

(]

O

®

®
BREEEERARARRARAS

Deep Q Learning

* Learning: Gradient descent with the squared Bellman error loss:

2
((R(s, a,s’) +y -maxQy(s’, a’)) — Qo(s, a))

- _/
h'd

“Label” y

Based on slide by Sergey Levine

Deep Q Learning

* lteratively perform the following:
* Take an action a; and observe (s;,a;,S;+1,1;)
*yi <1 +y -maxQg(siyq,a’)
a’€A

d
* 0 < 0—a —(Qa(si,a) —y)°
* Note: Pretend like y; is constant when taking the gradient

* For finite state setting, recover incremental update if the
“parameters” are the Q values for each state-action pair

Based on slide by Sergey Levine

Experience Replay Buffer

 Problem

e Sequences of states are highly correlated
* Tend to overfit to current states and forget older states

 Solution
* Keep a replay buffer of observations (as a priority queue)

* Gradient updates on samples from replay buffer instead
of current state

* Advantages
* Breaks correlations between consecutive samples
e Can take multiple gradient steps on each observation

(

<

Priority Queue

Based on slide by Sergey Levine

Deep Q Learning with Replay Buffer

* lteratively perform the following:
 Take an action a; and add observation (s;, a;, s;;1,1;) to replay buffer D

e Fork e {l,..,K}:

 Sample (Si,k, Qi k> Si+1,k» ri’k) from D

*Vik <Tig TV- g,lgil(Qo (Si+1,kr a’)

e 0 —0—a- % (QH(Si,k» ai,k) — J’i,k)z

(s,a,s',r)

- >

replay buffer

w

Q learning
(off-policy)

Based on slide by Sergey Levine

Target Q Network

* Problem
* Q network occurs in the label y;!

2
e <0—a- —(QQ(SUCLJ rp —)y -max Q9(5i+1»a'))
a'€A

* Thus, labels change as Q network changes (distribution shift)

* Solution
* Use a separate target Q network for the occurrence in y;

* Only update target network occasionally
2
00— (000500~ max 0 s,)
),)
Y Y
Original Q Network Target Q Network

Based on slide by Sergey Levine

Deep Q Learning with Target Q Network

* lteratively perform the following:
 Take an action a; and add observation (s;, a;, s;;1,1;) to replay buffer D
e Fork e {l,..,K}:
* Sample (Si,k, Qi k> Si+1.kr ri,k) from D
* Yik < Tige TV max Qp(Siv1 e @)
*0ebl-a- % (Qo(sjeraine) = vise)”
* Every N steps, 8" « 0

Based on slide by Sergey Levine

Deep Q Learning for Atari Games

Image Sources:
https://towardsdatascience.com/tutorial-double-deep-g-learning-with-dueling-network-architectures-4c1b3fb7f756

https://deepmind.com/blog/going-beyond-average-reinforcement-learning/
https://jaromiru.com/2016/11/07/lets-make-a-dgn-double-learning-and-prioritized-experience-replay/

https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/

Aside: Policy Gradient Algorithm

* Directly train policy mg(a | s) mapping states to action distributions
* Policy gradient theorem gives the gradient update:
0 «<0+n- —2 EVQ logng(alt‘slt) 2 A
t'=t

* Can be combined with Q learning to form “actor-critic algorithms”

Policy for Gathering Data

* First, detour on multi-armed bandits

Multi-Armed Bandits

* State: None! (To be precise, a single state S = {s,})
* Action: Item to recommend (often called arms)
* Transitions: Just stay in the same state

* Rewards: Random payoff for each arm
* Denote R(a) = R(sy, a), where a is the chosen action

Application: Ad Targeting

* Setting
e Google wants to show the most popular ad for a search term (e.g., “lawyer”)
* There are a fixed number of ads to choose from

Ad 3 Ad 1 Ad 2 Ad 3 Ad 2 Ad 3

Click No Click Click No Click Click ?7?

Application: Targeted COVID-19 Testing

O

Test Blue Test Green Test Green Test Brown

Negative Positive Negative Negative

H. Bastani, K. Drakopoulos, V. Gupta, et al. Efficient and Targeted COVID-19 Border Testing via Reinforcement Learning.

Use prior testing Labs submit

positive results to
EVA results to allocate
tests efficiently at C(?ntral database
every point of entry with ~2-day delay
30k-100k 24 hours prior

passengers . to travel

4 Ny

D il |
EVA

test ®

(6k-8k) O
—
(P
QR code scanned to link
sample with PLF info

PLF form

no test

" Travelers report:
* Origin
* Demographics
* Destination
e Contact

Why Bandits?

 Bandit feedback

* Only observe positive/negative if the traveler is tested
e Technically “semi-bandit feedback”

* Nonstationarity
* Infection rate for different passenger types changes over time
* Need to continue to explore and collect data over time

Cases Caught

* 1.85 X improvement compared
to random testing

e 1.25-1.45 X improvement vs.
targeting based on public data

No. Infections Caught (Anonymized)

Season

Peak
Off-Peak

Improvement
1.85x
1.36x

Application: Content Moderation

 Problem

* Millions of pieces of content are posted on Meta platforms each day
* Too much to manually review all content
* How to moderate to make sure no harmful?

e Solution

* ML to prioritize potentially harmful content for manual review
e Featurize content and predict likelihood that it is harmful

V. Avadhanula, O. Baki, H. Bastani, O. Bastani, et al. Bandits for Online Calibration: An Application to
Content Moderation on Social Media Platforms

Application: Content Moderation

f

Content Reported by
Users

(Reactive)

Content Flagged by
Al Systems

(Proactive)

Unambiguously violating
content with high-risk scores

Generating scoresfrom
different ML models
+

Filtering, De-duping

Ambiguouscontent with low
precision/uncertain risk scores

Auto-delete

Enqueuefor
Human Review

Ranking to
optimizereviewer
capacity

Application: Content Moderation

 What about new “types” of content?

* E.g., new kind of racial slur
* Cold start problem!

e Use multi-armed bandits!

Application: Content Moderation

* Multi-armed bandit
e Each “step” corresponds to one piece of content

* Action: Whether to manually review content

e Reward: 1 if content is harmful, O otherwise
* Intuition: Goal is to maximize amount of harmful content caught
* Include an a penalty for flagging content to avoid flagging everything

Multi-Armed Bandits

 Many applications
e Cold-start for news/ad/movie recommendations
* A/B testing
* Flagging potentially harmful content on a social media platform
* Prioritizing medical tests

e Learning dynamically

* Many practical RL problems are multi-armed bandits

Exploration-Exploitation Tradeoff

Fort €{1,2,...,T}
. . _ Yiziril(ai=a)
Compute reward estimates 1, , = ST 1(q,=a)

* Choose action a; based on reward estimates
« Add (a, 1;) to replay buffer

 Question: How to choose actions?

e Exploration: Try actions to better estimate their rewards
* Exploitation: Use action with the best estimated reward to maximize payoff

Multi-Armed Bandit Algorithms

* Naive strategy: e-Greedy
* Choose action a, ~ Uniform(A) with probability €

* Choose action a; = arg maxr; , with probability 1 — €
acA

e Can we do better?

Multi-Armed Bandit Algorithms

* Upper confidence bound (UCB)

* Choose action a, = arg max {r + —=n }
t — t, /
aEA a Nt(a)

« N.(a) = Y21 1(a; = a) is the number of times action a has been played

* Thompson sampling

. const
* Choose action a; = arg max{rt a T €t a}, wheree;, ~ N (O,)
aEA))) Nt(a)

* Both come with theoretical guarantees

Exploration in Reinforcement Learning

* e-greedy:
* Play current best with probability 1 — € and randomly with probability €
* Can reduce € over time
* Works okay, but exploration is undirected

Exploration in Reinforcement Learning

» e-greedy suffers additional
issues due to state space

* Policy learning is an effective
practical solution

* No theoretical guarantees due to
local minima

Exploration in Finite MDPs

* Upper confidence bound (UCB)

t
* Choose action a; = ar max{ s,a) + L } inflate less visited states
t %EA Qt() m ()

« Visitation count N;(s,a) = Y.iZ1 1(s; = s,a; = a) is the number of times
action a has been played in state s

* Thompson sampling

. const
» Choose action a; = arg max{Q,(s,a) + €.}, where €, s, ~ N (O,)
a€A Ne(s,a)

* Both come with theoretical guarantees

Exploration in Continuous MDPs

e Can we adapt these ideas to continuous MDPs?
* Thompson sampling is more suitable

* Bootstrap DQN
» Train ensemble of k different Q-function estimates Qg_, ..., Qg, in parallel

* Original idea was to use online bootstrap, but training from different random
initial 6’s worked as well

* In each episode, act optimally according to Qg, for i ~ Uniform({1, ..., k})

Exploration in Continuous MDPs

e Can we adapt these ideas to continuous MDPs?
* Thompson sampling is more suitable

* Soft Q-learning

e Sample actions according to a ~ Softmax ([,3 ' @9 (s, a)]aeA)

Curiosity

* Intuition: Rather than focus on optimism with respect to reward,
focus on exploring where we are uncertain

* How to determine uncertainty?

e Candidate strategy
* Train a dynamics model to predict s’ = f(s,a)
* Take actions where f(s, a) has high variance (e.g., use bootstrap)

* Problems?
* What if s’ includes spurious components, like a TV screen playing a movie?

Curiosity

* Learn a feature map ¢(s) € R

* Model 1: Train a model to predict state transitions:

P(s") = fo(p(s), a)

* Feature map lets the model “ignore” spurious components of s suchasa TV
* Problem: We could just learn ¢p(s) = 0?

Curiosity

* Learn a feature map ¢(s) € R

* Model 1: Train a model to predict state transitions:
d(s") = fo(9p(s), a)
* Model 2: Train a model to predict action to achieve a transition:

a = go(p(s),d(s))

I”

* “Inverse dynamics model” that avoids collapsing ¢

Curiosity
e Curiosity reward is
R(s,a,s’) = HQE(S') — 9’5(5')“2

* In other words, reward agent for exercising transitions that f cannot
yet predict accurately

Offline Reinforcement Learning

e Offline reinforcement learning: How can we learn without actively
gathering new data?
* E.g., learn how to perform a task from videos of humans performing the task
* Also known as off-policy or batch reinforcement learning

* Recall: Drawback of Q learning was we need an exploration strategy

 However, this also enables us to use Q learning with offline data!

Offline Reinforcement Learning

* lteratively perform the following:

 Take an action a; and add observation (s;, a;, s;;1,1;) to replay buffer D
 Fork €{1,..,K}:
* Sample (Si,kr Ai k) Si+1,ks ri,k) from D

*Vik <Tig TV- g,lgil(Qo (Si+1,kr a’)

*pecp-a- % (Q6(stjeraine) = vike)”

(s,a,s’,7) C
k

—— replay buffer
s

Q learning
(off-policy)

Offline Reinforcement Learning

* lteratively perform the following:

1

 Fork €{1,..,K}:
e Sample (Si,k, Qi k> Si+1.kr ri,k) from D

*Vik <Tig TV- g,lgil(Qo (Si+1,kr a’)

*pecp-a- % (Q6(stjeraine) = vike)”

e

(s,a,s',r)

E—

CE——
(s)

L 24t 2 R

- >

replay buffer

\/

Q learning
(off-policy)

	Slide 1: Announcements
	Slide 2: Lecture 20: Reinforcement Learning
	Slide 3: Optimal Action-Value Function
	Slide 4: Q Iteration
	Slide 5: Q Iteration
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Q Iteration
	Slide 20: Aside: Value Iteration
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Reinforcement Learning
	Slide 25: Q Learning
	Slide 26: Q Learning
	Slide 27: Q Learning
	Slide 28: Q Learning
	Slide 29
	Slide 30
	Slide 31: Policy for Gathering Data
	Slide 32: Summary
	Slide 33: Curse of Dimensionality
	Slide 34: State-Action Features
	Slide 35: Neural Network Q Function
	Slide 36: Deep Q Learning
	Slide 37: Deep Q Learning
	Slide 38: Experience Replay Buffer
	Slide 39: Deep Q Learning with Replay Buffer
	Slide 40: Target Q Network
	Slide 41: Deep Q Learning with Target Q Network
	Slide 42: Deep Q Learning for Atari Games
	Slide 43: Aside: Policy Gradient Algorithm
	Slide 44: Policy for Gathering Data
	Slide 45: Multi-Armed Bandits
	Slide 46: Application: Ad Targeting
	Slide 47: Application: Targeted COVID-19 Testing
	Slide 48: EVA
	Slide 49: Why Bandits?
	Slide 50: Cases Caught
	Slide 51: Application: Content Moderation
	Slide 52: Application: Content Moderation
	Slide 53: Application: Content Moderation
	Slide 54: Application: Content Moderation
	Slide 55: Multi-Armed Bandits
	Slide 56: Exploration-Exploitation Tradeoff
	Slide 57: Multi-Armed Bandit Algorithms
	Slide 58: Multi-Armed Bandit Algorithms
	Slide 59: Exploration in Reinforcement Learning
	Slide 60: Exploration in Reinforcement Learning
	Slide 61: Exploration in Finite MDPs
	Slide 62: Exploration in Continuous MDPs
	Slide 63: Exploration in Continuous MDPs
	Slide 64: Curiosity
	Slide 65: Curiosity
	Slide 66: Curiosity
	Slide 67: Curiosity
	Slide 68: Offline Reinforcement Learning
	Slide 69: Offline Reinforcement Learning
	Slide 70: Offline Reinforcement Learning

