Announcements

* HW 4 due next Wednesday (Apr 16t)

* Project Milestone 2 (Status Check-In) due in 2 weeks (Apr 231)
* 3-page report

Lecture 22: Ensembles (Part 2)

CIS 4190/5190
Spring 2025

Recap: Ensemble Design Decisions

e How to learn the base models?

e Bagging (randomize dataset)
* Boosting (weighted dataset)

* How to combine the learned base models?
e Averaging (regression) or majority vote (classification)

Recap: Bagging and Boosting

e Bagging (Boostrap Aggregating)
* Main goal is to reduce variance
* Models are trained independently with randomized dataset

* Boosting
* Main goal is to reduce bias
* Models are trained sequentially with weighted dataset

Recap: Bagging

» Step 1: Create bootstrap replicates of the original training dataset

n
e Excludes (1 — %) - é of the training examples (n — o).

e Step 2: Train a classifier for each replicate

e Step 3 (Optional): Use held-out validation set to weight models
e Can just use average predictions

Recap: Bagging

Recap: Random Forests

* Ensemble of decision trees using bagging
* Typically use simple average (over probabilities for classification)

* Intuition:
* Large decision trees are good nonlinear models, but high variance

 Random forests average over many decision trees to reduce variance without
increasing bias

Recap: Random Forests

* Tweak 1: Randomize features in learning algorithm instead of bagging

* At DT node splitting step, subsample = \Vd features
* Allows each tree to use all features, but not at every node

* Aside: If a few features are highly predictive, then they will be selected in
many trees, causing the base models to be highly correlated

* Tweak 2: Train unpruned decision trees

* Ensures base models have higher capacity
* Intuition: Skipping pruning increases variance

Recap: AdaBoost

* Input
* Training dataset /
* Learning algorithm Train(Z, w) that can handle weights w
* Hyperparameter T indicating number of models to train

* Output
e Ensemble of models F(x) = X1_. B, - /()

Recap: Learning with Weighted Examples

For MSE loss:

(P;7Z,w) = 2 Wi - H}’i — fﬁ(%’)”i
i=1

For maximum likelihood estimat7[Lon:

2G5 Z,w) =) wi-logps(vi | %)
=1

AdaBoost

size represents weight w;

1
W1 —

) (wy,; weight for (x;,7,))

forteﬁ

ﬁt _ln
Wiy X Wt

NoO AN P

T}

fi < Train (Z ,W¢)

Er < El‘l‘or(ft,Z, We)
1-— €t

€t

return ' (x) = Slgn(Z =1 Bt - [t (X))

AdaBoost

focus on linear classifiers f;

1 1 .
Wy « (—, ""5) (wq ; weight for (x;,y;))

n
fort e {1 T}

f; « Train(Z, w;)

N U Rwp e

€; « EITOT([;, Z, W)

1 1—€
ﬁt «— _ln L
2

€t
Wep1i X Wy - e~ Beyife(xi) (for all i)

return F (x) = sign(X¢=y B¢ * f(x))

* [5; measures the importance of f;()

Ada BOOSt e Ife; <0.5,thenf; =0

= otherwise flip h;‘s predictions

1

Wep1i X Wy --e_ﬁt'?i’ft(xi) (for all i)
return /() = sign(X¢=1 B¢ - [(%))

[becomes larger as
€, becomes smaller

1 .

1. wy « (;, ---,;) (wy,; weig
2. fortef{l,..,T}
3. f; « Train(Z,w;)
4. e, « Error(f.,. Z, w,)
5 [« lln —

) t 2 €t
6.
/.

AdaBoost

1
wy (=,) (wy,; weight for (x;, y))

fort € {1, .., T}
fi < Traln(Z ,W¢)
€t < Error(ft,Z, W)

ﬁt _ln

Wep1i X Wy - e~ Bryife(xi) (for all §)

NO |V AR e

return F(x) = mgn}&;llﬁt T (%))
Use convention y; € {—1, +1}

If correct (v; = f.(x;)) then multiply by e =Pt f=1
If incorrect (v; # f,(x;)) then multiply by e”t

AdaBoost

1. wy « (1) (wq ; weight for (x;,y;))
2. forte{l,..,T}

3. ;< Traln(Z ,W¢)

4, € « Error(ft,Z, W)

5. B e In—"

6. Wiy & th e~ Beyife(xi) (for all i)
/.

return F (x) = sign(X¢=y B¢ * f(x))

AdaBoost

1 .
Wy « (1, ""5) (wq ; weight for (x;,y;))

n

fort e {1 T}
f; « Train(Z, w;)

N U Rwp e

€; « EITOT([;, Z, W)
1 1_Et

ﬁt — _ln
2 Et

Wep1i X Wy - e‘ﬁt'?i'ft(xi) (for all i)
return ['(x) = sign(Qs—1 B; * [: (X))

AdaBoost

Wep1i X Wy - e~ Bryife(xi) (for all §)

1. w, « (l) (wq ; weight for (x;,y;))
2. forte{l,..,T}
3. ;< Traln(Z ,W¢)
4, e; « Error(f;, Z,w;)
5. ,Bt _lnl -
€T
6.
/.

return F(X) = Slgn(Z’II;:l Br - : (X))

AdaBoost

1. wy « (1) (wq ; weight for (x;,y;))
2. forte{l,..,T}

3. ;< Traln(Z ,W¢)

4, € « Error(ft,Z, W)

5. B e In—"

6. Wiy & th e~ Beyife(xi) (for all i)
/.

return F(x) = sign(X¢=q B¢ * f(x))

AdaBoost

1 .
Wy « (1, ""5) (wq ; weight for (x;,y;))

n

fort e {1 T}
f; « Train(Z, w;)

N U Rwp e

€; « EITOT([;, Z, W)
1 1_Et

ﬁt — _ln
2 Et

Wep1i X Wy - e‘ﬁt'?i'ft(xi) (for all i)
return ['(x) = sign(Qs—1 B; * [: (X))

AdaBoost

1
W, < (—) (wq ; weight for (x;,y;))

fort € {1,...,T}
fr « Traln(Z , W)
€t & Error(ft,Z, W)

1 1—-€¢
L < ln -

WHLL X Wy - e~ Bryife(xi) (for all §)

NO |V AR e

return F(X) = Slgn(Z’II;:l Br - : (X))

AdaBoost

1. wy « (1) (wq ; weight for (x;,y;))
2. forte{l,..,T}

3. ;< Traln(Z ,W¢)

4, € « Error(ft,Z, W)

5. B e In—"

6. Wiy & th e~ Beyife(xi) (for all i)
/.

return F (x) = sign(X¢=y B¢ * f(x))

AdaBoost

wy (=,) (wy,; weight for (x;, y))

fort € {1, .., T}
fi < Traln(Z ,W¢)
er « Error(f;, Z, we)

ﬁt _lnleEt
t
Wiepqi € W . e~ Peyifilxd (for all i)

return F (x) = sign(X¢=y B¢ * f(x))

NOoO s e

AdaBoost

—_ 0.4 W, ;- p_ﬁt'yl"ft(xi) (fnrn)

W .

1
1. wy « (—) (wq ; weight for (x;,y;))
2. forte{l,..,T}
3 fr « Traln(Z Wy)
4. € « Error(ft,Z W;)
5. B e In—"

€t

6
/.

return F (x) = sign(X¢=q B¢ « (%))

AdaBoost Summary

* Strengths:
* Fast and simple to implement
* No hyperparameters (except for T)
* Very few assumptions on base models

* Weaknesses:
* Can be susceptible to noise/outliers when there is insufficient data
* No way to parallelize
* Small gains over complex base models
 Specific to classification!

Boosting as Gradient Descent

* Both algorithms: new model = old model + update

 Gradient Descent:

Orr1 =0y —a-VgL(6s;2)

* Boosting:

Firq1(x) = Fo(x) + Bea1 - fr41(x)

* Here, F,(x) = Yi_, B; - fi(x)

Boosting as Gradient Descent

* Assuming B; = 1 for all ¢, then:

Fe(x;) + fee1(x;) = Feyq (%)

Boosting as Gradient Descent

* Assuming B; = 1 for all ¢, then:
Fr(x) + fre1(x) = Frya (%) = y;
* Rewriting this equation, we have

fee1(x;) = Fopq (%) — Fr(x;) = y; — Fr(x;)
—

“residuals”, i.e., error of the current model

Boosting as Gradient Descent

* In other words, at each step, boosting is training the next model f; .,
to approximate the residual:

fee1(x) = vy — Fe(x;)
—

“residuals”, i.e., error of the current model

* Idea: Train f;,, directly to predict residuals y; — F;(x;)

* This strategy works for regression as well!

Boosting as Gradient Descent

* Algorithm: For each t € {1, ..., T}:
* Step 1: Train f;,, using dataset

Liy1 = {(xi'yi — Ft(xi))}?zl
e Step 2: Take

Firq(x) = F(x) + freq1(x)

* Return the final model F;

Boosting as Gradient Descent

e Consider losses of the form
1 n
L(F;2) ==) LG)
i=1

* In other words, sum of individual label-level losses L(7; v) of a
prediction ¥ = F(x) if the ground truth label is vy

* For example, L(7;y) = %(y“ — v)? yields the MSE loss

Boosting as Gradient Descent

* Residuals are the gradient of the squared error L(9;y) = %(y — 9)?:

~

0L
_6_5; (Ft(xl); yl) =YV — Ft(xi) = reSiduali

* For general L, instead of {(x;, y; — Ft(xi))}?zl we can train f;,, on

\ N

~

(oL
Lit1 = xi'_a_j;(Ft(xi);yi)

\

Vo

7i=1

Boosting as Gradient Descent

* Algorithm: For each t € {1, ..., T}:
* Step 1: Train f;,, using dataset

Liy1 = {(xi'yi — Ft(xi))}?zl

e Step 2: Take
Fri1(x) = Fe(x) + fre1(x)

* Return the final model F;

Boosting as Gradient Descent

* Algorithm: For each t € {1, ..., T}:
* Step 1: Train f;,, using dataset

/

Liy1 =

\

e Step 2: Take

Fiiq

~

oL |
Xi, L (Fe(xp); i)

(x) = Fr(x) + fry1(x)

* Return the final model F;

\

Vo

J

=1

Boosting as Gradient Descent

* Casts ensemble learning in the loss minimization framework

 Model family: Sum of base models Fr(x) = Y.I_,; fi(x)
* Loss: Any differentiable loss expressed as

L(F;2) =) L(FG),)
=1

* Gradient boosting is a general paradigm for training ensembles with
specialized losses (e.g., most NLL losses)

Gradient Boosting in Practice

* Gradient boosting with depth-limited decision trees (e.g., depth 3) is
one of the most powerful off-the-shelf classifiers available
e Caveat: Inherits decision tree hyperparameters

» XGBoost is a very efficient implementation suitable for production use
e A popular library for gradient boosted decision trees
* Optimized for computational efficiency of training and testing
* Used in many competition winning entries, across many domains
* https://xgboost.readthedocs.io

https://xgboost.readthedocs.io/

CIS 3990

Mobile and loT Computing

Mobile and loT Computing

The convergence of sensing, communication, and computation that allows us to:

data from the 'Q' based on the data
environment
3 Y
. » .

Analyze data (cloud/edge) and
provide insights about the world

Aggregate data from
multiple sources

This course

37

Sensing & Computing

WHAT?
Sensing Objectives

Locations Health

Motion & Activity Environment

<

HOW?

Sensing Modalities

Radio

(« i»)) 1

Inertial

Acoustic

Visual

38

Example Mobile and loT Systems

Through-Wall Vision

',‘.‘I.M'ﬂln ouarnr

Al

Mobile Security
Case Study: Inaudible Voice Commands

What you are expected to learn from this class

Fundamentals of Mobile and loT Computing

How are they applied across various industries?

What are emerging loT domains and what does the future of lIoT look like?

iIOS APIs, including Bluetooth, inertial, basic Ul programming

Build a physical loT project using material learnt from class

Collaboration

43

Course Projects

Course Projects: Two Options

* Project A: Image2GPS

* Predicting camera location based on the photo.

* Project B: News Source Classification
 Classifying the source of a news headline.

Course Projects: Two Parts

* Core Questions:

e Describe how you address the core task (i.e., image2GPS or news source
classification).

* Describe the design, implementation and evaluation of your method/model.

e Exploratory Questions:

e Define your own questions building on top of the core questions.
* E.g., how much can ensembles help?
* E.g., how much can pretrained language model help?

 Motivation, related work, method, results, and discussions.

Course Projects: Evaluation

* Project Report
* Document your method and results for core and exploratory questions
e 3 pages for check-in and 5 pages for the final report

e Colab Notebook with inference results on our test data

* Test data and code will be release later
e Report your performance on the test data
e Submit a Colab notebook with output of the code cells

e Summary Slides
 Demo Video (Optional)

Course Projects: Compute

You are strongly encouraged to use (relatively) small architectures.

* You should be able to use Google Colab for all evaluations

* Inference.ai: GPU compute resources (Juputer Notebook & SSH)

* You may also consider signing up for Amazon SageMaker Studio Lab
* https://studiolab.sagemaker.aws

https://studiolab.sagemaker.aws/

Welcome to Inference.ai EDU!

Setting up your first server

Course Projects: Q & A

	Slide 1: Announcements
	Slide 2: Lecture 22: Ensembles (Part 2)
	Slide 3: Recap: Ensemble Design Decisions
	Slide 4: Recap: Bagging and Boosting
	Slide 5: Recap: Bagging
	Slide 6: Recap: Bagging
	Slide 7: Recap: Random Forests
	Slide 8: Recap: Random Forests
	Slide 9: Recap: AdaBoost
	Slide 10: Recap: Learning with Weighted Examples
	Slide 11: AdaBoost
	Slide 12: AdaBoost
	Slide 13: AdaBoost
	Slide 14: AdaBoost
	Slide 15: AdaBoost
	Slide 16: AdaBoost
	Slide 17: AdaBoost
	Slide 18: AdaBoost
	Slide 19: AdaBoost
	Slide 20: AdaBoost
	Slide 21: AdaBoost
	Slide 22: AdaBoost
	Slide 23: AdaBoost
	Slide 24: AdaBoost Summary
	Slide 25: Boosting as Gradient Descent
	Slide 26: Boosting as Gradient Descent
	Slide 27: Boosting as Gradient Descent
	Slide 28: Boosting as Gradient Descent
	Slide 29: Boosting as Gradient Descent
	Slide 30: Boosting as Gradient Descent
	Slide 31: Boosting as Gradient Descent
	Slide 32: Boosting as Gradient Descent
	Slide 33: Boosting as Gradient Descent
	Slide 34: Boosting as Gradient Descent
	Slide 35: Gradient Boosting in Practice
	Slide 36: Mobile and IoT Computing
	Slide 37: Mobile and IoT Computing
	Slide 38: Sensing & Computing
	Slide 39: Example Mobile and IoT Systems
	Slide 40
	Slide 41: Mobile Security Case Study: Inaudible Voice Commands
	Slide 42
	Slide 43: What you are expected to learn from this class
	Slide 44: Course Projects
	Slide 45: Course Projects: Two Options
	Slide 46: Course Projects: Two Parts
	Slide 47: Course Projects: Evaluation
	Slide 48: Course Projects: Compute
	Slide 49
	Slide 50: Course Projects: Q & A

