
Announcements
• HW 0 due Wed 8 pm; HW 1 (on linear regression) will be released that evening.

• Class currently full (215 enrolled, 7 approvals). Limited movement expected.

• Edstem to contact the course team, which is likely to have a fast response. But if 
you want to keep your message private to TAs:
• Always email both instructors together.

• Start subject line with “[CIS 4190/5190 Spring 2025]”.



Lecture 3: Linear Regression (Part 2)

CIS 4190/5190

Spring 2025



Recap: Linear Regression

• Input: Dataset 𝑍 = 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛

• Compute

መ𝛽 𝑍 = arg min
𝛽∈ℝ𝑑

1

𝑛
σ𝑖=1

𝑛 𝑦𝑖 − 𝛽⊤𝑥𝑖
2

• Output: 𝑓𝛽 𝑍 𝑥 = መ𝛽 𝑍 ⊤𝑥

• Discuss algorithms for computing the minimal 𝛽 next lecture



Loss Minimization View of ML

• To design an ML algorithm:
• Choose model family 𝐹 = 𝑓𝛽 𝛽

(e.g., linear functions)

• Choose loss function 𝐿 𝛽; 𝑍 (e.g., MSE loss)

• Resulting algorithm:

መ𝛽 𝑍 = arg min
𝛽

𝐿 𝛽; 𝑍



Recap: Overfitting vs. Underfitting

• Overfitting
• Fit the training data 𝑍 well

• Fit new held out data 𝑥, 𝑦 poorly

• Underfitting
• Fit the training data 𝑍 poorly

• (Necessarily fit new held out data
𝑥, 𝑦 poorly)

𝑥

𝑦

𝑓𝛽 𝑥

𝑥

𝑦

𝑓𝛽 𝑥



Today’s Lecture

Assessing, Understanding, and Combating underfitting/overfitting:

• Bias and Variance of hypothesis classes

• Regularized linear regression

• Cross-Validation



Assessing Underfitting & Overfitting



Training/Test Split

• Issue: How to detect overfitting vs. underfitting?

• Solution: Use held-out test data to estimate loss on new data
• Typically, randomly shuffle data first

Given data 𝑍

Training data 𝑍train Test data 𝑍test

samples

(𝑥
1

,𝑦
1

)
(𝑥

2
,𝑦

2
)

(𝑥
𝑛

,𝑦
𝑛

)

⋮ ⋮



Training/Test Split Protocol in ML

• Step 1: Split 𝑍 into 𝑍train and 𝑍test

• Step 2: Run linear regression with 𝑍train to obtain መ𝛽 𝑍train

• Step 3: Evaluate
• Training loss: 𝐿train = 𝐿 መ𝛽 𝑍train ; 𝑍train

• Test (or generalization) loss: 𝐿test = 𝐿 መ𝛽 𝑍train ; 𝑍test , (plus other 
performance metrics besides the loss function)

Training data 𝑍train Test data 𝑍test



Training/Test Split Protocol in ML

• Overfitting
• Fit the training data 𝑍 well

• Fit new test data 𝑥, 𝑦  poorly

• Underfitting
• Fit the training data 𝑍 poorly

• (Necessarily fit new test data
𝑥, 𝑦  poorly)

𝑥

𝑦

𝑓𝛽 𝑥

𝑥

𝑦

𝑓𝛽 𝑥



Training/Test Split Protocol in ML

• Overfitting
• 𝐿train is small

• 𝐿test is large

• Underfitting
• Fit the training data 𝑍 poorly

• (Necessarily fit new test data
𝑥, 𝑦  poorly)

𝑥

𝑦

𝑓𝛽 𝑥

𝑥

𝑦

𝑓𝛽 𝑥



Training/Test Split Protocol in ML

• Overfitting
• 𝐿train is small

• 𝐿test is large

• Underfitting
• 𝐿train is large

• 𝐿test is large

𝑥

𝑦

𝑓𝛽 𝑥

𝑥

𝑦

𝑓𝛽 𝑥



Understanding Underfitting & Overfitting

With Bias & Variance



Underfitting/Overfitting <=> Bias/Variance

𝑥

𝑦

𝑓𝛽 𝑥

𝑥

𝑦

𝑓𝛽 𝑥

We will understand these phenomena now through two properties of a 
model family, “bias”, and “variance”. 

Language for thinking about the ways in which model families can be bad.



Definitions: “Bias” and “Variance”

Imagine you draw 𝑘 training datasets from 
the same probability distribution over data, 
and each time fit your model 𝑓𝛽 1:𝑘

 to it.

• “Variance”: how much do those fitted 
functions 𝑓𝛽 1:𝑘

differ amongst each 
other, on average over the data 
distribution?

• “Bias” : how much does the average of all 
those fitted functions 𝑓𝛽 1:𝑘

deviate from 
the “true” function over the data 
distribution?

Scott Fortmann-Roe
http://scott.fortmann-roe.com/docs/BiasVariance.html

http://scott.fortmann-roe.com/docs/BiasVariance.html


Drawing Multiple Training Datasets

Consider a linear “true function” 𝑓∗ 𝑥 = 𝑥 + 2 that generates labels 
𝑦𝑖 for training data with uniform measurement noise in [-1, +1]. 

Let us draw 𝑘 → ∞ training sets of 𝑛 = 6 samples each, drawn from 
𝑃(𝑋, 𝑌).
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Different Constant Fits

What if the hypothesis class was the constant function class 
𝑓𝜷 𝑥 = 𝛽0
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Different Constant Fits

What if the hypothesis class was the constant function class 
𝑓𝜷 𝑥 = 𝛽0

Almost identical fits

“low variance”

Average fit far from the true 
function

“high bias”

Theoretical result: Generalization MSE ≈ ``Bias′′ + ``Variance′′
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Different 10th Degree Curve Fits

What if the hypothesis class was instead a 10𝑡ℎ degree monomial 
𝑓𝜷 𝑥 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + ⋯ 𝛽10𝑥10
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Different 10th Degree Fits

What if the hypothesis class was instead a 10𝑡ℎ degree monomial 
𝑓𝜷 𝑥 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + ⋯ 𝛽10𝑥10

Very different fits

“high variance”

Average fit close to the true 
function

“low bias”

Theoretical result: Generalization MSE ≈ ``Bias′′ + ``Variance′′



0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y

X

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y

X

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y
X

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y

X

…………

Different Linear Fits

Say, our hypothesis class is a line:
𝑓𝜷 𝑥 = 𝛽0 + 𝛽1𝑥1

Fit by minimizing MSE with any optimizer. What would the resulting 
line look like?

Slightly different fits
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Different Linear Fits

Say, our hypothesis class is a line:
𝑓𝜷 𝑥 = 𝛽0 + 𝛽1𝑥1

Fit by minimizing MSE with any optimizer. What would the resulting 
line look like?

Quite similar fits

“low variance”

Average fit close to the true 
function

“low bias”

Theoretical result: Generalization MSE ≈ ``Bias′′ + ``Variance′′



Bias-Variance Tradeoff

• Overfitting (high variance)
• High capacity model capable of 

fitting complex data

• Insufficient data to constrain it

• Underfitting (high bias)
• Low capacity model that can only 

fit simple data

• Sufficient data but poor fit

𝑥

𝑦

𝑓𝛽 𝑥

𝑥

𝑦

𝑓𝛽 𝑥



Under/Over -Fitting & Model Capacity

Lo
ss

Capacity

Training loss

Test loss

Ideal OverfittingUnderfitting

Slide by Padhraic Smyth, UCIrvine

Expanding the hypothesis class usually leads to higher variance, lower bias.

(e.g. when adding new dimensions to the feature map)

High 
variance

High bias



Combating Underfitting & Overfitting



How to Fix Underfitting/Overfitting?

Three main options:

• Choose the right model family (not too complex, not too simple)

• Improve the training dataset (i.e., collect more data)

• Choose the right loss function



Bias-Variance Tradeoff For Linear Regression

• For linear regression with feature maps, increasing feature dimension 𝑑′…

• Tends to increase capacity

• Tends to decrease bias but increase variance

• Need to construct 𝝓 to balance tradeoff between bias and variance

• Rule of thumb: You will need 𝑛 ≈ 𝑑′ log 𝑑′ samples, if your 𝝓 has 
dimension 𝑑′

• A large fraction of data science work is data cleaning + feature engineering. 
We will see some common rules of thumb for feature engineering soon. 



How to Fix Underfitting/Overfitting?

Three main options:

• Choose the right model family (not too complex, not too simple)

• Improve the training dataset (i.e., collect more data)

• Choose the right loss function



The Effect of Dataset Size

Increasing number of examples 𝑛 in the data…

• Tends to keep bias fixed and decrease variance

• Tends to decrease generalization MSE

𝑥

𝑦

𝑓𝛽 𝑥

𝑥

𝑦

𝑓𝛽 𝑥



The Effect of Dataset Size

As dataset size grows:

• Generalization error (≈ ``Bias′′ + ``Variance′′) is dominated by 
bias.

• To reduce error, we select high capacity, low bias models.

Larger datasets have room for expanded hypothesis classes.



How to Fix Underfitting/Overfitting?

Three main options:

• Choose the right model family (not too complex, not too simple)

• Improve the training dataset (i.e., collect more data)

• Choose the right loss function



Regularization: Modifying the Loss function

• Intuition: We only asked the ML algorithm to 
fit the training data as well as possible, so it 
produced overly complex fits → “Overfitting” 

 𝐿 𝛽; 𝑍 = Train MSE

• Solution: we will ask the model to produce a 
“simple fit” to the training data.

𝐿 𝛽; 𝑍 = Train MSE + Fit complexity 𝑥

𝑦

𝑓𝛽 𝑥

How to measure this?



Recall: Mean Squared Error Loss

• Mean squared error loss for linear regression:

𝐿 𝛽; 𝑍 =
1

𝑛


𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2



Linear Regression with 𝐿2 Regularization

• Original loss + regularization:

𝐿 𝛽; 𝑍 =
1

𝑛


𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 + 𝜆 ⋅ 𝛽 2

2

𝐿 𝛽; 𝑍 =
1

𝑛


𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 + 𝜆 

𝑗=1

𝑑

𝛽𝑗
2

• 𝜆 is a hyperparameter that must be tuned (satisfies 𝜆 ≥ 0) 

One measure of fit complexity



Intuition on 𝐿2 Regularization 

Why does it help?

• Encourages “simple” functions

• This is what 𝑳𝟐 regularization does: σ𝑗=1
𝑑 𝛽𝑗

2 = 𝛽 2
2 = 𝛽 − 0 2

2

• Pulls coefficients towards 0

• As 𝜆 → ∞, it forces 𝛽 = 0



Parameter value for any 𝛽𝑗

𝑃(𝛽𝑗)

Intuition on 𝑳𝟐 Regularization: Gaussian Priors
L2 regularized linear regression amounts to preferring smaller weights 
according to a Gaussian pdf. 

0

0.2

0.1

L2 regularization says: before looking at the data fit term, it likes 

this value twice as much as this one, for 𝛽𝑗. 

So the larger value is only selected for the 
model if it is *much* better for the data fit 
term (MSE)

Q: What happens to the shape of this plot if 
the value of 𝜆 increases? 

1

𝑛


𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 + 𝜆 ⋅ 𝛽 2

2



Intuition on 𝐿2 Regularization: Gaussian Priors

𝛽2

𝛽1

𝛽2

𝛽1

(uniform preference 
for any parameters)
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Intuition on 𝐿2 Regularization 

• Encourages “simple” functions

• Encouraging 𝛽𝑗’s to have small magnitude also induces a smaller-
capacity hypothesis class.

• Use haperparameter 𝜆 to tune bias-variance tradeoff



Bias-Variance Tradeoff for Regularization

Lo
ss

Capacity 
1

𝜆

Training loss

Test loss

Ideal OverfittingUnderfitting



Bias-Variance Tradeoff for Regularization

Lo
ss

Capacity
1

𝜆

Training loss

Test loss

Ideal OverfittingUnderfitting



General Regularization Strategy

• Original loss + regularization:

𝐿new 𝛽; 𝑍 = 𝐿 𝛽; 𝑍 + 𝜆 ⋅ 𝑅 𝛽

• Offers a way to express a preference for “simpler” functions in family
• Typically, regularization is independent of data

Q: For the new parameters 𝛽𝑛𝑒𝑤
∗ = min

𝛽
𝐿𝑛𝑒𝑤, would their corresponding 

value of 𝐿 𝛽; 𝑍  be smaller or larger than before regularization?



Hyperparameter Tuning 
& Model Selection



Hyperparameter Tuning

• 𝜆 is a hyperparameter that must be tuned (satisfies 𝜆 ≥ 0) 

• Naïve strategy: Try a few different candidates 𝜆𝑡 and choose the one 
that minimizes the test loss

• Problem: We may overfit the test set!
• Major problem if we have more hyperparameters

• Solution: A new subset of data just for selecting hyperparameters



Train/Val/Test Split for Model Selection

• Goal: Choose best hyperparameter 𝜆
• Can also compare different model families, feature maps, etc.

• Solution: Optimize 𝜆 on a held-out validation data
• Rule of thumb: 60/20/20 split (usually shuffle before splitting)

Given data 𝑍

Training data 𝑍train Test data 𝑍testVal data 𝑍val



Basic Cross Validation Algorithm
• Step 1: Split 𝑍 into 𝑍train, 𝑍val, and 𝑍test

• Step 2: For 𝑡 ∈ 1, … , ℎ  hyperparameter choices:
• Step 2a: Run linear regression with 𝑍train and 𝜆𝑡  to obtain መ𝛽 𝑍train, 𝜆𝑡

• Step 2b: Evaluate validation loss 𝐿val
𝑡 = 𝐿 መ𝛽 𝑍train, 𝜆𝑡 ; 𝑍val

• Step 3: Use best 𝜆𝑡

• Choose 𝑡′ = arg min𝑡 𝐿val
𝑡  with lowest validation loss

• Re-run linear regression with 𝑍train and 𝜆𝑡′  to obtain መ𝛽 𝑍train, 𝜆𝑡′

Training data 𝑍train Test data 𝑍testVal data 𝑍val



Cross Validation Hygiene

Training data 𝑍train Test data 𝑍testVal data 𝑍val

For training parameters For selecting 
hyperparameters

For evaluation 
only

• The moment that test data is used for hyperparameter selection or to iterate 
on ML design choices, it should be treated as “contaminated”. 

• Remember: Performance on contaminated test data is an overly optimistic 
estimate of the “true” test performance.



Alternative Cross-Validation Algorithms

• If 𝑍 is small, then splitting it can reduce performance
• Can use 𝑍train ∪ 𝑍val in Step 3

• Alternative more thorough CV strategy: “𝑘-fold” cross-validation
• Split 𝑍 into 𝑍train and 𝑍test

• Split 𝑍train into 𝑘 disjoint sets 𝑍val
𝑠 , and let 𝑍train

𝑠 = 𝑠′≠𝑠ڂ 𝑍val
𝑠

• Use 𝜆′ that works best on average across 𝑠 ∈ 1, … , 𝑘  with 𝑍train

• Chooses better 𝜆′ than above strategy



Example: 𝑘 = 3-Fold Cross Validation

Test data 𝑍testVal data 𝑍val
3Training data 𝑍train

3

Test data 𝑍testTrain data 𝑍val
2Val data 𝑍val

2Train data 𝑍val
2

Test data 𝑍testTrain data 𝑍train
1Val data 𝑍val

1

Test data 𝑍testTrain data 𝑍train

Compute vs. accuracy tradeoff: As 𝑘 →  𝑁, model selection becomes more 
accurate, but algorithm becomes more computationally expensive



𝑘-Fold Cross-Validation

• Compute vs. accuracy tradeoff
• As 𝑘 →  𝑁, the model becomes more accurate

• But algorithm becomes more computationally expensive



Note: What Exactly Are “Hyperparameters”?

• Cross-Validation is a general, systematic trial-and-error procedure for 
selecting hyperparameters.

• Other hyperparameters too, not just the regularization 𝜆.

• “Hyperparameters” are ML system properties / design choices that are not 
directly set in the optimization problem.

መ𝛽 𝑍 = arg min
𝛽

𝐿 𝛽; 𝑍

• Examples of other hyperparameters you could set with cross-validation:
• choice of feature maps in linear regression.

• data selection and other preprocessing procedures (coming up soon).

• linear regression versus another ML algorithm, altogether. 



Today’s Lecture

Assessing, Understanding, and Combating underfitting/overfitting:

• Bias and Variance of hypothesis classes

• Regularized linear regression

• Cross-Validation



Next Lecture

• How to find መ𝛽 𝑍 = arg min𝛽 𝐿(𝛽; 𝑍)
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