
Announcements
• HW 0 due Wed 8 pm; HW 1 (on linear regression) will be released that evening.

• Class currently full (215 enrolled, 7 approvals). Limited movement expected.

• Edstem to contact the course team, which is likely to have a fast response. But if
you want to keep your message private to TAs:
• Always email both instructors together.

• Start subject line with “[CIS 4190/5190 Spring 2025]”.

Lecture 3: Linear Regression (Part 2)

CIS 4190/5190

Spring 2025

Recap: Linear Regression

• Input: Dataset 𝑍 = 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛

• Compute

መ𝛽 𝑍 = arg min
𝛽∈ℝ𝑑

1

𝑛
σ𝑖=1

𝑛 𝑦𝑖 − 𝛽⊤𝑥𝑖
2

• Output: 𝑓𝛽 𝑍 𝑥 = መ𝛽 𝑍 ⊤𝑥

• Discuss algorithms for computing the minimal 𝛽 next lecture

Loss Minimization View of ML

• To design an ML algorithm:
• Choose model family 𝐹 = 𝑓𝛽 𝛽

(e.g., linear functions)

• Choose loss function 𝐿 𝛽; 𝑍 (e.g., MSE loss)

• Resulting algorithm:

መ𝛽 𝑍 = arg min
𝛽

𝐿 𝛽; 𝑍

Recap: Overfitting vs. Underfitting

• Overfitting
• Fit the training data 𝑍 well

• Fit new held out data 𝑥, 𝑦 poorly

• Underfitting
• Fit the training data 𝑍 poorly

• (Necessarily fit new held out data
𝑥, 𝑦 poorly)

𝑥

𝑦

𝑓𝛽 𝑥

𝑥

𝑦

𝑓𝛽 𝑥

Today’s Lecture

Assessing, Understanding, and Combating underfitting/overfitting:

• Bias and Variance of hypothesis classes

• Regularized linear regression

• Cross-Validation

Assessing Underfitting & Overfitting

Training/Test Split

• Issue: How to detect overfitting vs. underfitting?

• Solution: Use held-out test data to estimate loss on new data
• Typically, randomly shuffle data first

Given data 𝑍

Training data 𝑍train Test data 𝑍test

samples

(𝑥
1

,𝑦
1

)
(𝑥

2
,𝑦

2
)

(𝑥
𝑛

,𝑦
𝑛

)

⋮ ⋮

Training/Test Split Protocol in ML

• Step 1: Split 𝑍 into 𝑍train and 𝑍test

• Step 2: Run linear regression with 𝑍train to obtain መ𝛽 𝑍train

• Step 3: Evaluate
• Training loss: 𝐿train = 𝐿 መ𝛽 𝑍train ; 𝑍train

• Test (or generalization) loss: 𝐿test = 𝐿 መ𝛽 𝑍train ; 𝑍test , (plus other
performance metrics besides the loss function)

Training data 𝑍train Test data 𝑍test

Training/Test Split Protocol in ML

• Overfitting
• Fit the training data 𝑍 well

• Fit new test data 𝑥, 𝑦 poorly

• Underfitting
• Fit the training data 𝑍 poorly

• (Necessarily fit new test data
𝑥, 𝑦 poorly)

𝑥

𝑦

𝑓𝛽 𝑥

𝑥

𝑦

𝑓𝛽 𝑥

Training/Test Split Protocol in ML

• Overfitting
• 𝐿train is small

• 𝐿test is large

• Underfitting
• Fit the training data 𝑍 poorly

• (Necessarily fit new test data
𝑥, 𝑦 poorly)

𝑥

𝑦

𝑓𝛽 𝑥

𝑥

𝑦

𝑓𝛽 𝑥

Training/Test Split Protocol in ML

• Overfitting
• 𝐿train is small

• 𝐿test is large

• Underfitting
• 𝐿train is large

• 𝐿test is large

𝑥

𝑦

𝑓𝛽 𝑥

𝑥

𝑦

𝑓𝛽 𝑥

Understanding Underfitting & Overfitting

With Bias & Variance

Underfitting/Overfitting <=> Bias/Variance

𝑥

𝑦

𝑓𝛽 𝑥

𝑥

𝑦

𝑓𝛽 𝑥

We will understand these phenomena now through two properties of a
model family, “bias”, and “variance”.

Language for thinking about the ways in which model families can be bad.

Definitions: “Bias” and “Variance”

Imagine you draw 𝑘 training datasets from
the same probability distribution over data,
and each time fit your model 𝑓𝛽 1:𝑘

 to it.

• “Variance”: how much do those fitted
functions 𝑓𝛽 1:𝑘

differ amongst each
other, on average over the data
distribution?

• “Bias” : how much does the average of all
those fitted functions 𝑓𝛽 1:𝑘

deviate from
the “true” function over the data
distribution?

Scott Fortmann-Roe
http://scott.fortmann-roe.com/docs/BiasVariance.html

http://scott.fortmann-roe.com/docs/BiasVariance.html

Drawing Multiple Training Datasets

Consider a linear “true function” 𝑓∗ 𝑥 = 𝑥 + 2 that generates labels
𝑦𝑖 for training data with uniform measurement noise in [-1, +1].

Let us draw 𝑘 → ∞ training sets of 𝑛 = 6 samples each, drawn from
𝑃(𝑋, 𝑌).

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y

X

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y

X

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5
Y

X

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y

X

…………

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y

X

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y

X

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y
X

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y

X

…………

Different Constant Fits

What if the hypothesis class was the constant function class
𝑓𝜷 𝑥 = 𝛽0

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y

X

Different Constant Fits

What if the hypothesis class was the constant function class
𝑓𝜷 𝑥 = 𝛽0

Almost identical fits

“low variance”

Average fit far from the true
function

“high bias”

Theoretical result: Generalization MSE ≈ ``Bias′′ + ``Variance′′

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y

X

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y

X

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y
X

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y

X

…………

Different 10th Degree Curve Fits

What if the hypothesis class was instead a 10𝑡ℎ degree monomial
𝑓𝜷 𝑥 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + ⋯ 𝛽10𝑥10

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y

X

Different 10th Degree Fits

What if the hypothesis class was instead a 10𝑡ℎ degree monomial
𝑓𝜷 𝑥 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + ⋯ 𝛽10𝑥10

Very different fits

“high variance”

Average fit close to the true
function

“low bias”

Theoretical result: Generalization MSE ≈ ``Bias′′ + ``Variance′′

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y

X

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y

X

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y
X

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y

X

…………

Different Linear Fits

Say, our hypothesis class is a line:
𝑓𝜷 𝑥 = 𝛽0 + 𝛽1𝑥1

Fit by minimizing MSE with any optimizer. What would the resulting
line look like?

Slightly different fits

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Y

X

Different Linear Fits

Say, our hypothesis class is a line:
𝑓𝜷 𝑥 = 𝛽0 + 𝛽1𝑥1

Fit by minimizing MSE with any optimizer. What would the resulting
line look like?

Quite similar fits

“low variance”

Average fit close to the true
function

“low bias”

Theoretical result: Generalization MSE ≈ ``Bias′′ + ``Variance′′

Bias-Variance Tradeoff

• Overfitting (high variance)
• High capacity model capable of

fitting complex data

• Insufficient data to constrain it

• Underfitting (high bias)
• Low capacity model that can only

fit simple data

• Sufficient data but poor fit

𝑥

𝑦

𝑓𝛽 𝑥

𝑥

𝑦

𝑓𝛽 𝑥

Under/Over -Fitting & Model Capacity

Lo
ss

Capacity

Training loss

Test loss

Ideal OverfittingUnderfitting

Slide by Padhraic Smyth, UCIrvine

Expanding the hypothesis class usually leads to higher variance, lower bias.

(e.g. when adding new dimensions to the feature map)

High
variance

High bias

Combating Underfitting & Overfitting

How to Fix Underfitting/Overfitting?

Three main options:

• Choose the right model family (not too complex, not too simple)

• Improve the training dataset (i.e., collect more data)

• Choose the right loss function

Bias-Variance Tradeoff For Linear Regression

• For linear regression with feature maps, increasing feature dimension 𝑑′…

• Tends to increase capacity

• Tends to decrease bias but increase variance

• Need to construct 𝝓 to balance tradeoff between bias and variance

• Rule of thumb: You will need 𝑛 ≈ 𝑑′ log 𝑑′ samples, if your 𝝓 has
dimension 𝑑′

• A large fraction of data science work is data cleaning + feature engineering.
We will see some common rules of thumb for feature engineering soon.

How to Fix Underfitting/Overfitting?

Three main options:

• Choose the right model family (not too complex, not too simple)

• Improve the training dataset (i.e., collect more data)

• Choose the right loss function

The Effect of Dataset Size

Increasing number of examples 𝑛 in the data…

• Tends to keep bias fixed and decrease variance

• Tends to decrease generalization MSE

𝑥

𝑦

𝑓𝛽 𝑥

𝑥

𝑦

𝑓𝛽 𝑥

The Effect of Dataset Size

As dataset size grows:

• Generalization error (≈ ``Bias′′ + ``Variance′′) is dominated by
bias.

• To reduce error, we select high capacity, low bias models.

Larger datasets have room for expanded hypothesis classes.

How to Fix Underfitting/Overfitting?

Three main options:

• Choose the right model family (not too complex, not too simple)

• Improve the training dataset (i.e., collect more data)

• Choose the right loss function

Regularization: Modifying the Loss function

• Intuition: We only asked the ML algorithm to
fit the training data as well as possible, so it
produced overly complex fits → “Overfitting”

 𝐿 𝛽; 𝑍 = Train MSE

• Solution: we will ask the model to produce a
“simple fit” to the training data.

𝐿 𝛽; 𝑍 = Train MSE + Fit complexity 𝑥

𝑦

𝑓𝛽 𝑥

How to measure this?

Recall: Mean Squared Error Loss

• Mean squared error loss for linear regression:

𝐿 𝛽; 𝑍 =
1

𝑛

𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2

Linear Regression with 𝐿2 Regularization

• Original loss + regularization:

𝐿 𝛽; 𝑍 =
1

𝑛

𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 + 𝜆 ⋅ 𝛽 2

2

𝐿 𝛽; 𝑍 =
1

𝑛

𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 + 𝜆

𝑗=1

𝑑

𝛽𝑗
2

• 𝜆 is a hyperparameter that must be tuned (satisfies 𝜆 ≥ 0)

One measure of fit complexity

Intuition on 𝐿2 Regularization

Why does it help?

• Encourages “simple” functions

• This is what 𝑳𝟐 regularization does: σ𝑗=1
𝑑 𝛽𝑗

2 = 𝛽 2
2 = 𝛽 − 0 2

2

• Pulls coefficients towards 0

• As 𝜆 → ∞, it forces 𝛽 = 0

Parameter value for any 𝛽𝑗

𝑃(𝛽𝑗)

Intuition on 𝑳𝟐 Regularization: Gaussian Priors
L2 regularized linear regression amounts to preferring smaller weights
according to a Gaussian pdf.

0

0.2

0.1

L2 regularization says: before looking at the data fit term, it likes

this value twice as much as this one, for 𝛽𝑗.

So the larger value is only selected for the
model if it is *much* better for the data fit
term (MSE)

Q: What happens to the shape of this plot if
the value of 𝜆 increases?

1

𝑛

𝑖=1

𝑛

𝑦𝑖 − 𝛽⊤𝑥𝑖
2 + 𝜆 ⋅ 𝛽 2

2

Intuition on 𝐿2 Regularization: Gaussian Priors

𝛽2

𝛽1

𝛽2

𝛽1

(uniform preference
for any parameters)

-3 -2 -1. 0. 1. 2. 3.

-3

 -

2

 -

1
.

0

.

 1
.

 2

.

 3
.

-3

 -

2

 -

1
.

0

.

 1
.

 2

.

 3
.

-3 -2 -1. 0. 1. 2. 3.

Before regularization With L2 regularization

Intuition on 𝐿2 Regularization

• Encourages “simple” functions

• Encouraging 𝛽𝑗’s to have small magnitude also induces a smaller-
capacity hypothesis class.

• Use haperparameter 𝜆 to tune bias-variance tradeoff

Bias-Variance Tradeoff for Regularization

Lo
ss

Capacity
1

𝜆

Training loss

Test loss

Ideal OverfittingUnderfitting

Bias-Variance Tradeoff for Regularization

Lo
ss

Capacity
1

𝜆

Training loss

Test loss

Ideal OverfittingUnderfitting

General Regularization Strategy

• Original loss + regularization:

𝐿new 𝛽; 𝑍 = 𝐿 𝛽; 𝑍 + 𝜆 ⋅ 𝑅 𝛽

• Offers a way to express a preference for “simpler” functions in family
• Typically, regularization is independent of data

Q: For the new parameters 𝛽𝑛𝑒𝑤
∗ = min

𝛽
𝐿𝑛𝑒𝑤, would their corresponding

value of 𝐿 𝛽; 𝑍 be smaller or larger than before regularization?

Hyperparameter Tuning
& Model Selection

Hyperparameter Tuning

• 𝜆 is a hyperparameter that must be tuned (satisfies 𝜆 ≥ 0)

• Naïve strategy: Try a few different candidates 𝜆𝑡 and choose the one
that minimizes the test loss

• Problem: We may overfit the test set!
• Major problem if we have more hyperparameters

• Solution: A new subset of data just for selecting hyperparameters

Train/Val/Test Split for Model Selection

• Goal: Choose best hyperparameter 𝜆
• Can also compare different model families, feature maps, etc.

• Solution: Optimize 𝜆 on a held-out validation data
• Rule of thumb: 60/20/20 split (usually shuffle before splitting)

Given data 𝑍

Training data 𝑍train Test data 𝑍testVal data 𝑍val

Basic Cross Validation Algorithm
• Step 1: Split 𝑍 into 𝑍train, 𝑍val, and 𝑍test

• Step 2: For 𝑡 ∈ 1, … , ℎ hyperparameter choices:
• Step 2a: Run linear regression with 𝑍train and 𝜆𝑡 to obtain መ𝛽 𝑍train, 𝜆𝑡

• Step 2b: Evaluate validation loss 𝐿val
𝑡 = 𝐿 መ𝛽 𝑍train, 𝜆𝑡 ; 𝑍val

• Step 3: Use best 𝜆𝑡

• Choose 𝑡′ = arg min𝑡 𝐿val
𝑡 with lowest validation loss

• Re-run linear regression with 𝑍train and 𝜆𝑡′ to obtain መ𝛽 𝑍train, 𝜆𝑡′

Training data 𝑍train Test data 𝑍testVal data 𝑍val

Cross Validation Hygiene

Training data 𝑍train Test data 𝑍testVal data 𝑍val

For training parameters For selecting
hyperparameters

For evaluation
only

• The moment that test data is used for hyperparameter selection or to iterate
on ML design choices, it should be treated as “contaminated”.

• Remember: Performance on contaminated test data is an overly optimistic
estimate of the “true” test performance.

Alternative Cross-Validation Algorithms

• If 𝑍 is small, then splitting it can reduce performance
• Can use 𝑍train ∪ 𝑍val in Step 3

• Alternative more thorough CV strategy: “𝑘-fold” cross-validation
• Split 𝑍 into 𝑍train and 𝑍test

• Split 𝑍train into 𝑘 disjoint sets 𝑍val
𝑠 , and let 𝑍train

𝑠 = 𝑠′≠𝑠ڂ 𝑍val
𝑠

• Use 𝜆′ that works best on average across 𝑠 ∈ 1, … , 𝑘 with 𝑍train

• Chooses better 𝜆′ than above strategy

Example: 𝑘 = 3-Fold Cross Validation

Test data 𝑍testVal data 𝑍val
3Training data 𝑍train

3

Test data 𝑍testTrain data 𝑍val
2Val data 𝑍val

2Train data 𝑍val
2

Test data 𝑍testTrain data 𝑍train
1Val data 𝑍val

1

Test data 𝑍testTrain data 𝑍train

Compute vs. accuracy tradeoff: As 𝑘 → 𝑁, model selection becomes more
accurate, but algorithm becomes more computationally expensive

𝑘-Fold Cross-Validation

• Compute vs. accuracy tradeoff
• As 𝑘 → 𝑁, the model becomes more accurate

• But algorithm becomes more computationally expensive

Note: What Exactly Are “Hyperparameters”?

• Cross-Validation is a general, systematic trial-and-error procedure for
selecting hyperparameters.

• Other hyperparameters too, not just the regularization 𝜆.

• “Hyperparameters” are ML system properties / design choices that are not
directly set in the optimization problem.

መ𝛽 𝑍 = arg min
𝛽

𝐿 𝛽; 𝑍

• Examples of other hyperparameters you could set with cross-validation:
• choice of feature maps in linear regression.

• data selection and other preprocessing procedures (coming up soon).

• linear regression versus another ML algorithm, altogether.

Today’s Lecture

Assessing, Understanding, and Combating underfitting/overfitting:

• Bias and Variance of hypothesis classes

• Regularized linear regression

• Cross-Validation

Next Lecture

• How to find መ𝛽 𝑍 = arg min𝛽 𝐿(𝛽; 𝑍)

	Slide 1: Announcements
	Slide 2: Lecture 3: Linear Regression (Part 2)
	Slide 3: Recap: Linear Regression
	Slide 4: Loss Minimization View of ML
	Slide 5: Recap: Overfitting vs. Underfitting
	Slide 6: Today’s Lecture
	Slide 7: Assessing Underfitting & Overfitting
	Slide 8: Training/Test Split
	Slide 9: Training/Test Split Protocol in ML
	Slide 10: Training/Test Split Protocol in ML
	Slide 11: Training/Test Split Protocol in ML
	Slide 12: Training/Test Split Protocol in ML
	Slide 14: Understanding Underfitting & Overfitting
	Slide 15: Underfitting/Overfitting <=> Bias/Variance
	Slide 16: Definitions: “Bias” and “Variance”
	Slide 17: Drawing Multiple Training Datasets
	Slide 18: Different Constant Fits
	Slide 19: Different Constant Fits
	Slide 20: Different 10th Degree Curve Fits
	Slide 21: Different 10th Degree Fits
	Slide 22: Different Linear Fits
	Slide 23: Different Linear Fits
	Slide 24: Bias-Variance Tradeoff
	Slide 25: Under/Over -Fitting & Model Capacity
	Slide 26: Combating Underfitting & Overfitting
	Slide 27: How to Fix Underfitting/Overfitting?
	Slide 28: Bias-Variance Tradeoff For Linear Regression
	Slide 29: How to Fix Underfitting/Overfitting?
	Slide 30: The Effect of Dataset Size
	Slide 32: The Effect of Dataset Size
	Slide 33: How to Fix Underfitting/Overfitting?
	Slide 34: Regularization: Modifying the Loss function
	Slide 35: Recall: Mean Squared Error Loss
	Slide 36: Linear Regression with L 2 Regularization
	Slide 37: Intuition on L 2 Regularization
	Slide 39: Intuition on L 2 Regularization: Gaussian Priors
	Slide 40: Intuition on L 2 Regularization: Gaussian Priors
	Slide 41: Intuition on L 2 Regularization
	Slide 42: Bias-Variance Tradeoff for Regularization
	Slide 43: Bias-Variance Tradeoff for Regularization
	Slide 47: General Regularization Strategy
	Slide 50: Hyperparameter Tuning & Model Selection
	Slide 51: Hyperparameter Tuning
	Slide 52: Train/Val/Test Split for Model Selection
	Slide 53: Basic Cross Validation Algorithm
	Slide 54: Cross Validation Hygiene
	Slide 55: Alternative Cross-Validation Algorithms
	Slide 56: Example: k 3-Fold Cross Validation
	Slide 57: k-Fold Cross-Validation
	Slide 58: Note: What Exactly Are “Hyperparameters”?
	Slide 64: Today’s Lecture
	Slide 65: Next Lecture

