Announcements

- HW 0 due today 8 pm
- **HW 1** (on linear regression) will be released this afternoon.
- Office hour starting tomorrow.
 - Time and location (in-person & remote) will be posted on course website & canvas.

Lecture 4: Linear Regression (Part 3)

CIS 4190/5190 Spring 2025

Last Lecture

- Train/Test Split Protocol for Measuring Underfitting / Overfitting
- Bias and variance as functions of a model class
 - Tuning them by selecting hypothesis spaces / feature maps
 - Tuning them by modifying the loss function

•
$$L_{\text{new}}(\beta; Z) = L(\beta; Z) + \lambda \cdot R(\beta)$$

- Train/Val/Test Split Protocol for Hyperparameter tuning.
 - K-fold cross validation for small datasets.

Last Lecture

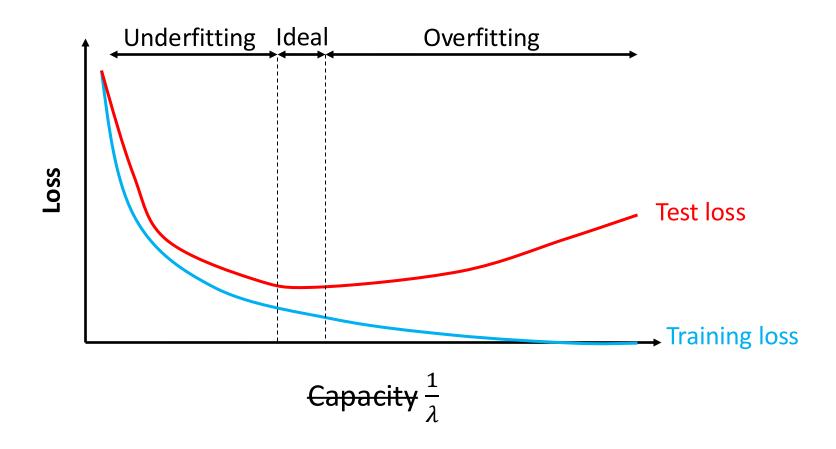
Original MSE loss + regularization:

$$L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^{\mathsf{T}} x_i)^2 + \lambda \cdot ||\beta||_2^2$$

• With intercept term ($\phi(x) = [1 \quad x_1 \quad \dots \quad x_d]^{\mathsf{T}}$), no penalty on β_1 :

$$L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^{\mathsf{T}} x_i)^2 + \lambda \sum_{j=2}^{d} \beta_j^2$$

Last Lecture



Today

- Minimizing the MSE Loss
 - Closed-form solution
 - Stochastic gradient descent

Minimizing the MSE Loss

Recall that linear regression minimizes the loss

$$L(\beta; \mathbf{Z}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_i - \beta^{\mathsf{T}} \mathbf{x}_i)^2$$

- Closed-form solution: Compute using matrix operations
- Optimization-based solution: Search over candidate β

```
\begin{bmatrix} f_{\beta}(x_1) \\ \vdots \\ f_{\beta}(x_n) \end{bmatrix}
```

$$\begin{bmatrix} f_{\beta}(x_1) \\ \vdots \\ f_{\beta}(x_n) \end{bmatrix} = \begin{bmatrix} \beta^{\mathsf{T}} x_1 \\ \vdots \\ \beta^{\mathsf{T}} x_n \end{bmatrix}$$

$$\begin{bmatrix} f_{\beta}(x_1) \\ \vdots \\ f_{\beta}(x_n) \end{bmatrix} = \begin{bmatrix} \beta^{\mathsf{T}} x_1 \\ \vdots \\ \beta^{\mathsf{T}} x_n \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^d \beta_j x_{1,j} \\ \vdots \\ \sum_{j=1}^d \beta_j x_{n,j} \end{bmatrix}$$

$$\begin{bmatrix} f_{\beta}(x_1) \\ \vdots \\ f_{\beta}(x_n) \end{bmatrix} = \begin{bmatrix} \beta^{\top} x_1 \\ \vdots \\ \beta^{\top} x_n \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^d \beta_j x_{1,j} \\ \vdots \\ \sum_{j=1}^d \beta_j x_{n,j} \end{bmatrix} = \begin{bmatrix} x_{1,1} & \cdots & x_{1,d} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,d} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_d \end{bmatrix}$$

$$\begin{bmatrix} f_{\beta}(x_1) \\ \vdots \\ f_{\beta}(x_n) \end{bmatrix} = \begin{bmatrix} \beta^{\top} x_1 \\ \vdots \\ \beta^{\top} x_n \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^d \beta_j x_{1,j} \\ \vdots \\ \sum_{j=1}^d \beta_j x_{n,j} \end{bmatrix} = \begin{bmatrix} x_{1,1} & \cdots & x_{1,d} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,d} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_d \end{bmatrix} = X\beta$$

$$\begin{bmatrix} f_{\beta}(x_{1}) \\ \vdots \\ f_{\beta}(x_{n}) \end{bmatrix} = \begin{bmatrix} \beta^{\top} x_{1} \\ \vdots \\ \beta^{\top} x_{n} \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{d} \beta_{j} x_{1,j} \\ \vdots \\ \sum_{j=1}^{d} \beta_{j} x_{n,j} \end{bmatrix} = \begin{bmatrix} x_{1,1} & \cdots & x_{1,d} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,d} \end{bmatrix} \begin{bmatrix} \beta_{1} \\ \vdots \\ \beta_{d} \end{bmatrix} = X\beta$$

$$\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$\begin{bmatrix} f_{\beta}(x_{1}) \\ \vdots \\ f_{\beta}(x_{n}) \end{bmatrix} = \begin{bmatrix} \beta^{\top} x_{1} \\ \vdots \\ \beta^{\top} x_{n} \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{d} \beta_{j} x_{1,j} \\ \vdots \\ \sum_{j=1}^{d} \beta_{j} x_{n,j} \end{bmatrix} = \begin{bmatrix} x_{1,1} & \cdots & x_{1,d} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,d} \end{bmatrix} \begin{bmatrix} \beta_{1} \\ \vdots \\ \beta_{d} \end{bmatrix} = X\beta$$

$$\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = Y$$

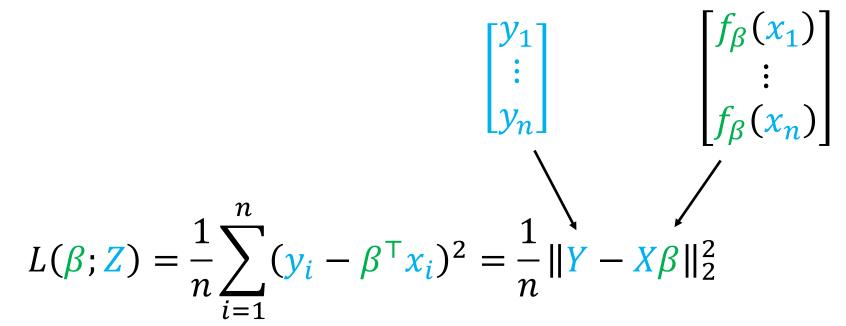
Summary: $Y \approx X\beta$

$$Y \approx X\beta$$

$$Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \qquad X = \begin{bmatrix} x_{1,1} & \dots & x_{1,d} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \dots & x_{n,d} \end{bmatrix} \quad \beta = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_d \end{bmatrix}$$

 $L(\beta; \mathbf{Z})$

$$L(\beta; \mathbf{Z}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_i - \beta^{\mathsf{T}} \mathbf{x}_i)^2$$



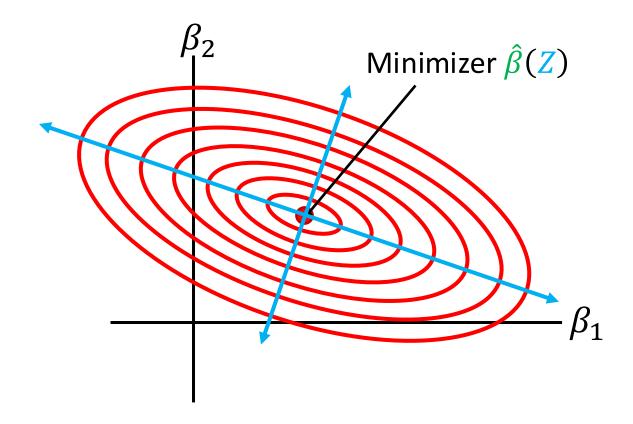
Intuition on Vectorized Linear Regression

Rewriting the vectorized loss:

$$n \cdot L(\beta; \mathbf{Z}) = \|Y - X\beta\|_{2}^{2} = \|Y\|_{2}^{2} - 2Y^{\mathsf{T}}X\beta + \|X\beta\|_{2}^{2}$$
$$= \|Y\|_{2}^{2} - 2Y^{\mathsf{T}}X\beta + \beta^{\mathsf{T}}(X^{\mathsf{T}}X)\beta$$

- Quadratic function of β with leading "coefficient" $X^{T}X$
 - In one dimension, "width" of parabola $ax^2 + bx + c$ is a^{-1}
 - In multiple dimensions, "width" along direction v_i is λ_i^{-1} , where v_i is an eigenvector of $X^\top X$ with eigenvalue λ_i

Intuition on Vectorized Linear Regression



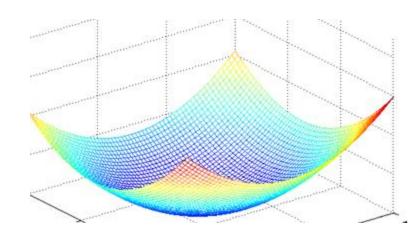
Directions/magnitudes are given by eigenvectors/eigenvalues of $X^{T}X$

Recall that linear regression minimizes the loss

$$L(\beta; \mathbf{Z}) = \frac{1}{n} \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2}$$

Minimum solution has gradient equal to zero:

$$\nabla_{\beta} L(\hat{\beta}; \mathbf{Z}) = 0$$



• The gradient is

$$\nabla_{\boldsymbol{\beta}}L(\boldsymbol{\beta};\boldsymbol{Z})$$

The gradient is

$$\nabla_{\beta} L(\beta; \mathbf{Z}) = \nabla_{\beta} \frac{1}{n} \|\mathbf{Y} - \mathbf{X}\beta\|_{2}^{2}$$

The gradient is

$$\nabla_{\beta} L(\beta; \mathbf{Z}) = \nabla_{\beta} \frac{1}{n} \| \mathbf{Y} - \mathbf{X}\beta \|_{2}^{2} = \nabla_{\beta} \frac{1}{n} (\mathbf{Y} - \mathbf{X}\beta)^{\mathsf{T}} (\mathbf{Y} - \mathbf{X}\beta)$$

$$= \frac{2}{n} \left[\nabla_{\beta} (\mathbf{Y} - \mathbf{X}\beta)^{\mathsf{T}} \right] (\mathbf{Y} - \mathbf{X}\beta)$$

$$= -\frac{2}{n} \mathbf{X}^{\mathsf{T}} (\mathbf{Y} - \mathbf{X}\beta)$$

$$= -\frac{2}{n} \mathbf{X}^{\mathsf{T}} \mathbf{Y} + \frac{2}{n} \mathbf{X}^{\mathsf{T}} \mathbf{X}\beta$$

The gradient is

$$\nabla_{\beta}L(\beta; \mathbf{Z}) = \nabla_{\beta} \frac{1}{n} \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} = -\frac{2}{n} \mathbf{X}^{\mathsf{T}} \mathbf{Y} + \frac{2}{n} \mathbf{X}^{\mathsf{T}} \mathbf{X}\boldsymbol{\beta}$$

• Setting $\nabla_{\beta} L(\hat{\beta}; \mathbf{Z}) = 0$, we have $\mathbf{X}^{\mathsf{T}} \mathbf{X} \hat{\beta} = \mathbf{X}^{\mathsf{T}} \mathbf{Y}$

- Setting $\nabla_{\beta} L(\hat{\beta}; \mathbf{Z}) = 0$, we have $\mathbf{X}^{\mathsf{T}} \mathbf{X} \hat{\beta} = \mathbf{X}^{\mathsf{T}} \mathbf{Y}$
- Assuming X^TX is invertible, we have

$$\hat{\beta}(Z) = (X^{\top}X)^{-1}X^{\top}Y$$

Note on Invertibility

- Closed-form solution only **unique** if X^TX is invertible
 - Otherwise, multiple solutions exist to $X^{T}X\hat{\beta} = X^{T}Y$
 - Intuition: Underconstrained system of linear equations

When Can this Happen?

- Case 1
 - Fewer data examples than feature dimension (i.e., n < d)
 - **Solution:** Remove features so $d \leq n$
 - **Solution:** Collect more data until $d \leq n$
- Case 2: Some feature is a linear combination of the others
 - Special case (duplicated feature): For some j and j', $x_{i,j} = x_{i,j'}$ for all i
 - Solution: Remove linearly dependent features
 - **Solution:** Use L_2 regularization

Shortcomings of Closed-Form Solution

- Computing $\hat{\beta}(Z) = (X^T X)^{-1} X^T Y$ can be challenging
- Computing $(X^{\top}X)^{-1}$ is $O(d^3)$
 - $d = 10^4$ features $\to O(10^{12})$
 - Even storing X^TX requires a lot of memory
- Numerical accuracy issues due to "ill-conditioning"
 - X^TX is "barely" invertible
 - Then, $(X^TX)^{-1}$ has large variance along some dimension
 - Regularization helps (more on this later)

Today

- Minimizing the MSE Loss
 - Closed-form solution
 - Stochastic gradient descent

Iterative Optimization Algorithms

Recall that linear regression minimizes the loss

$$L(\beta; \mathbf{Z}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_i - \beta^{\mathsf{T}} \mathbf{x}_i)^2$$

- Iteratively optimize β
 - Initialize $\beta_1 \leftarrow \text{Init}(...)$
 - For some number of iterations T, update $\beta_t \leftarrow \text{Step}(...)$
 - Return β_T

Iterative Optimization Algorithms

- Global search: Try random values of β and choose the best
 - I.e., β_t independent of β_{t-1}
 - Very unstructured, can take a long time (especially in high dimension d)!
- Local search: Start from some initial β and make local changes
 - I.e., β_t is computed based on β_{t-1}
 - What is a "local change", and how do we find good one?

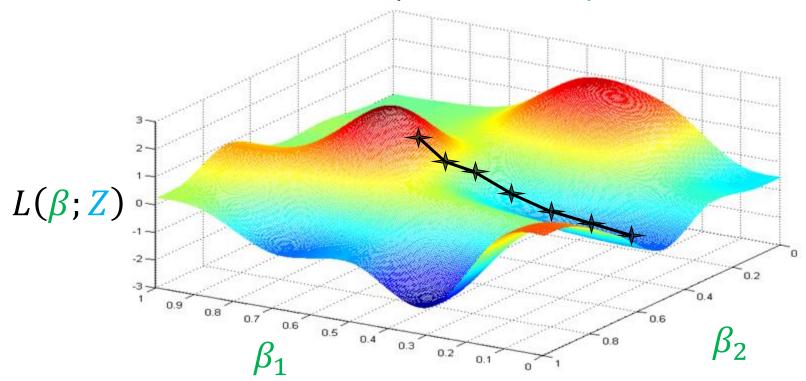
Strategy 2: Gradient Descent

• Gradient descent: Update β based on gradient $\nabla_{\beta}L(\beta; Z)$ of $L(\beta; Z)$:

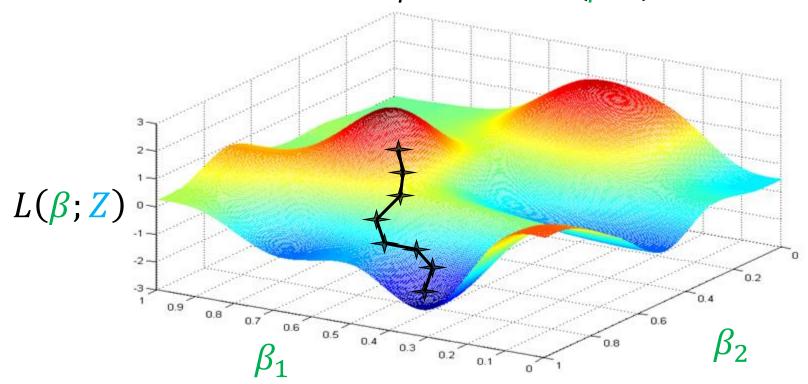
$$\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla_{\beta} L(\beta_t; \mathbf{Z})$$

- Intuition: The gradient is the direction along which $L(\beta; \mathbb{Z})$ changes most quickly as a function of β
- $\alpha \in \mathbb{R}$ is a hyperparameter called the **learning rate**
 - More on this later

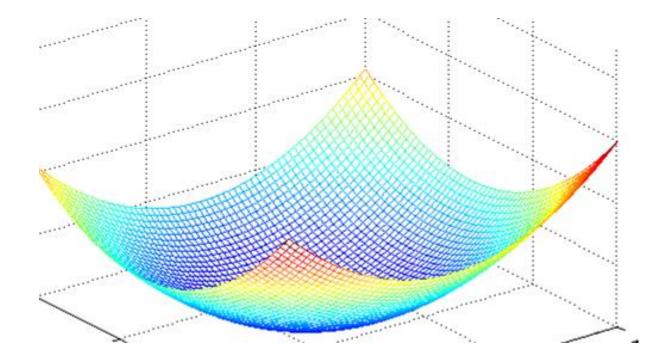
- Choose initial value for β
- Until we reach a minimum:
 - Choose a new value for β to reduce $L(\beta; \mathbb{Z})$



- Choose initial value for β
- Until we reach a minimum:
 - Choose a new value for β to reduce $L(\beta; \mathbb{Z})$



- Choose initial value for β
- Until we reach a minimum:
 - Choose a new value for β to reduce $L(\beta; \mathbb{Z})$

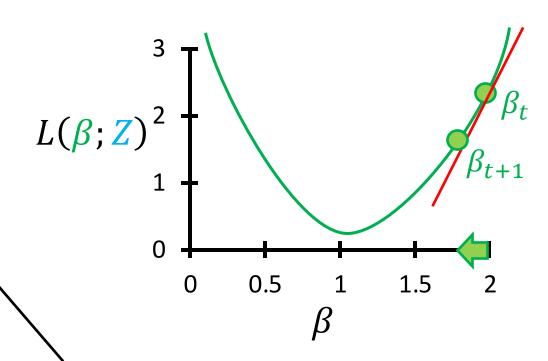


Linear regression loss is convex, so no local minima

- Initialize $\beta_1 = \vec{0}$
- Repeat until convergence:

$$\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla_{\beta} L(\beta_t; \mathbf{Z})$$

 For linear regression, know the gradient from strategy 1

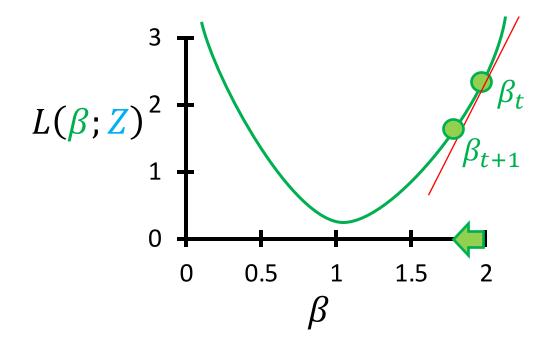


For in-place updates $\beta \leftarrow \beta - \alpha \cdot \nabla_{\beta} L(\beta; \mathbf{Z})$, compute all components of $\nabla_{\beta} L(\beta; \mathbf{Z})$ before modifying β

- Initialize $\beta_1 = \vec{0}$
- Repeat until convergence:

$$\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla_{\beta} L(\beta_t; \mathbf{Z})$$

• For linear regression, know the gradient from strategy 1

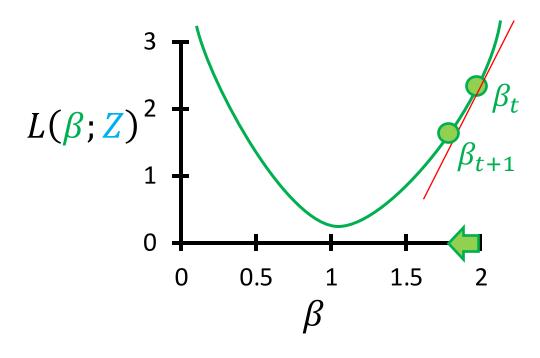


- Initialize $\beta_1 = \vec{0}$
- Repeat until $\|\beta_t \beta_{t+1}\|_2 \le \epsilon$:

$$\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla_{\beta} L(\beta_t; \mathbf{Z})$$

• For linear regression, know the gradient from strategy 1

Hyperparameter defining convergence



Aside: Gradient As Sum of Sample-Wise Gradients

(Equivalent to our earlier matrix expression of gradient)

 $-\frac{2}{n}X^{\mathsf{T}}Y + \frac{2}{n}X^{\mathsf{T}}X\beta$

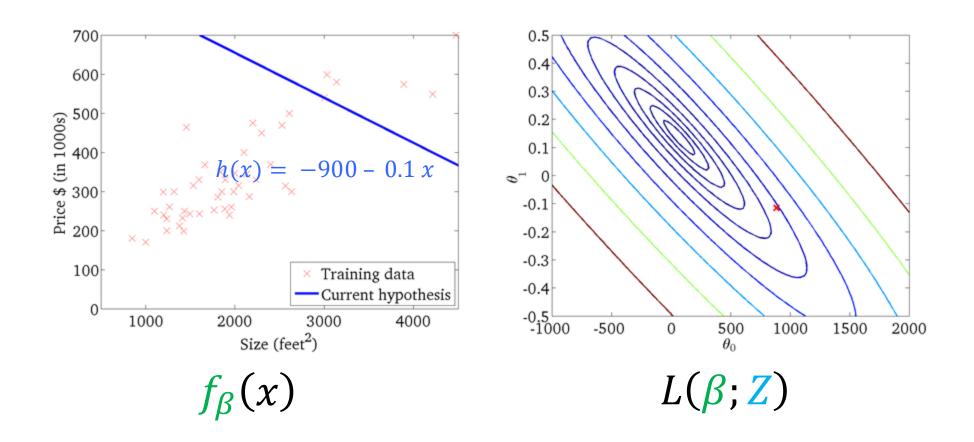
By linearity of the gradient, we have

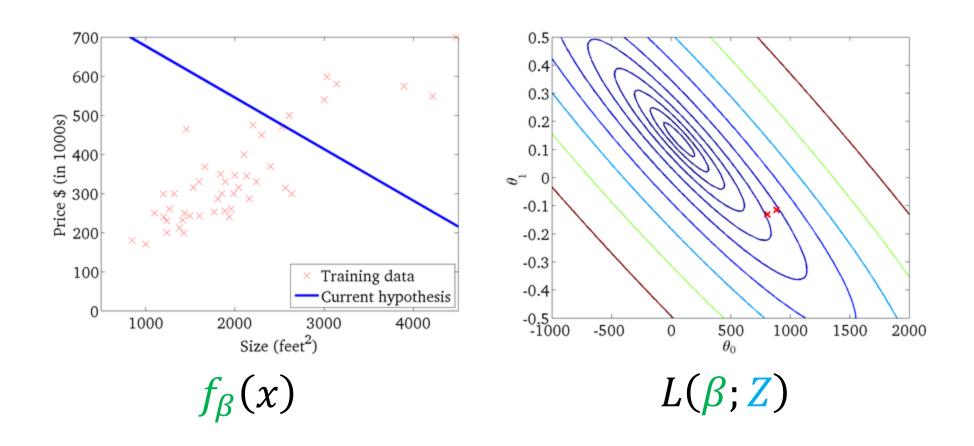
$$\nabla_{\beta} L(\beta; \mathbf{Z}) = \sum_{i=1}^{n} \nabla_{\beta} (\mathbf{y}_i - \beta^{\mathsf{T}} \mathbf{x}_i)^2 = \sum_{i=1}^{n} 2(\mathbf{y}_i - \beta^{\mathsf{T}} \mathbf{x}_i) \mathbf{x}_i$$

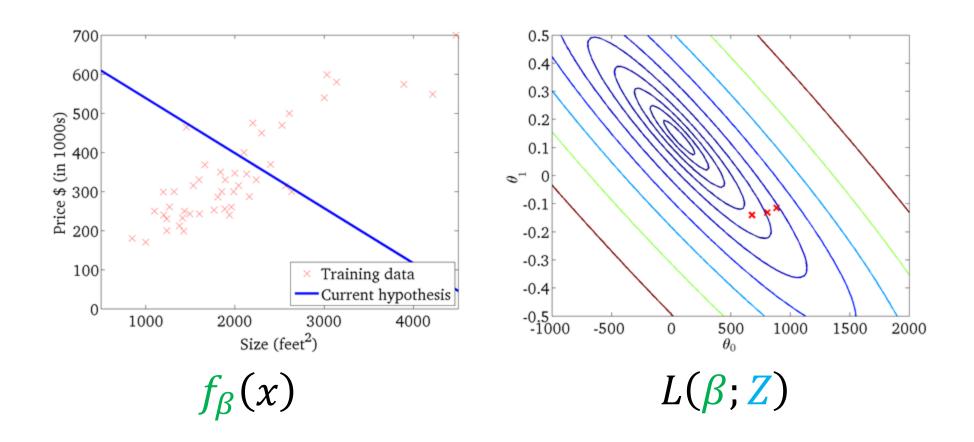
• The gradient term induced by a single training data sample is:

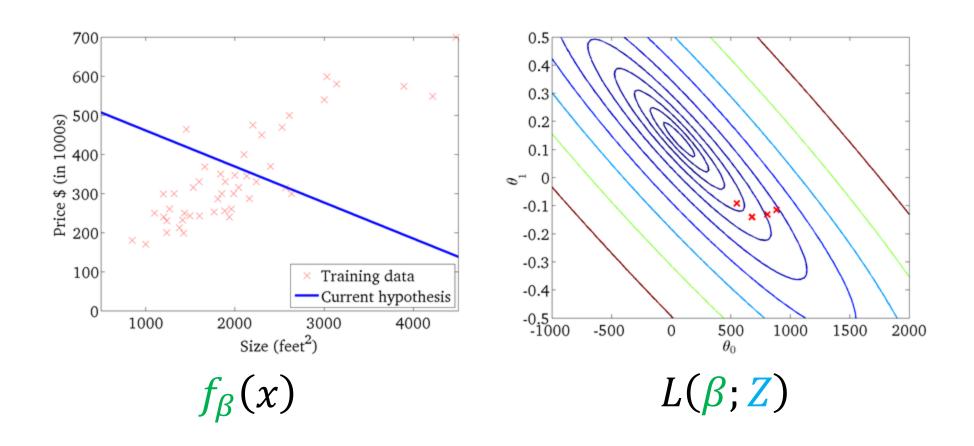
$$\nabla_{\beta}(y_i - \beta^{\mathsf{T}} x_i)^2 = 2(y_i - \beta^{\mathsf{T}} x_i) x_i$$

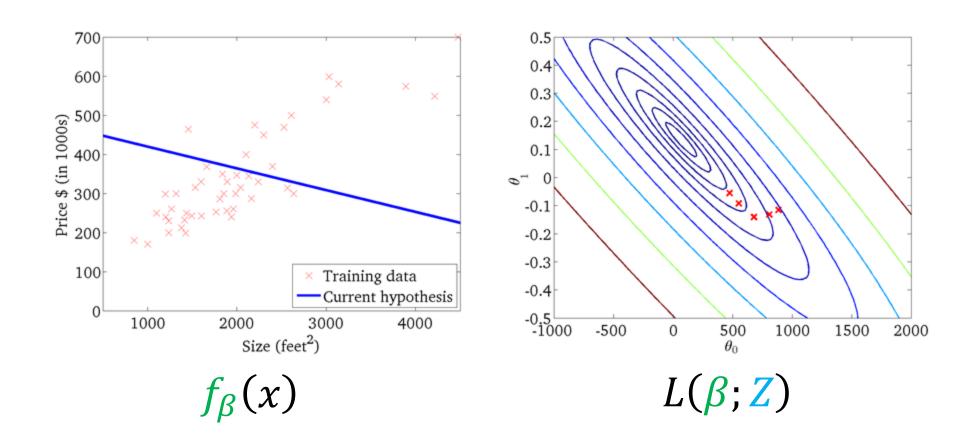
• I.e., the current error $y_i - \beta^T x_i$ times the feature vector x_i "Large error samples induce large changes to β , proportional to their feature values."

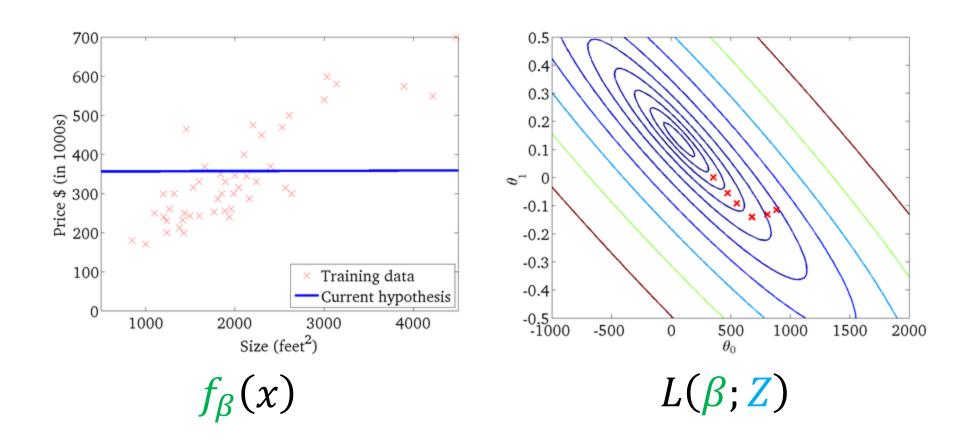


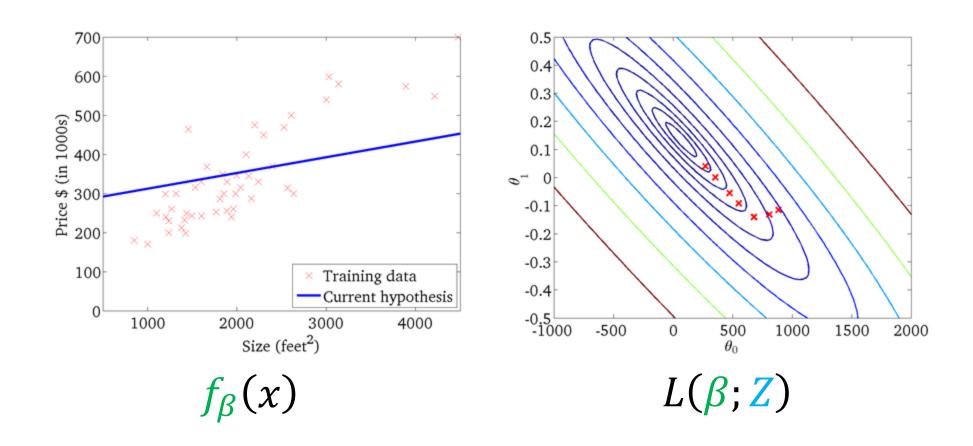


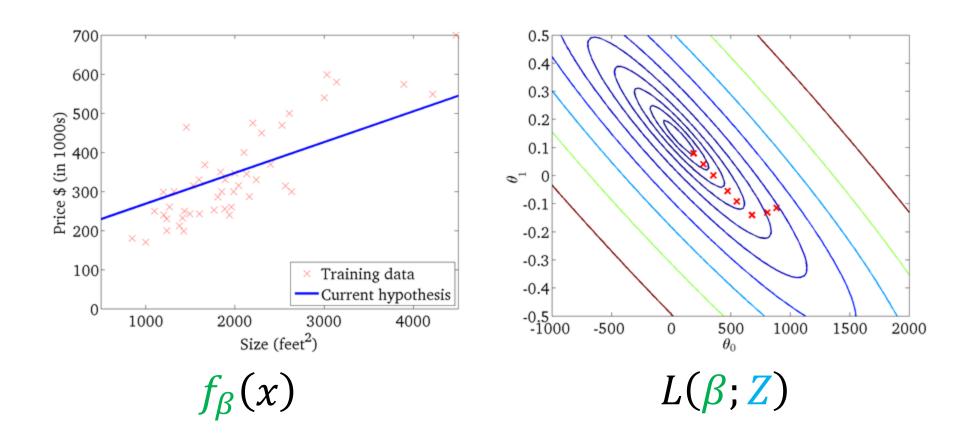


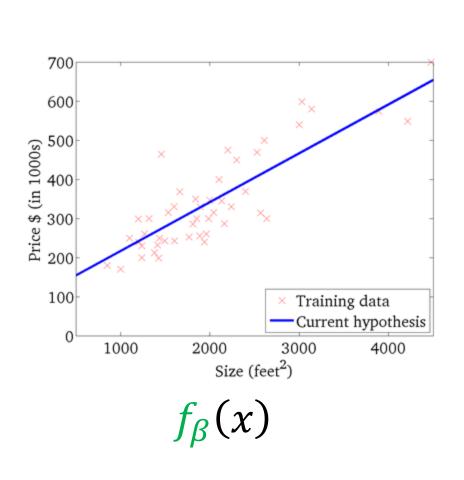




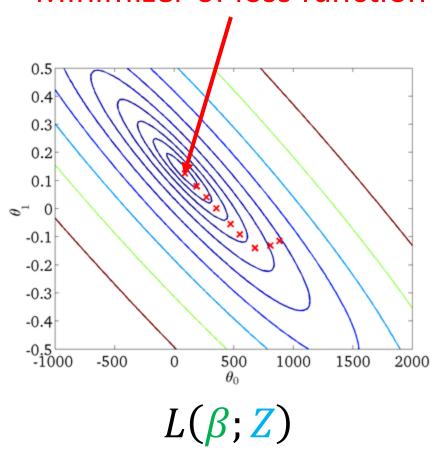








Minimizer of loss function



Stochastic Gradient Descent

What if we just used the <u>single-sample</u> gradient of a <u>randomly</u> drawn sample as a noisy approximation to the mean of gradients?

Stochastic Gradient Descent

Batch Gradient Descent

```
Initialize \beta
Repeat T times till convergence {
\beta_j \leftarrow \beta_j - \alpha \sum_{i=1}^{N} 2(y_i - \beta^\top x_i) x_i
}
```

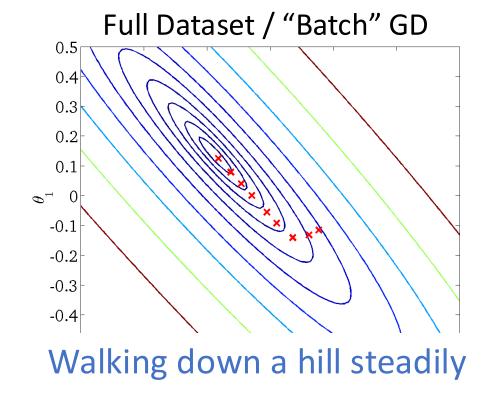
We are descending the original loss function $L(\beta; \mathbb{Z})$.

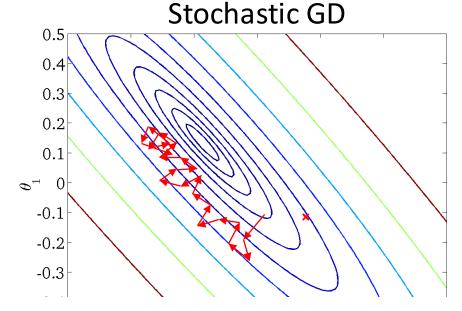
Stochastic Gradient Descent

```
Initialize \beta
Randomly shuffle dataset
Repeat T' times until convergence {
	For i = 1...N, do
	\beta_j \leftarrow \beta_j - \alpha 2(y_i - \beta^\top x_i) x_i
}
```

At each step, we are descending a different loss function specific to the chosen sample $L(\beta; Z_i = \{(x_i, y_i)\})$.

Noisy Gradients in SGD

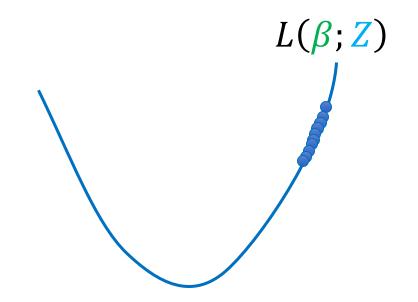




Walking down a slightly perturbed version of the hill at each step

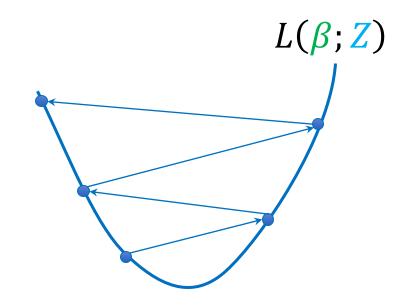
- Learning rate α is typically held constant
- One heuristic is to decrease α over time to force θ to converge: $\alpha_t = \frac{constant1}{iterationNumber\ t\ + constant2}$

Choice of Learning Rate



Problem: α too small

• $L(\beta; Z)$ decreases slowly



Problem: α too large

• $L(\beta; Z)$ increases!

Plot $L(\beta_t; Z_{\text{train}})$ vs. t to diagnose these problems

Choice of Learning Rate

- α is a hyperparameter for gradient descent that we need to choose
 - Can set just based on training data
- Rule of thumb
 - α too small: Loss decreases slowly
 - α too large: Loss increases!
- Try rates $\alpha \in \{1.0, 0.1, 0.01, ...\}$ (can tune further once one works)

Comparison of Strategies

- Closed-form solution
 - No hyperparameters
 - Slow if n or d are large
- Gradient descent
 - Need to tune α
 - Scales to large n and d
- For linear regression, there are better optimization algorithms, but gradient descent is very general
 - Accelerated gradient descent is an important tweak that improves performance in practice (and in theory)

L_2 Regularized Linear Regression

ullet Recall that linear regression with L_2 regularization minimizes the loss

$$L(\beta; \mathbf{Z}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^{\mathsf{T}} x_i)^2 + \lambda \sum_{j=1}^{d} \beta_j^2$$

L_2 Regularized Linear Regression

ullet Recall that linear regression with L_2 regularization minimizes the loss

$$L(\beta; \mathbf{Z}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_{i} - \beta^{\mathsf{T}} \mathbf{x}_{i})^{2} + \lambda \sum_{j=1}^{d} \beta_{j}^{2} = \frac{1}{n} \|\mathbf{Y} - \mathbf{X}\beta\|_{2}^{2} + \lambda \|\beta\|_{2}^{2}$$

Gradient is

$$\nabla_{\beta} L(\beta; \mathbf{Z}) = -\frac{2}{n} \mathbf{X}^{\mathsf{T}} \mathbf{Y} + \frac{2}{n} \mathbf{X}^{\mathsf{T}} \mathbf{X} \beta + 2\lambda \beta$$

Strategy 1: Closed-Form Solution

Gradient is

$$\nabla_{\beta} L(\beta; \mathbf{Z}) = -\frac{2}{n} \mathbf{X}^{\mathsf{T}} \mathbf{Y} + \frac{2}{n} \mathbf{X}^{\mathsf{T}} \mathbf{X} \beta + 2\lambda \beta$$

- Setting $\nabla_{\beta} L(\hat{\beta}; Z) = 0$, we have $(X^{T}X + n\lambda I)\hat{\beta} = X^{T}Y$
- Always invertible if $\lambda > 0$, so we have

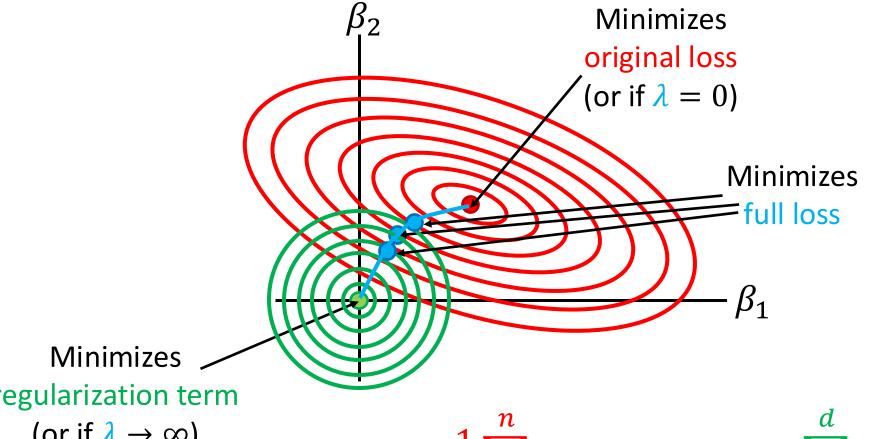
$$\hat{\beta}(Z) = (X^{\mathsf{T}}X + n\lambda I)^{-1}X^{\mathsf{T}}Y$$

Gradient is

$$\nabla_{\beta} L(\beta; \mathbf{Z}) = -\frac{2}{n} \mathbf{X}^{\mathsf{T}} \mathbf{Y} + \frac{2}{n} \mathbf{X}^{\mathsf{T}} \mathbf{X} \beta + 2\lambda \beta$$

- Same algorithm as vanilla linear regression (a.k.a. OLS)
- Intuition: The extra term $\lambda \beta$ in the gradient is weight decay that encourages β to be small

L_2 Regularization



- At this point, the gradients are equal (with opposite sign)
- Tradeoff depends on choice of λ

regularization term

(or if
$$\lambda \to \infty$$
)

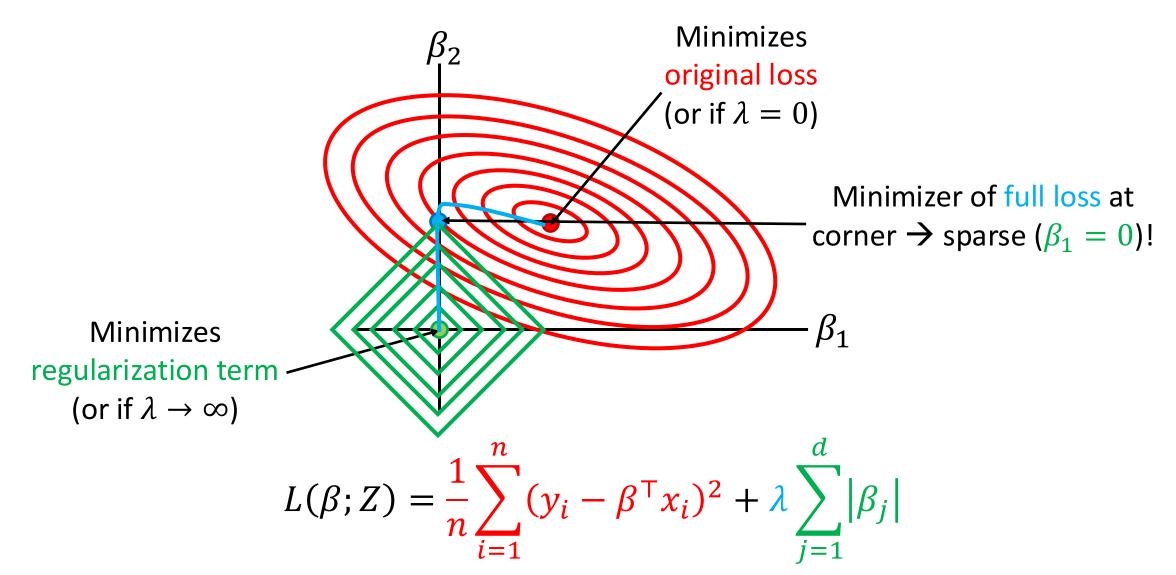
$$L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^{\mathsf{T}} x_i)^2 + \lambda \sum_{j=1}^{d} \beta_j^2$$

What About L_1 Regularization?

$$L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^{\mathsf{T}} x_i)^2 + \lambda \sum_{j=1}^{d} |\beta_j|$$

- Gradient descent still works!
- Specialized algorithms work better in practice
 - Simple one: Gradient descent + soft thresholding
 - Basically, if $\left|\beta_{t,j}\right| \leq \lambda$, just set it to zero
 - Good theoretical properties

L_1 Regularization



Loss Minimization View of ML

- Two design decisions
 - Model family: What are the candidate models f? (E.g., linear functions)
 - Loss function: How to define "approximating"? (E.g., MSE loss)

Loss Minimization View of ML

- Three design decisions
 - Model family: What are the candidate models f? (E.g., linear functions)
 - Loss function: How to define "approximating"? (E.g., MSE loss)
 - Optimizer: How do we minimize the loss? (E.g., gradient descent)

This Module: Linear Regression

Your very first supervised learning algorithm

• Regression with **real value** label $y_i \in \mathbb{R}$

Next Module:

• Classification with **discrete value** $y_i \in \{c_1, ..., c_k\}$