
Announcements

• Homework 1 updated
• Due next Wednesday at 8pm

• Covers linear regression

• Make sure you use the Spring 2025 version, you will not receive credit if you 
submit the Fall 2024 version (or early)

• Office hours have started, see course website for details



Lecture 5: Logistic Regression (Part 1)

CIS 4190/5190

Spring 2025



Supervised Learning

Data 𝑍 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛 መ𝛽 𝑍 = arg min𝛽 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦𝑖 ≈ 𝑓𝛽 𝑥𝑖

Model 𝑓෡𝛽 𝑍



Classification

Data 𝑍 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛 መ𝛽 𝑍 = arg min𝛽 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦𝑖 ≈ 𝑓𝛽 𝑥𝑖

Model 𝑓෡𝛽 𝑍

Label is a discrete value 𝑦𝑖 ∈ 𝒴 = 1, … , 𝑘



(Binary) Classification

• Input: Dataset 𝑍 = ሼ 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , ሽ𝑥𝑛, 𝑦𝑛  

• Output: Model 𝑦𝑖 ≈ 𝑓𝛽 𝑥𝑖

Image: https://eyecancer.com/uncategorized/choroidal-
metastasis-test/𝑥1 (tumor size)

𝑥
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Example: Malignant vs. Benign Ocular Tumor



Loss Minimization View of ML

• Three design decisions
• Model family: What are the candidate models 𝑓? (E.g., linear functions)

• Loss function: How to define “approximating”? (E.g., MSE loss)

• Optimizer: How do we optimize the loss? (E.g., gradient descent)

• How do we adapt to classification?



Linear Functions for (Binary) Classification

• Input: Dataset 𝑍 = ሼ 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , ሽ𝑥𝑛, 𝑦𝑛  

• Classification:
• Labels 𝑦𝑖 ∈ 0, 1

• Predict 𝑦𝑖 ≈ 1 𝛽⊤𝑥𝑖 ≥ 0

• 1 𝐶  equals 1 if 𝐶 is true and 0 if 𝐶 is false

• How to learn 𝛽? Need a loss function!



Loss Functions for Linear Classifiers

• (In)accuracy:

𝐿 𝛽; 𝑍 =
1

𝑛
෍

𝑖=1

𝑛

1 𝑦𝑖 ≠ 𝑓𝛽 𝑥𝑖

• Computationally intractable

• Often, but not always the “true” 
loss (e.g., imbalanced data)

𝐿 𝛽; 𝑍 =
6

50



Loss Functions for Linear Classifiers

• Distance:

𝐿 𝛽; 𝑍 =
1

𝑛
෍

𝑖=1

𝑛

dist(𝑥𝑖 , 𝑓𝛽) ⋅ 1 𝑓𝛽 𝑥𝑖 ≠ 𝑦𝑖

• If 𝐿 𝛽; 𝑍 = 0, then 100% accuracy

• Variant of this loss results in SVM

• We consider a more general strategy

𝐿 𝛽; 𝑍 = 1.2



Maximum Likelihood Estimation

• A probabilistic viewpoint on learning (from statistics)

• Given 𝑥𝑖, suppose 𝑦𝑖 is drawn i.i.d. from distribution 𝑝𝑌∣𝑋 𝑌 = 𝑦 𝑥; 𝛽  
with parameters 𝛽 (or density, if 𝑦𝑖 is continuous):

𝑦𝑖 ∼ 𝑝𝑌∣𝑋 ⋅ 𝑥𝑖; 𝛽

• Typically write 𝑝𝛽 𝑌 = 𝑦 𝑥  or just 𝑝𝛽 𝑦 𝑥

• Called a model (and 𝑝𝛽 𝛽
 is the model family)

• Will show up convert 𝑝𝛽  to 𝑓𝛽  later

𝑌 is random variable, 
not vector



Maximum Likelihood Estimation

• Compare to loss function minimization:
• Before: 𝑦𝑖 ≈ 𝑓𝛽 𝑥𝑖

• Now: 𝑦𝑖 ∼ 𝑝𝛽 ⋅ 𝑥𝑖; 𝛽

• Intuition the difference:
• 𝑓𝛽 𝑥𝑖  just provides a point that 𝑦𝑖  should be close to

• 𝑝𝛽 ⋅ 𝑥𝑖; 𝛽  provides a score for each possible 𝑦𝑖

• Maximum likelihood estimation combines the loss function and 
model family design decisions



Maximum Likelihood Estimation

• Likelihood: Given model 𝑝𝛽, the probability of dataset 𝑍 (replaces 
loss function in loss minimization view):

𝐿 𝛽; 𝑍 = 𝑝𝛽 𝑌 𝑋 = ෑ

𝑖=1

𝑛

𝑝𝛽 𝑦𝑖 𝑥𝑖

• Negative Log-likelihood (NLL): Computationally better behaved form:

ℓ 𝛽; 𝑍 = − log 𝐿 𝛽; 𝑍 = − ෍

𝑖=1

𝑛

log 𝑝𝛽 𝑦𝑖 𝑥𝑖



Intuition on the Likelihood
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Example: Linear Regression

• Assume that the conditional density is

𝑝𝛽 𝑦𝑖 𝑥𝑖 = 𝑁 𝑦𝑖; 𝛽⊤𝑥𝑖 , 1 =
1

2𝜋
⋅ 𝑒−

𝛽⊤𝑥𝑖−𝑦𝑖
2

2

• 𝑁 𝑦; 𝜇, 𝜎2  is the density of the normal (a.k.a. Gaussian) distribution 
with mean 𝜇 and variance 𝜎2



Example: Linear Regression

• Then, the likelihood is

𝐿 𝛽; 𝑍 = ෑ

𝑖=1

𝑛

𝑝𝛽 𝑦𝑖 𝑥𝑖 = ෑ

𝑖=1

𝑛
1

2𝜋
⋅ 𝑒−

𝛽⊤𝑥𝑖−𝑦𝑖
2

2

• The NLL is

ℓ 𝛽; 𝑍 = − ෍

𝑖=1

𝑛

log 𝑝𝛽 𝑦𝑖 𝑥𝑖 =
𝑛 log 2𝜋

2
+

1

2
෍

𝑖=1

𝑛

𝛽⊤𝑥𝑖 − 𝑦𝑖
2

constant MSE!



Example: Linear Regression

• Loss minimization for maximum likelihood estimation:

መ𝛽 𝑍 = arg min
𝛽

ℓ 𝛽; 𝑍

• Note: Called maximum likelihood estimation since maximizing the 
likelihood equivalent to minimizing the NLL



Example: Linear Regression

• What about the model family?

   𝑓𝛽 𝑥 = arg max
𝑦

𝑝𝛽 𝑦 𝑥  

   𝑓𝛽 𝑥 = arg max
𝑦

1

2𝜋
⋅ 𝑒−

𝛽⊤𝑥−𝑦 2

2

2

   𝑓𝛽 𝑥 = 𝛽⊤𝑥

• Recovers linear functions!



Loss Minimization View of ML

• Three design decisions
• Model family: What are the candidate models 𝑓? (E.g., linear functions)

• Loss function: How to define “approximating”? (E.g., MSE loss)

• Optimizer: How do we optimize the loss? (E.g., gradient descent)



Maximum Likelihood View of ML

• Two design decisions
• Likelihood: Probability 𝑝𝛽 𝑦 𝑥  of data 𝑥, 𝑦  given parameters 𝛽

• Optimizer: How do we optimize the NLL? (E.g., gradient descent)

• Corresponding Loss Minimization View:
• Model family: Most likely label 𝑓𝛽 𝑥 = arg max𝑦 𝑝𝛽 𝑦 𝑥

• Loss function: Negative log likelihood (NLL) ℓ 𝛽; 𝑍 = − σ𝑖=1
𝑛 log 𝑝𝛽 𝑦𝑖 𝑥𝑖

• Very powerful framework for designing cutting edge ML algorithms
• Write down the “right” likelihood, form tractable approximation if needed

• Especially useful for thinking about non-i.i.d. data



What about classification?

• Consider the following choice:

𝑝𝛽 𝑌 = 0 𝑥𝑖 ∝ 𝑒−
𝛽⊤𝑥𝑖

2 and 𝑝𝛽 𝑌 = 1 𝑥𝑖 ∝ 𝑒
𝛽⊤𝑥𝑖

2

• Then, we have

𝑝𝛽 𝑌 = 1 𝑥𝑖 =
𝑒

𝛽⊤𝑥𝑖
2

𝑒
𝛽⊤𝑥𝑖

2 + 𝑒−
𝛽⊤𝑥𝑖

2

=
1

1 + 𝑒−𝛽⊤𝑥𝑖

Sigmoid function

𝜎 𝑧 =
1

1 + 𝑒−𝑧

Compare to linear regression:

𝑝𝛽 𝑦 𝑥𝑖 ∝ 𝑒−
𝛽⊤𝑥𝑖−𝑦

2

2



What about classification?

• Consider the following choice:

𝑝𝛽 𝑌 = 0 𝑥𝑖 ∝ 𝑒−
𝛽⊤𝑥𝑖

2 and 𝑝𝛽 𝑌 = 1 𝑥𝑖 ∝ 𝑒
𝛽⊤𝑥𝑖

2

• Then, we have

𝑝𝛽 𝑌 = 1 𝑥𝑖 =
𝑒

𝛽⊤𝑥𝑖
2

𝑒
𝛽⊤𝑥𝑖

2 + 𝑒−
𝛽⊤𝑥𝑖

2

= 𝜎 𝛽⊤𝑥𝑖

• Furthermore, 𝑝𝛽 𝑌 = 0 𝑥𝑖 = 1 − 𝜎 𝛽⊤𝑥𝑖

Sigmoid function

𝜎 𝑧 =
1

1 + 𝑒−𝑧

Compare to linear regression:

𝑝𝛽 𝑦 𝑥𝑖 ∝ 𝑒−
𝛽⊤𝑥𝑖−𝑦

2

2



Logistic/Sigmoid Function

𝑝𝛽 𝑌 = 1 𝑥𝑖 = 𝜎 𝛽⊤𝑥𝑖



Logistic Regression Model Family

𝑓𝛽 𝑥  = arg max
𝑦

𝑝𝛽 𝑦 𝑥  

𝑓𝛽 𝑥 = arg max
𝑦

൝
𝜎 𝛽⊤𝑥

1 − 𝜎 𝛽⊤𝑥

if 𝑦 = 1
if 𝑦 = 0

 

𝑓𝛽 𝑥 = ቊ
1
0

if 𝜎 𝛽⊤𝑥 ≥
1

2

otherwise
 



Logistic Regression Model Family

𝑓𝛽 𝑥  = arg max
𝑦

𝑝𝛽 𝑦 𝑥  

𝑓𝛽 𝑥 = arg max
𝑦

൝
𝜎 𝛽⊤𝑥

1 − 𝜎 𝛽⊤𝑥

if 𝑦 = 1
if 𝑦 = 0

 

𝑓𝛽 𝑥 = ቊ
1
0

if 𝜎 𝛽⊤𝑥 ≥
1

2

otherwise
 

𝑓𝛽 𝑥 = ቊ
1
0

if 𝛽⊤𝑥 ≥ 0
otherwise

 

𝑓𝛽 𝑥 = 1(𝛽⊤𝑥 ≥ 0) 

• Recovers linear classifiers! 𝜎 0 =
1

2



Logistic Regression Algorithm

• Then, we have the following NLL loss:

        ℓ 𝛽; 𝑍 = − σ𝑖=1
𝑛 log 𝑝𝛽 𝑦𝑖 𝑥𝑖

        ℓ 𝛽; 𝑍 = − σ𝑖=1
𝑛 1 𝑦𝑖 = 1 ⋅ log 𝜎 𝛽⊤𝑥𝑖 + 1 𝑦𝑖 = 0 ⋅ log 1 − 𝜎 𝛽⊤𝑥𝑖

        ℓ 𝛽; 𝑍 = − σ𝑖=1
𝑛 𝑦𝑖 ⋅ log 𝜎 𝛽⊤𝑥𝑖 + 1 − 𝑦𝑖 ⋅ log 1 − 𝜎 𝛽⊤𝑥𝑖

• Logistic regression minimizes this loss:

መ𝛽 𝑍 = arg min
𝛽

ℓ 𝛽; 𝑍



Intuition on the Objective

• Loss for example 𝑖 is

ቐ
− log 𝜎 𝛽⊤𝑥𝑖

− log 1 − 𝜎 𝛽⊤𝑥𝑖

if 𝑦𝑖 = 1
if 𝑦𝑖 = 0

lo
g

𝑧



Intuition on the Objective

• Loss for example 𝑖 is

ቐ
− log 𝜎 𝛽⊤𝑥𝑖

− log 1 − 𝜎 𝛽⊤𝑥𝑖

if 𝑦𝑖 = 1
if 𝑦𝑖 = 0

−
lo

g
𝑧



Intuition on the Objective

• If 𝑦𝑖 = 1:
• If 𝜎 𝛽⊤𝑥𝑖 = 1, then loss = 0

• As 𝜎 𝛽⊤𝑥𝑖 → 0, loss → ∞

• If 𝑦𝑖 = 0
• If 𝜎 𝛽⊤𝑥𝑖 = 0, then loss = 0

• As 𝜎 𝛽⊤𝑥𝑖 → 1, loss → ∞

𝜎 𝛽⊤𝑥𝑖

lo
ss

−𝑦𝑖 ⋅ log 𝜎 𝛽⊤𝑥𝑖 − 1 − 𝑦𝑖 ⋅ log 1 − 𝜎 𝛽⊤𝑥𝑖



Intuition on the Objective

• If 𝑦𝑖 = 1:
• If 𝜎 𝛽⊤𝑥𝑖 = 1, then loss = 0

• As 𝜎 𝛽⊤𝑥𝑖 → 0, loss → ∞

• If 𝑦𝑖 = 0
• If 𝜎 𝛽⊤𝑥𝑖 = 0, then loss = 0

• As 𝜎 𝛽⊤𝑥𝑖 → 1, loss → ∞

lo
ss

−𝑦𝑖 ⋅ log 𝜎 𝛽⊤𝑥𝑖 − 1 − 𝑦𝑖 ⋅ log 1 − 𝜎 𝛽⊤𝑥𝑖

𝜎 𝛽⊤𝑥𝑖



Optimization for Logistic Regression

• To optimize the NLL loss, we need its gradient:

        ∇𝛽ℓ 𝛽; 𝑍 = − σ𝑖=1
𝑛 𝑦𝑖 ⋅ ∇𝛽 log 𝜎 𝛽⊤𝑥𝑖 + 1 − 𝑦𝑖 ⋅ ∇𝛽 log 1 − 𝜎 𝛽⊤𝑥𝑖

        ∇𝛽ℓ 𝛽; 𝑍 = − σ𝑖=1
𝑛 𝑦𝑖 ⋅

∇𝛽𝜎 𝛽⊤𝑥𝑖

𝜎 𝛽⊤𝑥𝑖
− 1 − 𝑦𝑖 ⋅

∇𝛽𝜎 𝛽⊤𝑥𝑖

1−𝜎 𝛽⊤𝑥𝑖

        ∇𝛽ℓ 𝛽; 𝑍 = − σ𝑖=1
𝑛 𝑦𝑖 ⋅

𝜎 𝛽⊤𝑥𝑖 1−𝜎 𝛽⊤𝑥𝑖 ⋅𝑥𝑖

𝜎 𝛽⊤𝑥𝑖
− 1 − 𝑦𝑖 ⋅

𝜎 𝛽⊤𝑥𝑖 1−𝜎 𝛽⊤𝑥𝑖 ⋅𝑥𝑖

1−𝜎 𝛽⊤𝑥𝑖

        ∇𝛽ℓ 𝛽; 𝑍 = − σ𝑖=1
𝑛 𝑦𝑖 ⋅ 1 − 𝜎 𝛽⊤𝑥𝑖 ⋅ 𝑥𝑖 − 1 − 𝑦𝑖 ⋅ 𝜎 𝛽⊤𝑥𝑖 ⋅ 𝑥𝑖

        ∇𝛽ℓ 𝛽; 𝑍 = − σ𝑖=1
𝑛 𝑦𝑖 − 𝜎 𝛽⊤𝑥𝑖 ⋅ 𝑥𝑖

𝜎′ 𝑧

= 𝜎 𝑧 1 − 𝜎 𝑧



Optimization for Logistic Regression

• Gradient of NLL:

∇𝛽ℓ 𝛽; 𝑍 = ෍

𝑖=1

𝑛

𝜎 𝛽⊤𝑥𝑖 − 𝑦𝑖 ⋅ 𝑥𝑖

• Surprisingly similar to the gradient for linear regression!
• Only difference is the 𝜎

• Gradient descent works as before
• No closed-form solution for መ𝛽 𝑍



Feature Maps

• Can use feature maps, just like linear regression



Regularized Logistic Regression

• We can add 𝐿1 or 𝐿2 regularization to the NLL loss, e.g.:

ℓ 𝛽; 𝑍 = − ෍

𝑖=1

𝑛

𝑦𝑖 ⋅ log 𝜎 𝛽⊤𝑥𝑖 + 1 − 𝑦𝑖 ⋅ log 1 − 𝜎 𝛽⊤𝑥𝑖 + 𝜆 ⋅ 𝛽 2
2

• Is there a more “natural” way to derive the regularized loss?



Regularization as a Prior

• So far, we have not assumed any distribution over the parameters 𝛽
• What if we assume 𝛽 ∼ 𝑁 0, 𝜎2𝐼  (the 𝑑 dimensional normal distribution)?

• (This 𝜎 is a hyperparameter, not the sigmoid function)

• Consider the modified likelihood

 𝐿 𝛽; 𝑍 = 𝑝𝑌,𝛽∣𝑋 𝑌, 𝛽 𝑋

 𝐿(𝛽;𝑍)= 𝑝𝑌∣𝑋,𝛽 𝑌 𝑋, 𝛽 ⋅ 𝑁 𝛽; 0, 𝜎2𝐼  

 𝐿 𝛽; 𝑍 = ς𝑖=1
𝑛 𝑝𝛽 𝑦𝑖 𝑥𝑖 ⋅

1

𝜎 2𝜋
𝑒

−
𝛽 2

2

2𝜎2



Regularization as a Prior

• So far, we have not assumed any distribution over the parameters 𝛽
• What if we assume 𝛽 ∼ 𝑁 0, 𝜎2𝐼  (the 𝑑 dimensional normal distribution)?

• Consider the modified NLL

 ℓ 𝛽; 𝑍 = − σ𝑖=1
𝑛 log 𝑝𝛽 𝑦𝑖 𝑥𝑖 + log 𝜎 2𝜋 +

𝛽 2
2

2𝜎2

• Obtain 𝐿2regularization on 𝛽!

• With 𝜆 =
1

2𝜎2

• If 𝛽𝑖 ∼ Laplace 0, 𝜎2  for each 𝑖, obtain 𝐿1regularization

constant regularization!



Additional Role of Regularization

• In 𝑝𝛽, if we replace 𝛽 with 𝑐𝛽, where 𝑐 ≫ 1 (and 𝑐 ∈ ℝ), then:
• The decision boundary does not change

• The probabilities 𝑝𝛽 𝑦 𝑥  become more confident

𝑝𝛽 𝑦 𝑥 𝑝10𝛽 𝑦 𝑥

𝑝10𝛽 𝑌 = 1 𝑥 ≈ 1𝑝𝛽 𝑌 = 1 𝑥 ≈ 0.6



Additional Role of Regularization

• Regularization ensures that 𝛽 does not become too large
• Prevents overconfidence

• Regularization can also be necessary
• Without regularization (i.e., 𝜆 = 0) and data is linearly separable, then 

gradient descent diverges (i.e., 𝛽 → ±∞)



Multi-Class Classification

• What about more than two classes?
• Disease diagnosis: healthy, cold, flu, pneumonia

• Object classification: desk, chair, monitor, bookcase

• In general, consider a finite space of labels 𝒴

𝑥1

𝑥2



Multi-Class Classification

• Naïve Strategy: One-vs-rest classification
• Step 1: Train 𝒴  logistic regression models, where model 𝑝𝛽𝑦

𝑌 = 1 𝑥  is 
interpreted as the probability that the label for 𝑥 is 𝑦

• Step 2: Given a new input 𝑥, predict label 𝑦 = arg max
𝑦′

𝑝𝛽
𝑦′ 𝑌 = 1 𝑥



Multi-Class Logistic Regression

• Strategy: Include separate 𝛽𝑦 for each label 𝑦 ∈ 𝒴 = ሼ1, … , 𝑘ሽ

• Let 𝑝𝛽 𝑦 𝑥 ∝ 𝑒𝛽𝑦
⊤𝑥, i.e.

𝑝𝛽 𝑦 𝑥 =
𝑒𝛽𝑦

⊤𝑥

σ𝑦′∈𝒴 𝑒
𝛽

𝑦′
⊤ 𝑥

• We define softmax 𝑧1, … , 𝑧𝑘 =
𝑒𝑧1

σ𝑖=1
𝑘 𝑒𝑧𝑖

…
𝑒𝑧𝑘

σ𝑖=1
𝑘 𝑒𝑧𝑖

• Then, 𝑝𝛽 𝑦 𝑥 = softmax 𝛽1
⊤𝑥, … , 𝛽𝑘

⊤𝑥
𝑦

• Thus, sometimes called softmax regression



Multi-Class Logistic Regression

• Model family

𝑓𝛽 𝑥 = arg max
𝑦

𝑝𝛽 𝑦 𝑥 = arg max
𝑦

𝑒
𝛽𝑦

⊤𝑥

σ
𝑦′∈𝒴

𝑒
𝛽

𝑦′
⊤ 𝑥

= arg max
𝑦

𝛽𝑦
⊤𝑥

• Optimization
• Gradient descent on NLL

• Simultaneously update all parameters 𝛽𝑦 𝑦∈𝒴



Classification Metrics

• While we minimize the NLL, we often evaluate using accuracy

• However, even accuracy isn’t necessarily the “right” metric
• If 99% of labels are negative (i.e., 𝑦𝑖 = 0), accuracy of 𝑓𝛽 𝑥 = 0 is 99%!

• For instance, very few patients test positive for most diseases

• “Imbalanced data”

• What are alternative metrics for these settings?



Classification Metrics

• Classify test examples as follows:
• True positive (TP): Actually positive, predictive positive

• False negative (FN): Actually positive, predicted negative

• True negative (TN): Actually negative, predicted negative

• False positive (FP): Actually negative, predicted positive

• Many metrics expressed in terms of these; for example:

accuracy =
𝑇𝑃 + 𝑇𝑁

𝑛
error = 1 − accuracy =

𝐹𝑃 + 𝐹𝑁

𝑛
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Classification Metrics

• For imbalanced metrics, we roughly want to disentangle:
• Accuracy on “positive examples”

• Accuracy on “negative examples”

• Different definitions are possible (and lead to different meanings)!



Sensitivity & Specificity

• Sensitivity: What fraction of actual positives are predicted positive?
• Good sensitivity: If you have the disease, the test correctly detects it

• Also called true positive rate

• Specificity: What fraction of actual negatives are predicted negative?
• Good specificity: If you do not have the disease, the test says so

• Also called true negative rate

• Commonly used in medicine
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Precision & Recall

• Recall: What fraction of actual positives are predicted positive?
• Good recall: If you have the disease, the test correctly detects it

• Also called the true positive rate (and sensitivity)

• Precision: What fraction of predicted positives are actual positives?
• Good precision: If the test says you have the disease, then you have it

• Also called positive predictive value

• Used in information retrieval, NLP
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