Announcements

* Homework 1 updated
 Due next Wednesday at 8pm

* Covers linear regression
* Make sure you use the Spring 2025 version, you will not receive credit if you
submit the Fall 2024 version (or early)

e Office hours have started, see course website for details



Lecture 5: Logistic Regression (Part 1)

CIS 4190/5190
Spring 2025



Supervised Learning

300

Data Z = {(x;,y)}j~y  B(Z) = argming L(B; Z) Model /72
L encodes y; = f5(x;)




Classification

300

Data Z = {(x;,y)}j~y  B(Z) = argming L(B; Z) Model /72

\ L encodes y; = f5(x;)

Label is a discrete value v, € Y = {1, ..., k}




(Binary) Classification

° |I1pUt: Dataset Z = {(xl' yl): (xz, yZ): XL (an yn)}
* Output: Model y; = f;(x;)
A
N @ o
. © ©

X, (age)
® ,
/

Image: https://eyecancer.com/uncategorized/choroidal-

x1 (tumor SiZE) metastasis-test/

Example: Malignant vs. Benign Ocular Tumor



Loss Minimization View of ML

* Three design decisions

* Model family: What are the candidate models f? (E.g., linear functions)
* Loss function: How to define “approximating”? (E.g., MSE loss)
* Optimizer: How do we optimize the loss? (E.g., gradient descent)

* How do we adapt to classification?



Linear Functions for (Binary) Classification

* Input: Dataset 7 = {(x,v1), (x2,v2), ..., (6, v) §

* Classification:
* Labels y; € {0,1}
* Predicty; = 1(B"x; = 0)
e 1(C) equals 1if C is true and 0 if C is false
* How to learn ? Need a loss function!




Loss Functions for Linear Classifiers

* (In)accuracy:
1 n
L(B;7) = E; 1 (Yi * fﬁ(xi))

 Computationally intractable

e Often, but not always the “true”
loss (e.g., imbalanced data)




Loss Functions for Linear Classifiers

* Distance:
1 n
L(B;7) = 5; dist(x;, f5) - 1(f,8(xi) % ;)

* If L(#;Z) = 0, then 100% accuracy
 Variant of this loss results in SVM
* We consider a more general strategy

L(B;7) =1.2



Maximum Likelihood Estimation

A probabilistic viewpoint on learning (from statistics)

* Given x;, suppose y; is drawn i.i.d. from distribution pyx(Y =y | x; )
with parameters [ (or density, if y; is continuous):

Vi ~ py|x( | x5 B) Y is random variable,
not vector

* Typically write ps (Y =y | x) orjust pp(y | x)
* Called a model (and {pﬁ}ﬁ is the model family)

* Will show up convert p;; to f5 later



Maximum Likelihood Estimation

 Compare to loss function minimization:
* Before: y; =~ f5(x;)
* Now: vy, ~ps(-lx; )

* Intuition the difference:
* /3 (x;) just provides a point that y; should be close to
* p (-l x;; B ) provides a score for each possible y;

e Maximum likelihood estimation combines the loss function and
model family design decisions



Maximum Likelihood Estimation

* Likelihood: Given model pg, the probability of dataset Z (replaces
loss function in loss minimization view):

n
L2 =pp (V1) = [ (o120
i=1
* Negative Log-likelihood (NLL): Computationally better behaved form:

£(5;7) = —logL(5;7) == ) ogpg(v: 1))
1=1



Intuition on the Likelihood
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Example: Linear Regression

* Assume that the conditional density is

- 1 _(IBTxi_Yi)z
pﬁ(yl'lxi)=N(Yii,B Xi;1)=\/TTT°€ 2

* N(y; u, %) is the density of the normal (a.k.a. Gaussian) distribution
with mean u and variance g2



Example: Linear Regression

* Then, the likelihood is

L(5; Z)—]_[pﬁ(;mxl)—l_[ )

e The NLL is

n log(Zn)

£(5;7) = = ) logpp(yi | %) = 22(/3% 7)?

~N" \ J
Y

constant MSE!




Example: Linear Regression

* Loss minimization for maximum likelihood estimation:

[(Z) = arg min £(f; Z)
p

* Note: Called maximum likelihood estimation since maximizing the
likelihood equivalent to minimizing the NLL



Example: Linear Regression

 What about the model family?

fp(x) = argmaxpg(y | x)
y

2
1 _(ﬁT‘x_y);
—drgmax—-e 2
gy \V2TT
— IBTx

* Recovers linear functions!



Loss Minimization View of ML

* Three design decisions
* Model family: What are the candidate models f? (E.g., linear functions)
* Loss function: How to define “approximating”? (E.g., MSE loss)
* Optimizer: How do we optimize the loss? (E.g., gradient descent)



Maximum Likelihood View of ML

* Two design decisions
» Likelihood: Probability ps(y | x ) of data (x, y) given parameters /3
e Optimizer: How do we optimize the NLL? (E.g., gradient descent)

* Corresponding Loss Minimization View:
* Model family: Most likely label /5 (x) = arg max,, ps(y | x)
* Loss function: Negative log likelihood (NLL) £(f3; Z) = — Y1 logps(v; | x;)

* Very powerful framework for designing cutting edge ML algorithms
* Write down the “right” likelihood, form tractable approximation if needed
* Especially useful for thinking about non-i.i.d. data



What about classification?  compare to linear regression:
(BTx-y)°

pe(y|x) xe 2
* Consider the following choice: / ply
T T

B xi L' x;

pﬁ(Y=0|xl-)oce_ 2 and pB(Yzllxl-)oce 2

Si id functi
* Then, we have 'gmol un; 'on

BT x; — 0(2) = 1+e 2

e




What about classification?  compare to linear regression:
(BTx-y)°

pp(ylx;) <e 2
* Consider the following choice: / ply
T T

B xi B xi

pﬁ(Y=O|xl-)oce_ 2 and pB(Yzllxl-)oce 2

Si id functi
* Then, we have 'gmol un; 'on

b — o@D =1 =
e
pﬁ(yzllxl)z BT x; _’BTxi=O'(IBTXi)

e 2 +e 2

* Furthermore, ps(Y =01 x;) =1—0(8"x;)



Logistic/Sigmoid Function

1.0 —

L/

0.0 —

pp(Y=11x)=0(f"x;)



Logistic Regression Model Family

fp(x) = argmaxpz(y | x)
y

B o(fTx) ify=1
- el ax{1 —o(BTx) ify =0

_ {1 if o(5 ) = -

0 otherwise



Logistic Regression Model Family

fp(x) = argmaxpz(y | x)
y

a(fTx) ify=1

= arg max

y 1-0(B'x) ifty=0

(

(1 ifo(fT) >~

kO otherwise

(1 iffTx >0

0 otherwise

=1(B"x = 0)

* Recovers linear classifiers!

1.0 —

0.5 /




Logistic Regression Algorithm

* Then, we have the following NLL loss:

2(B;7) = — Xi=11ogpp(vi | x;)
= — ¥, 10y, = 1) - log(a(F7x)) + 1(y; = 0) - log(1 — a(57x)))
==X Vi log(G(ﬁTxi)) + (1 =) 108(1 - a(,BTxl-))

* Logistic regression minimizes this loss:

p(Z) = arg min £(p; Z)
B



Intuition on the Objective

* Loss for example [ is

)
) —log(a(BTx)) ify, =1
. log(1—0(B"x)) ifyi=0




Intuition on the Objective
* Loss for example [ is

)
) —log(a(BTx)) ify, =1
. log(1—0(B"x)) ifyi=0
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Intuition on the Objective

¢ Ifyl = 1:

* Ifo(f"'x;) =1, thenloss =0
* Asa(f"x;) = 0,loss » o

’lfyl:O

* Ifo(f"x;) =0, thenloss =0
* Aso(f"x;) > 1,loss > o

—Yi

' log(a(ﬁTxi))

80 02 04 06 08

O'(ﬁTxi)

—(1—y) -log(1—a(BTx))

1.0



Intuition on the Objective

¢ Ifyl = 1:

* Ifo(f"'x;) =1, thenloss =0
* Asa(f"x;) = 0,loss » o

’lfyl:O

* Ifo(f"x;) =0, thenloss =0
* Aso(f"x;) > 1,loss > o

—Yi

' 108(0(,3Txi))

—(1-y)-

90 02 04 06 08

O'(ﬁTxi)

log(1 —a(8x))

1.0



Optimization for Logistic Regression
* To optimize the NLL loss, we need its gradient:

Vel(f;2) = = Sy vi - Vg log(a(BTx)) + (1 — ) - Vg log(1 — o(5Tx)

_ _ym Vgo(Blx) oy Vpo(Bx)
,( ) _ i=1 yi O'(ﬁTXi) (1 yl) 1_O_(ﬁ-|-xi)
o \Z R
=o@(1-0@) —_yn . “(ﬁTxﬂ(z;(/iTxi))-xi ey o (57 x) (1= (5T x))
- o Xi

1-0(B " x)
== i=1 Vi (1 — U(,BTXL')) = (A =y)-o(fx)  x
= —Z?=1(3’i - U(,BTXL')) " X



Optimization for Logistic Regression

* Gradient of NLL:
n
Vpl(B;7) = ) (a(8Tx) =)
=1

* Surprisingly similar to the gradient for linear regression!
e Only difference is the o

 Gradient descent works as before
* No closed-form solution for 3(Z)



Feature Maps

* Can use feature maps, just like linear regression

1.00
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0.00

P(y = 1|x)



Regularized Logistic Regression

* We can add L; or L, regularization to the NLL loss, e.g.:
L(5;7) = —Z)’i log(a(BTx)) + (1 —v) -log(1—a(BTx)) + 4 lIBI3
i=1

* |s there a more “natural” way to derive the regularized loss?



Regularization as a Prior

* So far, we have not assumed any distribution over the parameters [
* What if we assume 3 ~ N(0,c?I) (the d dimensional normal distribution)?
* (This o is a hyperparameter, not the sigmoid function)

 Consider the modified likelihood

L(B;7) = PY,ﬁlx(Y»,B | X)

= pyixg(Y 1 X, ) N(B;0,0%1)
||ﬁ||2
_(H 1p,8(y1|xl)) O'\/_e 202




Regularization as a Prior

* So far, we have not assumed any distribution over the parameters [
* What if we assume 3 ~ N(0,c?I) (the d dimensional normal distribution)?

 Consider the modified NLL

18113

2072

(f;7) = — Xi=1logps(y; | x;) +logov2m +

h'd

: .. constant regularization!
* Obtain L,regularization on /! 5
. 1
e WithA =—

207
* If 5; ~ Laplace(0, c%) for each i, obtain L,regularization



Additional Role of Regularization

* In pg, if we replace [ with ¢f5, where ¢ >> 1 (and ¢ € R), then:

* The decision boundary does not change
* The probabilities p; (v | x ) become more confident

GRS prop(y12) |

¥ .. £ ] —- £ .: L |
plg(Y=1|X)z0.6 ploﬁ(Y=1|x)z]_



Additional Role of Regularization

* Regularization ensures that [/ does not become too large
* Prevents overconfidence

* Regularization can also be necessary

* Without regularization (i.e., A = 0) and data is linearly separable, then
gradient descent diverges (i.e., f/ = £ o)



Multi-Class Classification

e What about more than two classes?

* Disease diagnosis: healthy, cold, flu, pneumonia
* Object classification: desk, chair, monitor, bookcase
* In general, consider a finite space of labels Y

® | A

0, A

X, Q//kA A
l/ \ A

H
_ \

s

A

>

X1



Multi-Class Classification

* Naive Strategy: One-vs-rest classification
* Step 1: Train |Y| logistic regression models, where model pﬁy(Y =1]x)is
interpreted as the probability that the label for x is y
* Step 2: Given a new input x, predict label y = arg max pg | (Y=11x)
y'

A. /><
»
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Multi-Class Logistic Regression

* Strategy: Include separate 3, for each label y € Y = {1, ..., k}
*Let pp(y | x) ePr” e

eByx
X ) =
p,B(yl ) Z e,BTIx
v'ey
e’k
* We define softmax(zy, ..., z;) = [Zl = Z{-;lezl']

* Then, pp(y | x) = softmax (5, x, ..., B, x)y

* Thus, sometimes called softmax regression



Multi-Class Logistic Regression

* Model family
Byx
* f2(x) = argmaxps(v | x) = arg max — - — = argmax [}, x
B B y
y

B x
y y y
Zyley e

* Optimization
e Gradient descent on NLL

* Simultaneously update all parameters {'By}yey



Classification Metrics

* While we minimize the NLL, we often evaluate using accuracy

 However, even accuracy isn’t necessarily the “right” metric
* If 99% of labels are negative (i.e., y; = 0), accuracy of f;(x) = 0is 99%!
* For instance, very few patients test positive for most diseases
* “Imbalanced data”

 What are alternative metrics for these settings?



Classification Metrics

 Classify test examples as follows:
* True positive (TP): Actually positive, predictive positive
* False negative (FN): Actually positive, predicted negative
* True negative (TN): Actually negative, predicted negative
* False positive (FP): Actually negative, predicted positive

* Many metrics expressed in terms of these; for example:

TP+TN FP + FN

accuracy = error = 1 — accuracy =
n n




Confusion Matrix

Predicted Class

Yes No
(Vg
< Yes TP FN
©)
(O
2 No FP TN
@)
<




Confusion Matrix

Predicted Class

Yes No
< Yes 3TP 4FN
)
©
g No 6FP 37 TN
<

Accuracy = 0.8



Classification Metrics

* For imbalanced metrics, we roughly want to disentangle:

* Accuracy on “positive examples”
e Accuracy on “negative examples”

* Different definitions are possible (and lead to different meanings)!



Sensitivity & Specificity

 Sensitivity: What fraction of actual positives are predicted positive?
* Good sensitivity: If you have the disease, the test correctly detects it
e Also called true positive rate

» Specificity: What fraction of actual negatives are predicted negative”?
e Good specificity: If you do not have the disease, the test says so
* Also called true negative rate

e Commonly used in medicine



Sensitivity & Specificity

Predicted Class

Yes No
A TP
Y tivity =
8 es TP FN sensitivity TP+ FN
© TN
§ No FP TN specificty = TP




Sensitivity & Specificity

Predicted Class

Yes No
2 Yes 3TP 4FN tivity = —
8 sensitivity = 7 ——
- e
g No 6FP 37 TN | specificity = TN TP




Sensitivity & Specificity

Predicted Class
Yes No

D
n

3TP 4 FN | sensitivity = 3/7

=
O

6FP 37 TN | specificity = 37/43

Actual Class



Precision & Recall

* Recall: What fraction of actual positives are predicted positive?
* Good recall: If you have the disease, the test correctly detects it
* Also called the true positive rate (and sensitivity)

* Precision: What fraction of predicted positives are actual positives?
* Good precision: If the test says you have the disease, then you have it
* Also called positive predictive value

e Used in information retrieval, NLP



Precision & Recall

Predicted Class

Yes No
A TP
m —
8 Yes TP FN recall = PN
(O
g No FP TN
<

o TP
precision =

TP+ FP



Precision & Recall

Predicted Class

Yes No
\ TP
8 Yes 3TP (4FN recall—TP_I_FN
(O
g No 6FP B/ TN
<
. rpP
precision =

TP+ FP



Precision & Recall

Actual Class

Predicted Class

Yes No
Yes 3TP |4 FN
No 6FP B/ TN

precision = 3/9

recall = 3/7
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