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A Unifying View
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Linear transformation of input features followed by an activation function
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Linear transformation of input features (𝑊𝑥) followed by an activation function 𝑔 ∙  

𝑊 ∈ ℝ𝐶×𝐷 where 𝐷 is the input dimension and 𝐶 is the output dimension.



A Unifying View: Single-Layer Neural Network

input layer
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𝑊

• Challenge: it needs “good” input features

• Most ML work before focused on hand designing features



The “Promise” of Deep Neural Networks

• Representation Learning: automatically learn 
good features for tasks

• Deep Learning: learn multiple levels of 
representation at increasing levels of complexity

input layer
output layer

hidden layers



Inspired by Simplified Models of Brain Neurons

• 1943: Perceptron model (McCulloch & Pitts)
• Intended as theoretical model of biological neurons



“Dark Ages”

• 1969: Perceptrons cannot learn XOR (Minsky & Papert)
• Highly controversial (may have helped cause “AI winter”)

• 1998: Convolutional neural networks for MNIST (Lecun)
• Human-level performance on handwritten digit recognition

• 1997: Long Short-term Memory Networks (Hochreiter 
and Schmidhuber)

Extremely 
Similar Today



2012 - NOW

• 2012: ImageNet breakthrough (Krizhevsky, Sutskever, & Hinton)
• Reduced error on image classification by 50%

• 2017: Transformer architecture (Vaswani et al.)

• 2018: Turing award (Bengio, Hinton, & Lecun)
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2012 - NOW

• 2012: ImageNet breakthrough (Krizhevsky, Sutskever, & Hinton)
• Reduced error on image classification by 50%

• 2017: Transformer architecture (Vaswani et al.)

• 2018: Turing award (Bengio, Hinton, & Lecun)

• 2024: The Nobel Prize in Physics & Chemistry

• Generative AI & LLMs… To be continued?



Why Wasn’t it Working Before?

• Small Datasets & Less Capable Hardware
• Machine translation needs millions of sentences to see improvements

• Missing bag of tricks for optimization
• Regularization like Dropout

• Some domain specific tricks & architectures
• Word embedding for NLP

Next lecture

Topics for 2nd half 
of the semester



Today’s Lecture

• Model
• Feedforward Neural Networks

• Loss functions

• Optimization
• Stochastic Gradient Descent

• Back-Propagation for Computing Gradients 





Feed-Forward Neural Networks
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• Signals move in one direction – forward – with no cycles or loops.
• Also called Multi-Layer Perceptrons (MLP)

“2-layer Neural Net”, or 
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or 
“2-hidden-layer Neural Net”

“Fully-connected” layers



Matrix Notation

1-layer Neural Net: 𝑦 = 𝑊1𝑥

2-layer Neural Net: 𝑦 = 𝑊2𝑔(𝑊1𝑥)

3-layer Neural Net: 𝑦 = 𝑊3𝑔(𝑊2𝑔(𝑊1𝑥))

𝑥 ∈ ℝ𝐷, 𝑊1 ∈ ℝ𝐻1×𝐷, 𝑊2 ∈ ℝ𝐻2×𝐻1 , 𝑊3 ∈ ℝ𝐻3×𝐻2

(In practice we will usually add a learnable bias at each layer as well)

𝑔 is a non-linear activation 
function for hidden layers



Non-Linearity 𝑔

• Sigmoid activation function:
• Outputs values between 0 and 1

• Probability of neuron firing/activated

• ReLU (Rectified Linear Unit):
• Efficient computation

• Doesn’t saturate

• Most commonly used today



Why Non-Linearity?

Q: What if we try to build a neural network without one?

2-layer Neural Net: 𝑦 = 𝑊2𝑔(𝑊1𝑥) 𝑦 = 𝑊2𝑊1𝑥

3-layer Neural Net: 𝑦 = 𝑊3𝑔(𝑊2𝑔(𝑊1𝑥)) 𝑦 = 𝑊3𝑊2𝑊1𝑥

A: We would end up with linear classifier!

Non-Linearities are important for learning features/representations 
with increasing levels of complexity 



Model Capacity

• Capacity of a feed-forward neural network is affected by both:
• Depth: number of hidden layers

• Width: number of neurons in each hidden layer

• More neurons = more capacity



Today’s Agenda

• Model
• Feedforward Neural Networks

• Loss functions

• Optimization
• Gradient Descent

• Back-Propagation for Computing Gradients 



Today’s Lecture

• Model
• Feedforward Neural Networks

• Loss functions

• Optimization
• Stochastic Gradient Descent

• Back-Propagation for Computing Gradients 



Loss Functions

• Same as single-layer models (i.e., linear and logistic regression)

• Regression:
• MSE loss:

• Classification:
• Binary cross entropy for binary classification:

• Cross entropy for multi-class classification:



Today’s Agenda

• Model
• Feedforward Neural Networks

• Loss functions

• Optimization
• Stochastic Gradient Descent

• Back-Propagation for Computing Gradients 



Optimization

Solve for  𝜃∗ = argmin
𝜃

𝐿( ො𝑦, 𝑦)

Q: Don’t I have to optimize differently for different 𝐿(·)?

A: No, just use gradient descent. It is the most general optimization 
approach we know.

Q: But what if 𝐿(·) is non-convex in 𝑊?

A: It almost surely is. Do gradient descent anyway. Just make sure 
everything is differentiable.



Computing Gradients

• You could write down the full function and calculate the gradients for 
all the weights manually.
• It takes a lot of time and paper

• Change loss function (e.g., add L2/L1) → Need to compute from scratch again

• Better Idea: 
• Use computational graph and chain rule of gradient calculation



Backpropagation

• It’s taking derivatives and applying chain rule!

• We will re-use derivatives computed for 
higher layers in computing derivates for lower 
layers so as to minimize computation

• Good news is that modern automatic 
differentiation tools did all for you!
• Implementing backprop by hand is like 

programming in assembly languages.



Computational Graph

• Break down function computation:
• Data (input, output, and intermediate)

• Operators (e.g., addition, multiplication)

• Consider the following function:

𝑤 = log 𝑥1𝑥2 sin(𝑥2)

https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/



Full Graph

Requirement for each operator:

Forward: compute their output 
function given input.

Backward: compute the gradient 
of their output w.r.t. each input.

If all operators can do forward & 
backward computation, we can 
compute the derivative of the output 
with respect to any input, procedurally.

https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/



(circles represents operators here)















































Today’s Lecture

• Model
• Feedforward Neural Networks

• Loss functions

• Optimization
• Stochastic Gradient Descent

• Back-Propagation for Computing Gradients 



Next Lecture

• Bag of tricks for optimization
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