
Lecture 7: Neural Networks (Part 1)

CIS 4190/5190

Spring 2025

Slides adapted from Chris Callison-Berch and Luke Zettlemoyer and Fei-Fei Li



So far in this class

input 𝑥

output 𝑦 = 𝛽⊤𝑥

𝛽

input 𝑥

output 𝑦 = 𝜎(𝛽⊤𝑥)

𝛽

input 𝑥 output 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑥)

𝑊 = [𝛽1
⊤; 𝛽2

⊤; … ; 𝛽𝐶
⊤]

Linear Regression Binary Classification Multi-Class Classification

𝑝𝑊 𝑦 = 𝑐 𝑥 =
𝑒𝛽𝑐

⊤𝑥

σ𝑦′ 𝑒
𝛽

𝑦′
⊤ 𝑥



A Unifying View

input 𝑥

output 𝑦 = 𝛽⊤𝑥

𝛽

input 𝑥

output 𝑦 = 𝜎(𝛽⊤𝑥)

𝛽

input 𝑥 output 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑥)

Linear Regression Binary Classification Multi-Class Classification

Linear transformation of input features followed by an activation function

𝑊 = [𝛽1
⊤; 𝛽2

⊤; … ; 𝛽𝐶
⊤]



A Unifying View

input 𝑥 input 𝑥

Linear Regression Binary Classification Multi-Class Classification

input 𝑥

𝑊

output 𝑦 = 𝑔(𝑊𝑥)

output 𝑦 = 𝑔(𝑊𝑥)output 𝑦 = 𝑔(𝑊𝑥)

where 𝑔 ∙ = ∙ where 𝑔 ∙ = 𝜎(∙)

where 𝑔 ∙ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(∙)

𝑊𝑊

Linear transformation of input features (𝑊𝑥) followed by an activation function 𝑔 ∙  

𝑊 ∈ ℝ𝐶×𝐷 where 𝐷 is the input dimension and 𝐶 is the output dimension.



A Unifying View: Single-Layer Neural Network

input layer
output layer

𝑊

• Challenge: it needs “good” input features

• Most ML work before focused on hand designing features



The “Promise” of Deep Neural Networks

• Representation Learning: automatically learn 
good features for tasks

• Deep Learning: learn multiple levels of 
representation at increasing levels of complexity

input layer
output layer

hidden layers



Inspired by Simplified Models of Brain Neurons

• 1943: Perceptron model (McCulloch & Pitts)
• Intended as theoretical model of biological neurons



“Dark Ages”

• 1969: Perceptrons cannot learn XOR (Minsky & Papert)
• Highly controversial (may have helped cause “AI winter”)

• 1998: Convolutional neural networks for MNIST (Lecun)
• Human-level performance on handwritten digit recognition

• 1997: Long Short-term Memory Networks (Hochreiter 
and Schmidhuber)

Extremely 
Similar Today



2012 - NOW

• 2012: ImageNet breakthrough (Krizhevsky, Sutskever, & Hinton)
• Reduced error on image classification by 50%

• 2017: Transformer architecture (Vaswani et al.)

• 2018: Turing award (Bengio, Hinton, & Lecun)



The Nobel 
Prize in 

Chemistry 
2024



The Nobel 
Prize in 

Physics 2024



2012 - NOW

• 2012: ImageNet breakthrough (Krizhevsky, Sutskever, & Hinton)
• Reduced error on image classification by 50%

• 2017: Transformer architecture (Vaswani et al.)

• 2018: Turing award (Bengio, Hinton, & Lecun)

• 2024: The Nobel Prize in Physics & Chemistry

• Generative AI & LLMs… To be continued?



Why Wasn’t it Working Before?

• Small Datasets & Less Capable Hardware
• Machine translation needs millions of sentences to see improvements

• Missing bag of tricks for optimization
• Regularization like Dropout

• Some domain specific tricks & architectures
• Word embedding for NLP

Next lecture

Topics for 2nd half 
of the semester



Today’s Lecture

• Model
• Feedforward Neural Networks

• Loss functions

• Optimization
• Stochastic Gradient Descent

• Back-Propagation for Computing Gradients 





Feed-Forward Neural Networks

input layer
output layer

hidden layer 1

input layer
output layer

hidden layer hidden layer 2

• Signals move in one direction – forward – with no cycles or loops.
• Also called Multi-Layer Perceptrons (MLP)

“2-layer Neural Net”, or 
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or 
“2-hidden-layer Neural Net”

“Fully-connected” layers



Matrix Notation

1-layer Neural Net: 𝑦 = 𝑊1𝑥

2-layer Neural Net: 𝑦 = 𝑊2𝑔(𝑊1𝑥)

3-layer Neural Net: 𝑦 = 𝑊3𝑔(𝑊2𝑔(𝑊1𝑥))

𝑥 ∈ ℝ𝐷, 𝑊1 ∈ ℝ𝐻1×𝐷, 𝑊2 ∈ ℝ𝐻2×𝐻1 , 𝑊3 ∈ ℝ𝐻3×𝐻2

(In practice we will usually add a learnable bias at each layer as well)

𝑔 is a non-linear activation 
function for hidden layers



Non-Linearity 𝑔

• Sigmoid activation function:
• Outputs values between 0 and 1

• Probability of neuron firing/activated

• ReLU (Rectified Linear Unit):
• Efficient computation

• Doesn’t saturate

• Most commonly used today



Why Non-Linearity?

Q: What if we try to build a neural network without one?

2-layer Neural Net: 𝑦 = 𝑊2𝑔(𝑊1𝑥) 𝑦 = 𝑊2𝑊1𝑥

3-layer Neural Net: 𝑦 = 𝑊3𝑔(𝑊2𝑔(𝑊1𝑥)) 𝑦 = 𝑊3𝑊2𝑊1𝑥

A: We would end up with linear classifier!

Non-Linearities are important for learning features/representations 
with increasing levels of complexity 



Model Capacity

• Capacity of a feed-forward neural network is affected by both:
• Depth: number of hidden layers

• Width: number of neurons in each hidden layer

• More neurons = more capacity



Today’s Agenda

• Model
• Feedforward Neural Networks

• Loss functions

• Optimization
• Gradient Descent

• Back-Propagation for Computing Gradients 



Today’s Lecture

• Model
• Feedforward Neural Networks

• Loss functions

• Optimization
• Stochastic Gradient Descent

• Back-Propagation for Computing Gradients 



Loss Functions

• Same as single-layer models (i.e., linear and logistic regression)

• Regression:
• MSE loss:

• Classification:
• Binary cross entropy for binary classification:

• Cross entropy for multi-class classification:



Today’s Agenda

• Model
• Feedforward Neural Networks

• Loss functions

• Optimization
• Stochastic Gradient Descent

• Back-Propagation for Computing Gradients 



Optimization

Solve for  𝜃∗ = argmin
𝜃

𝐿( ො𝑦, 𝑦)

Q: Don’t I have to optimize differently for different 𝐿(·)?

A: No, just use gradient descent. It is the most general optimization 
approach we know.

Q: But what if 𝐿(·) is non-convex in 𝑊?

A: It almost surely is. Do gradient descent anyway. Just make sure 
everything is differentiable.



Computing Gradients

• You could write down the full function and calculate the gradients for 
all the weights manually.
• It takes a lot of time and paper

• Change loss function (e.g., add L2/L1) → Need to compute from scratch again

• Better Idea: 
• Use computational graph and chain rule of gradient calculation



Backpropagation

• It’s taking derivatives and applying chain rule!

• We will re-use derivatives computed for 
higher layers in computing derivates for lower 
layers so as to minimize computation

• Good news is that modern automatic 
differentiation tools did all for you!
• Implementing backprop by hand is like 

programming in assembly languages.



Computational Graph

• Break down function computation:
• Data (input, output, and intermediate)

• Operators (e.g., addition, multiplication)

• Consider the following function:

𝑤 = log 𝑥1𝑥2 sin(𝑥2)

https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/



Full Graph

Requirement for each operator:

Forward: compute their output 
function given input.

Backward: compute the gradient 
of their output w.r.t. each input.

If all operators can do forward & 
backward computation, we can 
compute the derivative of the output 
with respect to any input, procedurally.

https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/



(circles represents operators here)















































Today’s Lecture

• Model
• Feedforward Neural Networks

• Loss functions

• Optimization
• Stochastic Gradient Descent

• Back-Propagation for Computing Gradients 



Next Lecture

• Bag of tricks for optimization


	Slide 1: Lecture 7: Neural Networks (Part 1)
	Slide 2: So far in this class
	Slide 3: A Unifying View
	Slide 4: A Unifying View
	Slide 5: A Unifying View: Single-Layer Neural Network
	Slide 6: The “Promise” of Deep Neural Networks
	Slide 7: Inspired by Simplified Models of Brain Neurons
	Slide 8: “Dark Ages”
	Slide 9: 2012 - NOW
	Slide 10: The Nobel Prize in Chemistry 2024
	Slide 11: The Nobel Prize in Physics 2024
	Slide 12: 2012 - NOW
	Slide 13: Why Wasn’t it Working Before?
	Slide 14: Today’s Lecture
	Slide 16
	Slide 17: Feed-Forward Neural Networks
	Slide 18: Matrix Notation
	Slide 19: Non-Linearity 𝑔
	Slide 20: Why Non-Linearity?
	Slide 21: Model Capacity
	Slide 22: Today’s Agenda
	Slide 23: Today’s Lecture
	Slide 24: Loss Functions
	Slide 25: Today’s Agenda
	Slide 26: Optimization
	Slide 27: Computing Gradients
	Slide 28: Backpropagation
	Slide 29: Computational Graph
	Slide 30: Full Graph
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Today’s Lecture
	Slide 55: Next Lecture

