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Recap

* Representation Learning: automatically learn good features for tasks

* Deep Learning: learn multiple levels of representation at increasing
levels of complexity

 Feedforward Neural Networks:

hidden layers



Supervised Learning Setup

Specification End-to-end Learning

.Data TN - ' - Optimize objective over data
. ’ -Learn All Network Parameters

-Gradient Based Optimization
Ot = 9" — 1V, L(0)

-Model

hidden layer 1 hidden layer 2

-Loss - function of (model parameters, data) | .Gradients via Backpropagation
Maximize the probability of the data




Forward Computation
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Forward Computation
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Forward Computation
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Backward Computation

X l
I N N R R



Backward Computation
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Backward Computation
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Backward Pass

General Rule

L
“local gradient”
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If x and y are inputs and parameters, we are done.

OtherWISe’ continue propagating gradlents backward http://cs231n.stanford.edu/slides/2020/lecture_4.pdf
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Optimization Challenges

* Challenges

* Local minima, saddle points due to
non-convex loss

e Exploding/vanishing gradients
* |ll-conditioning

* Have heuristics that work in
common cases (but not always)

Liet al. (2018)



Challenge 1: Narrow Valleys
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Challenge 2: Saddle Points
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https://jermwatt.github.io/machine_learning_refined/



Batch Size

How Do We Optimize?
Gradient Descent with Mini-Batches

While not converged, on dev, sample data in pieces (batches) updating model

Training Set

I 0 =0 — uVLoss( ) 9:9—,uVLOSS(I)

EPOCH

Training Set

9=9—,uVLOSS(I) , (9=(9—,MVLOSS(I)

EPOCH



Accelerated Gradient Descent

 Vanilla gradient descent:
0 —0—a-VoL(fg(x),y)

* Accelerated gradient descent (momentum):

pep-p—a-VeL(fe(x),y)
8 «0+p



Accelerated Gradient Descent

* Intuition: p holds the previous update a - Vo L(fy(x),y), except it
“remembers” where it was heading via momentum

* New hyperparameter u (typically 4 = 0.9 or u = 0.99)



Accelerated Gradient Descent
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https://jermwatt.github.io/machine_learning_refined/



Nesterov Momentum

* Accelerated gradient descent:

pep-p—a-Vel(fe(x),y)
0 <0+p

* Nesterov momentum:

peep-p—a-VoL(foru,(x),y)
6 «0+p



Nesterov Momentum

gradient

momentum momentum

gradient

vanilla momentum Nesterov momentum

“Lookahead” helps avoid overshooting when close to the optimum



Adaptive Learning Rates

* AdaGrad: Letting g = VﬁL(fﬁ(x),y), we have

04
G—G+g? and 0<0——-g
\/E\vector

* RMSProp: Use exponential moving average instead:
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Adaptive Learning Rates

 Adam: Similar to RMSprop, but with both the first and second
moments of the gradients

G A-G +(1—A)-g2
gl(_ll.gl_l_(l_ll).g
9’

6(—9—0{-\/5

* Intuition: RMSProp with momentum
* Most commonly used optimizer
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http://cs231n.github.io/neural-networks-3 (Alec Radford)



http://cs231n.github.io/neural-networks-3
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http://cs231n.github.io/neural-networks-3/

Learning Rate

* Most important hyperparameter; tune by looking at training loss

25

A
loss

20

low learning rate

high learning rate

good learning rate

0.0
0

26 40 60 80 100 epoch

Epoch V]



Learning Rate

* Schedules: Reducing the learning rate every time the validation loss
stagnates can be very effective for training
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He et al, Residual Networks, 2015
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Historical Activation Functions
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Vanishing Gradient Problem

* The gradient of the sigmoid function el
is often nearly zero ;j
* Recall: In backpropagation, gradients PO

are products of local gradients

* Quickly multiply to zero! 9 0.20-

* Early layers update very slowly

grad of sigmo
o=
|_l
o

T T T T ]
6 -4 -2 0 2
X

sigmoid

T
4

T
6

T
8

-6 -4 -2 0 2
X

sigmoid gradient

4

6

8




RelLU Activation

e Activation function
g(z) = max{0, z}

* Gradient now positive on the
entire regionz = 0

e Significant performance gains for
deep neural networks
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RelLU Activation
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Leaky RelLU Activation
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Activation Functions

* RelLU is a good standard choice

* Tradeoffs exist, and new activation functions are still being proposed

ELU(alpha=1.0) GELU(approximate="none')
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Weight Initialization

e Zero initialization: Very bad choice!

* All neurons z; = g(wiTx) in a given layer remain identical
* Intuition: They start out equal, so their gradients are equall!




Weight Initialization

* Long history of initialization tricks for W; based on “fan in” d;
* Here, d;, is the dimension of the input of layer IV
* Intuition: Keep initial layer inputs zU) in the “linear” part of sigmoid
* Note: Initialize intercept termto O

* Kaiming initialization (also called “He initialization”)
2

* For ReLU activations, use W] ~ N (O,d—_)
1n

e Xavier initialization
1

* For tanh activations, use W; ~ N (O, p ) (d oyt is output dimension)

in+dout



Batch Normalization

 Problem

e During learning, the distribution of inputs to each layer are shifting (since the
layers below are also updating)

* This cause the objective to have a lot irregularity and hard to take large steps
in the loss landscape

e Solution
 As with feature standardization, standardize inputs to each layer to N(0, I)

* Batch norm: Compute mean and standard deviation of current minibatch and
use it to normalize the current layer (this is differentiable!)

* Note: Needs nontrivial mini-batches or will divide by zero
* Apply after every layer (typically before activation)



Batch Normalization
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Regularization

* Can use L, and L, regularization as before
* As before, do not regularize any of the intercept terms!
* L, regularization more common

* Applied to “unrolled” weight matrices
* Equivalently, Frobenius norm ||W || =y 1Zh_1 W2
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Dropout

* Idea: During training, randomly “drop” (i.e., zero out) a fraction p of
the neurons zi(]) (usually take p = %)

* Implemented as its own layer

Z with prob.
Dropout(z) = {0 otheI:‘Wisep

e Usually include it at a few layers just before the output layer



Training time



Intuition: Dropout as regularization

* Encourages robustness to missing information from the previous layer
e Each neuron works with many different kinds of inputs

* Makes them more likely to be individually competent



Dropout at Test Time

* Naive strategy: Stop dropping neurons
* Problem: Not the distribution the layer was trained on

* Naive strategy: Average across all possible predictions
* Problem: There are 2#1eUrons naqible realizations of the randomness

* Solution: Turn off dropout but multiply the outgoing weights by p
 Good approximation of the geometric mean of all 2#1€Urons nradictions

* Note: Can also leave dropout on, sample multiple realizations of the
randomness, and report distribution to help quantify uncertainty
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Early Stopping

e Stop when your validation loss starts increasing (alternatively, finish
training and choose best model on validation set)
e Simple way to introduce regularization

0.20 , . , |
e—e Training set loss

0.15 —— Validation set loss |

0.10

Loss (negative log-likelihood)

0.00
0 50 100 150 200 250

Time (epochs)



Data Augmentation

* Data augmentation: Generate more data by modifying training inputs

e Often used when you know that your output is robust to some
transformations of your data
* Image domain: Color shifts, add noise, rotations, translations, flips, crops

 NLP domain: Substitute synonyms, generate examples (doesn’t work as well
but ongoing research direction)

e Can combine primitive shifts

* Note: Labels are simply the label of original image



Data Augmentation
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(Default) Hyperparameteter Choices

* Architecture: Stick close to tried-and-tested architectures (esp. for images)
e SGD variant: Adam, second choice SGD + 0.9 momentum

e Learning rate: 3e-4 (Adam), 1e-4 (for SGD + momentum)

* Learning rate schedule: Divide by 10 every time training loss stagnates

* Weight initialization: “Kaiming” initialization (scaled Gaussian)
 Activation functions: RelLU

* Regularization: BatchNorm (& cousins), L2 regularization + Dropout on
some or all fully connected layers

* Hyperparameter Optimization: Random sampling (often uniform on log
scale), coarse to fine



Hyperparameter Optimization

* Recall: Use cross-validation to tune hyperparameters!
* Typically use one held-out validation set for computational tractability

e E.g., 60/20/20 split

e Can use smaller validation/test sets if you have a very large dataset

Given data Z

> 4

Training data Zirain

Val data Z, .

Test data Ziegt




Hyperparameter Optimization Tips

* Keep the number of hyperparameters as small as possible
* Most important: Learning rate, batch size

 Strategy: Automatically search over grid of hyperparameters and
choose the best one on the validation set
* Easy to parallelize across many machines
e Record hyperparameters of all runs carefully!
* Use the same random seeds for all runs



Hyperparameter Optimization Tips

 What about multiple hyperparameters?
* For 2 or 3 hyperparameters, do a systematic “grid search”

Grid Layout

[Bergstra & Bengio, JMLR 2012]



Hyperparameter Optimization Tips

 What about multiple hyperparameters?
* For >3 hyperparameters, do random search

Random Layout

Unimportant parameter

Important parameter

[Bergstra & Bengio, JMLR 2012]



Hyperparameter Optimization Tips

coarse to fine
epsilon

Hyperparameter 2

* Coarse-to-find search
* |teratively search over a window of

hyperparameters
* If the best results are near the boundary, — O © O
center it on best hyperparameters 3
4
* Otherwise, set a smaller window "E-* 5 P ® o
centered on the best hyperparameters T o
ray —
T 8 ® 5
. « e 2. . — ® o°
* Bayesian optimization: ML-guided Q ° e, .'.' g
search across hyperparameter trials to E ® ®°° @
find good choices

https://www.andreaperlato.com/aipost/hyperparameters-tuning-in-ai/



https://www.andreaperlato.com/aipost/hyperparameters-tuning-in-ai/

Practical tips for training neural nets

* See Andrej Karpathy’s blog post: http://karpathy.github.io/2019/04/25/recipe/
* Fix random seed during debugging
e Overfit a tiny dataset first

* With everything (architecture, learning algorithm, data etc.), start simple and
build complexity slowly over iterations.

* Plot weight and gradient magnitudes to detect vanishing/exploding gradients.

* Assigned reading: Chapter 11 of the Deep Learning textbook: “Practical
Methodology” https://www.deeplearningbook.org/contents/guidelines.html



http://karpathy.github.io/2019/04/25/recipe/
https://www.deeplearningbook.org/contents/guidelines.html
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Pytorch

* Open source packages have helped democratize deep learning



Pytorch: Defining a network “architecture”

import torch
import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

from torchvision import datasets, transforms

Common parent class: nn.Module

class Net(nn.Module): Constructor: Defining layers of the network

def init__ (self, in_features=10, num_classes=2, hidden_features=20):
super (Net, self). init_ ()
self.fcl = nn.Linear(in_features, hidden_ features)
self.fc2 = nn.Linear (hidden_features, num classes)

forward(self,

OB Forward propagation: Defining f(x) through the layers

X1 = self.fcl(x)
x2 = F.relu(xl)
x3 = self.fc2(x2)

log prob = F.log softmax(x3, dim=1)

return log_prob What about backward propagation?




Autograd

Good news: Chain rule based gradient computation is implemented in
pytorch naturally! (True for all the important libraries today, including
Tensorflow, Jax). No need to implement backward () !

loss.backward () simply backtracks through the computational
graph, applying the chain rule, computing gradients with respect to all
tensors involved.

Does not apply any gradient descent updates yet.



Pytorch: Training function

def train(args, model, device, train loader, optimizer, epoch):

model.train() Looping over mini-batches
for batch idx, (data, target) in enumerate(train_loader):

data, target = data.to(device), target.to(device)

optimizer.zero_grad() Flush out all old gradients

output = model (data) Runs forward pass model.forward(data
loss = F.nll loss(output, target) Loss computation

ISP EMCEICIS]  Full gradient computation

optimizer.step() Update all parameters
if batch_1dx % args.log interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f} .format(
epoch, batch idx * len(data), len(train_loader.dataset),
100. * batch_1dx / len(train_loader), loss.item()))
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