Lecture 7: Neural Networks (Part 2)

CIS 4190/5190
Spring 2025

Slides adapted from Chris Callison-Berch and Luke Zettlemoyer and Fei-Fei Li

Agenda

* Recap
* Neural network tips and tricks

* Hyperparameter tuning

* Implementation

Recap

* Representation Learning: automatically learn good features for tasks

* Deep Learning: learn multiple levels of representation at increasing
levels of complexity

 Feedforward Neural Networks:

hidden layers

Supervised Learning Setup

Specification End-to-end Learning

.Data TN - ' - Optimize objective over data
. ’ -Learn All Network Parameters

-Gradient Based Optimization
Ot = 9" — 1V, L(0)

-Model

hidden layer 1 hidden layer 2

-Loss - function of (model parameters, data) | .Gradients via Backpropagation
Maximize the probability of the data

Forward Computation

|
N -
Pttt
W.

Wl W2 W3 W4 WS W6 7

Forward Computation

|
i B -
Pttt
W.

Wy w, Wy W Ws o W 7

Forward Computation

|
AN -
Pttt
W.

Wl W2 W3 W4 WS W6 7

Forward Computation

|
SR A AR AR I

Backward Computation

X l
I N N R R

Backward Computation

R N T A
W. W,

Wl W2 W3 W4 5 6

|
*[os]
1
W.

7

Backward Computation

ll I l l l l LOlSS

1 2 3 4 5 6 7

Backward Pass

General Rule

L
“local gradient”
= .8
NG
< a\ b
11 '2.
Downstream -
gradients” b =
3

P “Upstream
- az : 9
gradient
If x and y are inputs and parameters, we are done.

OtherWISe’ continue propagating gradlents backward http://cs231n.stanford.edu/slides/2020/lecture_4.pdf

Agenda

* Recap
* Neural network tips and tricks

* Hyperparameter tuning

* Implementation

Neural Network Tips & Tricks

) _/ 514

Optimization Activation Functions Managing Weights

o O
5 [L_Ll]&ﬂa

Managing Training

Neural Network Tips & Tricks

@

Optimization

Optimization Challenges

* Challenges

* Local minima, saddle points due to
non-convex loss

e Exploding/vanishing gradients
* |ll-conditioning

* Have heuristics that work in
common cases (but not always)

Liet al. (2018)

Challenge 1: Narrow Valleys

wo

ttttt ://jermwatt.github.io/machine_learning_refined/

Challenge 2: Saddle Points

g(,w) 1.00 A

0.00 -%P—@W

0.0 0.2 0.4 0.6 0.8 1.0
w

https://jermwatt.github.io/machine_learning_refined/

Batch Size

How Do We Optimize?
Gradient Descent with Mini-Batches

While not converged, on dev, sample data in pieces (batches) updating model

Training Set

I 0 =0 — uVLoss() 9:9—,uVLOSS(I)

EPOCH

Training Set

9=9—,uVLOSS(I) , (9=(9—,MVLOSS(I)

EPOCH

Accelerated Gradient Descent

 Vanilla gradient descent:
0 —0—a-VoL(fg(x),y)

* Accelerated gradient descent (momentum):

pep-p—a-VeL(fe(x),y)
8 «0+p

Accelerated Gradient Descent

* Intuition: p holds the previous update a - Vo L(fy(x),y), except it
“remembers” where it was heading via momentum

* New hyperparameter u (typically 4 = 0.9 or u = 0.99)

Accelerated Gradient Descent

wo

w 01 @RI

Wo

https://jermwatt.github.io/machine_learning_refined/

Nesterov Momentum

* Accelerated gradient descent:

pep-p—a-Vel(fe(x),y)
0 <0+p

* Nesterov momentum:

peep-p—a-VoL(foru,(x),y)
6 «0+p

Nesterov Momentum

gradient

momentum momentum

gradient

vanilla momentum Nesterov momentum

“Lookahead” helps avoid overshooting when close to the optimum

Adaptive Learning Rates

* AdaGrad: Letting g = VﬁL(fﬁ(x),y), we have

04
G—G+g? and 0<0——-g
\/E\vector

* RMSProp: Use exponential moving average instead:

04

G—A-G+(1-21)g?* and 'B(_'B_\/E g

Adaptive Learning Rates

 Adam: Similar to RMSprop, but with both the first and second
moments of the gradients

G A-G +(1—A)-g2
gl(_ll.gl_l_(l_ll).g
9’

6(—9—0{-\/5

* Intuition: RMSProp with momentum
* Most commonly used optimizer

A \‘:L"x"‘*-._""--._""'--._ ey
\\ . SGD

| — Momentum
wesem NAG

- Adagrad
Adadelta

Ty rrrr

http://cs231n.github.io/neural-networks-3 (Alec Radford)

http://cs231n.github.io/neural-networks-3

SGD
Momentum

- NAG

Adagrad
Adadelta
Rmsprop

P ey Ly e Y, :

= G v 0.7, ')'I (N TRTTN 7 ;

/ = T
PRI

950,90, (A

1.0

-1.5
http://cs231n.github.io/neural-networks-3 (Alec Radford)

http://cs231n.github.io/neural-networks-3/

Learning Rate

* Most important hyperparameter; tune by looking at training loss

25

A
loss

20

low learning rate

high learning rate

good learning rate

0.0
0

26 40 60 80 100 epoch

Epoch V]

Learning Rate

* Schedules: Reducing the learning rate every time the validation loss
stagnates can be very effective for training

60 g l‘.f_f“»f_] __________________

SU _________________________
S
540F — — — — — — ———— ==
@ \ nn 34-layer
MO o
;
W~~~ m e mmm e —— =
plain-18
—plain-34
20 T I 1 1 |
0 10 20 30 40 50

iter. (1e4)

He et al, Residual Networks, 2015

Neural Network Tips & Tricks

) _/ 514

Optimization Activation Functions Managing Weights

o O
5 [L_Ll]&ﬂa

Managing Training

Neural Network Tips & Tricks

_/

Activation Functions

Historical Activation Functions

1.0 1 1.0 4
_ i 0.5 -
>
S 0.6 1 x
o < 0.0-
So04- IS
w

e —0.5 -

0.0 1 -1.0 -

-8 -6 -4 =2 0 2 4 6 8 -8 -6 -4 —2

X

0
X

sigmoid tanh

2

4

6

8

Vanishing Gradient Problem

* The gradient of the sigmoid function el
is often nearly zero ;j
* Recall: In backpropagation, gradients PO

are products of local gradients

* Quickly multiply to zero! 9 0.20-

* Early layers update very slowly

grad of sigmo
o=
|_l
o

T T T T]
6 -4 -2 0 2
X

sigmoid

T
4

T
6

T
8

-6 -4 -2 0 2
X

sigmoid gradient

4

6

8

RelLU Activation

e Activation function
g(z) = max{0, z}

* Gradient now positive on the
entire regionz = 0

e Significant performance gains for
deep neural networks

grad of relu

e o
o)}

=
1

o
(2]
]

o
[N}

ot
o

_Ig _IE, _I4 _I2

8 -6 -4 -2

RelLU Activation

0./o

@ 054
i
5
E
v T tanh
B T
E =
m (.25 S
= ReLU
l:l 1 I I I 1 1
0 5 10 15 20 25 30 35 40

Epochs

Leaky RelLU Activation

f»=0 y

fo)=ay

Activation Functions

* RelLU is a good standard choice

* Tradeoffs exist, and new activation functions are still being proposed

ELU(alpha=1.0) GELU(approximate="none')
6 6
4 4
2 2
5 5
g o g o0
8 3
-2 -2
—4 —4
-6 —6
-6 —4 -2 0 2 4 6 -6 —4 -2 0 2 4 6

Neural Network Tips & Tricks

) _/ 514

Optimization Activation Functions Managing Weights

o O
5 [L_Ll]&ﬂa

Managing Training

Neural Network Tips & Tricks

¢

Managing Weights

Weight Initialization

e Zero initialization: Very bad choice!

* All neurons z; = g(wiTx) in a given layer remain identical
* Intuition: They start out equal, so their gradients are equall!

Weight Initialization

* Long history of initialization tricks for W; based on “fan in” d;
* Here, d;, is the dimension of the input of layer IV
* Intuition: Keep initial layer inputs zU) in the “linear” part of sigmoid
* Note: Initialize intercept termto O

* Kaiming initialization (also called “He initialization”)
2

* For ReLU activations, use W] ~ N (O,d—_)
1n

e Xavier initialization
1

* For tanh activations, use W; ~ N (O, p) (d oyt is output dimension)

in+dout

Batch Normalization

 Problem

e During learning, the distribution of inputs to each layer are shifting (since the
layers below are also updating)

* This cause the objective to have a lot irregularity and hard to take large steps
in the loss landscape

e Solution
 As with feature standardization, standardize inputs to each layer to N(0, I)

* Batch norm: Compute mean and standard deviation of current minibatch and
use it to normalize the current layer (this is differentiable!)

* Note: Needs nontrivial mini-batches or will divide by zero
* Apply after every layer (typically before activation)

Batch Normalization

0.8

=t
=4

= = = |nception
/ == BMN-Basaline
I BN-x30
! + BN-x5-Sigmoid
: # Steps to match Inception
1 1 1

validation accuracy
(= (=
[] [v}

0.4 : -
oM 10M 15M 20M 25M 30M

Number of training steps

Regularization

* Can use L, and L, regularization as before
* As before, do not regularize any of the intercept terms!
* L, regularization more common

* Applied to “unrolled” weight matrices
* Equivalently, Frobenius norm ||W || =y 1Zh_1 W2

Neural Network Tips & Tricks

) _/ 514

Optimization Activation Functions Managing Weights

o O
5 [L_Ll]&ﬂa

Managing Training

Neural Network Tips & Tricks

Dropout

* Idea: During training, randomly “drop” (i.e., zero out) a fraction p of
the neurons zi(]) (usually take p = %)

* Implemented as its own layer

Z with prob.
Dropout(z) = {0 otheI:‘Wisep

e Usually include it at a few layers just before the output layer

Training time

Intuition: Dropout as regularization

* Encourages robustness to missing information from the previous layer
e Each neuron works with many different kinds of inputs

* Makes them more likely to be individually competent

Dropout at Test Time

* Naive strategy: Stop dropping neurons
* Problem: Not the distribution the layer was trained on

* Naive strategy: Average across all possible predictions
* Problem: There are 2#1eUrons naqible realizations of the randomness

* Solution: Turn off dropout but multiply the outgoing weights by p
 Good approximation of the geometric mean of all 2#1€Urons nradictions

* Note: Can also leave dropout on, sample multiple realizations of the
randomness, and report distribution to help quantify uncertainty

Neural Network Tips & Tricks

) _/ 514

Optimization Activation Functions Managing Weights

o O
5 [L_Ll]&ﬂa

Managing Training

Neural Network Tips & Tricks

7

Managing Training

Early Stopping

e Stop when your validation loss starts increasing (alternatively, finish
training and choose best model on validation set)
e Simple way to introduce regularization

0.20 , . , |
e—e Training set loss

0.15 —— Validation set loss |

0.10

Loss (negative log-likelihood)

0.00
0 50 100 150 200 250

Time (epochs)

Data Augmentation

* Data augmentation: Generate more data by modifying training inputs

e Often used when you know that your output is robust to some
transformations of your data
* Image domain: Color shifts, add noise, rotations, translations, flips, crops

 NLP domain: Substitute synonyms, generate examples (doesn’t work as well
but ongoing research direction)

e Can combine primitive shifts

* Note: Labels are simply the label of original image

Data Augmentation

Agenda

* Recap
* Neural network tips and tricks

* Hyperparameter tuning

* Implementation

(Default) Hyperparameteter Choices

* Architecture: Stick close to tried-and-tested architectures (esp. for images)
e SGD variant: Adam, second choice SGD + 0.9 momentum

e Learning rate: 3e-4 (Adam), 1e-4 (for SGD + momentum)

* Learning rate schedule: Divide by 10 every time training loss stagnates

* Weight initialization: “Kaiming” initialization (scaled Gaussian)
 Activation functions: RelLU

* Regularization: BatchNorm (& cousins), L2 regularization + Dropout on
some or all fully connected layers

* Hyperparameter Optimization: Random sampling (often uniform on log
scale), coarse to fine

Hyperparameter Optimization

* Recall: Use cross-validation to tune hyperparameters!
* Typically use one held-out validation set for computational tractability

e E.g., 60/20/20 split

e Can use smaller validation/test sets if you have a very large dataset

Given data Z

> 4

Training data Zirain

Val data Z, .

Test data Ziegt

Hyperparameter Optimization Tips

* Keep the number of hyperparameters as small as possible
* Most important: Learning rate, batch size

 Strategy: Automatically search over grid of hyperparameters and
choose the best one on the validation set
* Easy to parallelize across many machines
e Record hyperparameters of all runs carefully!
* Use the same random seeds for all runs

Hyperparameter Optimization Tips

 What about multiple hyperparameters?
* For 2 or 3 hyperparameters, do a systematic “grid search”

Grid Layout

[Bergstra & Bengio, JMLR 2012]

Hyperparameter Optimization Tips

 What about multiple hyperparameters?
* For >3 hyperparameters, do random search

Random Layout

Unimportant parameter

Important parameter

[Bergstra & Bengio, JMLR 2012]

Hyperparameter Optimization Tips

coarse to fine
epsilon

Hyperparameter 2

* Coarse-to-find search
* |teratively search over a window of

hyperparameters
* If the best results are near the boundary, — O © O
center it on best hyperparameters 3
4
* Otherwise, set a smaller window "E-* 5 P ® o
centered on the best hyperparameters T o
ray —
T 8 ® 5
. « e 2. . — ® o°
* Bayesian optimization: ML-guided Q ° e, .'.' g
search across hyperparameter trials to E ® ®°° @
find good choices

https://www.andreaperlato.com/aipost/hyperparameters-tuning-in-ai/

https://www.andreaperlato.com/aipost/hyperparameters-tuning-in-ai/

Practical tips for training neural nets

* See Andrej Karpathy’s blog post: http://karpathy.github.io/2019/04/25/recipe/
* Fix random seed during debugging
e Overfit a tiny dataset first

* With everything (architecture, learning algorithm, data etc.), start simple and
build complexity slowly over iterations.

* Plot weight and gradient magnitudes to detect vanishing/exploding gradients.

* Assigned reading: Chapter 11 of the Deep Learning textbook: “Practical
Methodology” https://www.deeplearningbook.org/contents/guidelines.html

http://karpathy.github.io/2019/04/25/recipe/
https://www.deeplearningbook.org/contents/guidelines.html

Agenda

* Recap
* Neural network tips and tricks

* Hyperparameter tuning

* Implementation

Pytorch

* Open source packages have helped democratize deep learning

Pytorch: Defining a network “architecture”

import torch
import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

from torchvision import datasets, transforms

Common parent class: nn.Module

class Net(nn.Module): Constructor: Defining layers of the network

def init__ (self, in_features=10, num_classes=2, hidden_features=20):
super (Net, self). init_ ()
self.fcl = nn.Linear(in_features, hidden_ features)
self.fc2 = nn.Linear (hidden_features, num classes)

forward(self,

OB Forward propagation: Defining f(x) through the layers

X1 = self.fcl(x)
x2 = F.relu(xl)
x3 = self.fc2(x2)

log prob = F.log softmax(x3, dim=1)

return log_prob What about backward propagation?

Autograd

Good news: Chain rule based gradient computation is implemented in
pytorch naturally! (True for all the important libraries today, including
Tensorflow, Jax). No need to implement backward () !

loss.backward () simply backtracks through the computational
graph, applying the chain rule, computing gradients with respect to all
tensors involved.

Does not apply any gradient descent updates yet.

Pytorch: Training function

def train(args, model, device, train loader, optimizer, epoch):

model.train() Looping over mini-batches
for batch idx, (data, target) in enumerate(train_loader):

data, target = data.to(device), target.to(device)

optimizer.zero_grad() Flush out all old gradients

output = model (data) Runs forward pass model.forward(data
loss = F.nll loss(output, target) Loss computation

ISP EMCEICIS] Full gradient computation

optimizer.step() Update all parameters
if batch_1dx % args.log interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f} .format(
epoch, batch idx * len(data), len(train_loader.dataset),
100. * batch_1dx / len(train_loader), loss.item()))

Agenda

* Recap
* Neural network tips and tricks

* Hyperparameter tuning

* Implementation

	Slide 1: Lecture 7: Neural Networks (Part 2)
	Slide 2: Agenda
	Slide 3: Recap
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Agenda
	Slide 14: Neural Network Tips & Tricks
	Slide 15: Neural Network Tips & Tricks
	Slide 16: Optimization Challenges
	Slide 17: Challenge 1: Narrow Valleys
	Slide 18: Challenge 2: Saddle Points
	Slide 19
	Slide 20: Accelerated Gradient Descent
	Slide 21: Accelerated Gradient Descent
	Slide 22: Accelerated Gradient Descent
	Slide 23: Nesterov Momentum
	Slide 24: Nesterov Momentum
	Slide 25: Adaptive Learning Rates
	Slide 26: Adaptive Learning Rates
	Slide 27
	Slide 28
	Slide 29: Learning Rate
	Slide 30: Learning Rate
	Slide 31: Neural Network Tips & Tricks
	Slide 32: Neural Network Tips & Tricks
	Slide 33: Historical Activation Functions
	Slide 34: Vanishing Gradient Problem
	Slide 35: ReLU Activation
	Slide 36: ReLU Activation
	Slide 37: Leaky ReLU Activation
	Slide 38: Activation Functions
	Slide 39: Neural Network Tips & Tricks
	Slide 40: Neural Network Tips & Tricks
	Slide 41: Weight Initialization
	Slide 42: Weight Initialization
	Slide 43: Batch Normalization
	Slide 44: Batch Normalization
	Slide 45: Regularization
	Slide 46: Neural Network Tips & Tricks
	Slide 47: Neural Network Tips & Tricks
	Slide 48: Dropout
	Slide 49: Dropout
	Slide 50: Intuition: Dropout as regularization
	Slide 51: Dropout at Test Time
	Slide 52: Neural Network Tips & Tricks
	Slide 53: Neural Network Tips & Tricks
	Slide 54: Early Stopping
	Slide 55: Data Augmentation
	Slide 56: Data Augmentation
	Slide 57: Agenda
	Slide 58: (Default) Hyperparameteter Choices
	Slide 59: Hyperparameter Optimization
	Slide 60: Hyperparameter Optimization Tips
	Slide 61: Hyperparameter Optimization Tips
	Slide 62: Hyperparameter Optimization Tips
	Slide 63: Hyperparameter Optimization Tips
	Slide 64: Practical tips for training neural nets
	Slide 65: Agenda
	Slide 66: Pytorch
	Slide 67: Pytorch: Defining a network “architecture”
	Slide 68: Autograd
	Slide 69: Pytorch: Training function
	Slide 70: Agenda

