
Upcoming Deadlines

• HW 2 due Monday (3/3) at 8pm

• Midterm 1 will be on Wednesday (3/5)

• Still working out project details



Recap

• Linear regression for regression
• Model family, loss function

• Bias-variance tradeoff, regularization

• Optimization, gradient descent

• Logistic regression for classification
• Maximum likelihood framework

• Different evaluation metrics

• Neural networks
• Backpropagation

• Optimization tricks
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Parametric vs. Non-Parametric Learning

• The algorithms we have seen so far are parametric

• Assume the model family has the form 𝑓𝛽 𝛽 ∈ ℝ𝑑

• Not all model families have this form!

• Non-parametric models
• Very high capacity model families that can fit “arbitrary” functions



k-Nearest Neighbors (kNN)

• Classification: Given a new input 𝑥:
• Step 1: Find 𝑘 nearest neighbors 𝑖1, … , 𝑖𝑘 in the training dataset

𝑖1, … , 𝑖𝑘 = 𝑘ArgMin𝑖∈ 1,…,𝑛 dist 𝑥, 𝑥𝑖

• Step 2: Return the majority label (i.e., label that occurs most frequently):

𝑦 = Majority 𝑦𝑖1
, … , 𝑦𝑘𝑘



Example: T-Shirt Size
Height (cm) Weight (kg)

Large (vs Medium) 
t-shirt?

158 58 F

158 59 F

158 63 F

160 59 F

160 60 F

163 60 F

163 61 F

160 64 T

163 64 T

165 61 T

165 62 T

165 65 T

168 62 T

168 63 T

168 66 T

170 63 T

170 64 T

170 68 T

Based on data from https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-step-tutorial.html Inputs 𝑥𝑖 Labels 𝑦𝑖

𝑘 = 3

𝑦 = 𝑇

https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-step-tutorial.html


Example: T-Shirt Size
Height (cm) Weight (kg)

Large (vs Medium) 
t-shirt?

158 58 F

158 59 F

158 63 F

160 59 F

160 60 F

163 60 F

163 61 F

160 64 T

163 64 T

165 61 T

165 62 T

165 65 T

168 62 T

168 63 T

168 66 T

170 63 T

170 64 T

170 68 T

Based on data from https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-step-tutorial.html Inputs 𝑥𝑖 Labels 𝑦𝑖

𝑘 = 3

𝑦 = 𝐹

https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-step-tutorial.html


Example: T-Shirt Size
Height (cm) Weight (kg)

Large (vs Medium) 
t-shirt?
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160 64 T

163 64 T

165 61 T

165 62 T
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𝑘 = 3
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Example: T-Shirt Size
Height (cm) Weight (kg)

Large (vs Medium) 
t-shirt?

158 58 F

158 59 F

158 63 F

160 59 F

160 60 F

163 60 F

163 61 F

160 64 T

163 64 T

165 61 T

165 62 T

165 65 T

168 62 T

168 63 T

168 66 T

170 63 T

170 64 T

170 68 T

Based on data from https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-step-tutorial.html Inputs 𝑥𝑖 Labels 𝑦𝑖

𝑘 = 5

𝑦 = 𝐹

https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-step-tutorial.html


k-Nearest Neighbors (kNN)

• Regression: Given a new input 𝑥:
• Step 1: Find 𝑘 nearest neighbors 𝑖1, … , 𝑖𝑘  in the training dataset

𝑖1, … , 𝑖𝑘 = 𝑘ArgMin𝑖∈ 1,…,𝑛  dist 𝑥, 𝑥𝑖

• Step 2: Return the average label (i.e., label that occurs most frequently):

𝑦 = Average 𝑦𝑖1
, … , 𝑦𝑘𝑘

• We can use this approach to get probabilities for classification



k-Nearest Neighbors (kNN)

• General framework
• Design decision 1: What notion of “distance” to use? (e.g., 𝐿2 distance)

• Design decision 2: How to aggregate labels? (e.g., majority or average)



Choice of Distance Function

• 𝑳𝟏 distance: dist 𝑥, 𝑥′ = 𝑥 − 𝑥′
1 = σ𝑗=1

𝑑 𝑥𝑗 − 𝑥𝑗
′

𝑳𝟐 distance: dist 𝑥, 𝑥′ = 𝑥 − 𝑥′
2 = σ𝑗=1

𝑑 𝑥𝑗 − 𝑥𝑗
′ 2

1

2

• 𝑳∞ distance: dist 𝑥, 𝑥′ = 𝑥 − 𝑥′
∞ = max

𝑗∈ 1,…,𝑑
𝑥𝑗 − 𝑥𝑗

′

𝑳𝒑 distance: dist 𝑥, 𝑥′ = 𝑥 − 𝑥′
𝑝 = σ𝑗=1

𝑑 𝑥𝑗 − 𝑥𝑗
′ 𝑝

1

𝑝



Choice of Distance Function

𝐿1 distance 𝐿2 distance 𝐿∞ distance



Distances for Strings

• Hamming distance: Number of characters that are different
• Example: ABCDE vs. AGDDF → Hamming distance = 3

• Assumes strings have the same length

• Edit distance: Number of insert/delete/replace operations needed to 
transform one string into the other
• Example: ROBOT vs. BOT → Edit distance = 2

• Can be computed using dynamic programming



Distances for Strings

• Jaccard distance between sets 1 −
𝐴∩𝐵

𝐴∪𝐵

• Apply to set of 𝒏-grams (i.e., 𝑛-character substrings)

• Example: ROBOT vs. BOT yields

  𝐴 = 𝑅, 𝑅𝑂, 𝑅𝑂𝐵, 𝑂𝐵𝑂, 𝐵𝑂𝑇, 𝑂𝑇, 𝑇  

  𝐵 = 𝐵, 𝐵𝑂, 𝐵𝑂𝑇, 𝑂𝑇, 𝑇

• → Jaccard distance = 1 −
3

9
=

2

3



Loss Minimization Framework

• What is the model family?
• What are the “parameters”?



Loss Minimization Framework

• What is the model family?
• What are the “parameters”? The training dataset 𝑍!

• The model family is the set of kNN functions induced by 𝑍

• In general, “non-parametric” means the number of “parameters” scales with 
the number of training examples 𝑛

• What is the loss function?
• kNN does not directly minimize a loss function

• But, evaluate using standard losses (e.g., accuracy or MSE)



Feature Standardization

• We saw that feature standardization is not necessary for vanilla linear 
regression but is necessary for regularized linear regression

• It is very important for kNN!

https://stats.stackexchange.com/questions/287425/why-do-you-need-to-scale-data-in-knn



Curse of Dimensionality

• Example: Predict acceleration of an object being pushed by a robot

• Features:
• 𝑥1 = mass

• 𝑥2 = Force

• 𝑥3 = color of object

• 𝑥4 = what the operator ate for breakfast that morning

• When more irrelevant variables, distance function becomes 
dominated by irrelevant dimensions in 𝑥
• Amount of data needed by kNN scales exponentially in dimension



Curse of Dimensionality

• Adding more dimensions makes a lot of things counterintuitive

• Example: The percentage of the volume of a 𝑑-dimensional sphere 
with radius 𝑟, that lies beyond ℓ2 distance 0.99𝑟 from the center is:
• 3% if 𝑑 = 3

• 63% if 𝑑 = 100

• 99.99% if 𝑑 = 1000

• Intuition: Volume inside radius scales as roughly 0.99𝑑

• For kNN, nearest neighbors become very far apart, and of similar 
distance, making it an unreliable predictor



Scalability

Scaling: Naively, must compute 𝑛 distances between pairs of 𝑑-
dimensional vectors to compute kNN



Scalability

• Indexing
• Use kd-trees and other multidimensional indices to capture the training data

• Each lookup is O(log n) but on disk

• Parallelism
• Use multiple cores, and compare against in-memory data or kd trees

• E.g., PANDA, LBL

• Approximation
• Compare against a sample, not all of the training data

• See, e.g., https://www.kaggle.com/code/pawanbhandarkar/knn-vs-
approximate-knn-what-s-the-difference/notebook



kNNs

• Strengths
• Very simple algorithm

• Nonparametric, can learn complex decision boundaries

• Weaknesses
• Requires an enormous (exponential) amount of data in high dimensions

• Evaluating the model at test time scales with size of training data

• Modern usage: Look up nearest examples according to “learned” 
features (in the context of deep learning)
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Decision Trees

• Much more practical nonparametric learning algorithm
• Idea: Can fit complex decision boundaries, but learns simpler ones first

• Interpretable models: Humans can look at the decision tree and 
understand what it is doing



Example: Diabetes Prediction



Example: Diabetes Prediction

Data from NHANES 2013/14 survey
Inputs 𝑥𝑖 Labels 𝑦𝑖



Aside: Data Dictionaries

• Datasets are often accompanied by a data dictionary 
• Describes each column in the dataset

• Important to understand dataset before doing any machine learning!

• E.g., which columns have missing values

• The dictionary for our data: 
https://wwwn.cdc.gov/nchs/nhanes/Default.aspx

https://wwwn.cdc.gov/nchs/nhanes/Default.aspx


Decision Trees

• A kind of flowchart based on tests
• Commonly used in medicine

• “Explainable”, easy to mentally evaluate

APA DSM Library



Decision Trees

condition on features

predicted label

# days with fever ≥ 2?

child age ≥ 3?
no

macrolides

no
macrolides

prescribe
macrolides

FT

FT

Decision tree example from: Martignon and Monti. (2010). Conditions for risk assessment as a topic for probabilistic education. Proceedings of the Eighth International Conference on Teaching Statistics  (ICOTS8).



Decision Trees

• Binary tree

• Each internal node has a Boolean condition that is a function of 𝑥
• Typically reference a single feature 𝑥𝑗

• Real-valued feature: Condition 1 𝑥𝑗 ≥ 𝑡  (where 𝑡 ∈ ℝ)

• Categorical feature: Condition 1 𝑥𝑗 = 𝑡  (where 𝑡 ∈ 1, … , 𝑘𝑗  is a category)

• Each leaf node is a label
• Can be either regression or classification

• Can also be a probability distribution



Intuition: Dataset Splitting

• Internal nodes split the dataset ColorOfCoat TypeOfHorse

black thoroughbred

bay Arabian

black thoroughbred

chestnut quarter

black ArabianColorOfCoat = “black”

ColorOfCoat TypeOfHorse

bay Arabian

chestnut quarter

ColorOfCoat TypeOfHorse

black thoroughbred

black thoroughbred

black Arabian

N=5; 3 classes

N=2; 2 classes

N=3; 2 classes



Visualizing the Model Family

• Axis-aligned decision boundaries

# days with fever ≥ 2?

child age ≥ 3?
no

macrolides

no
macrolides

prescribe
macrolides

FT

FT

days with fever

ch
ild

 a
ge



Decision Trees and XOR

A B A XOR B
T T      F
T F      T
F T      T
F F      F

A

B
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Decision Boundary and Depth

• Complexity increases with depth

# days with fever ≥ 2?

no
macrolides

prescribe
macrolides

FT

days with fever

ch
ild
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ge



Decision Boundary and Depth

• Complexity increases with depth

# days with fever ≥ 2?

child age ≥ 3?
no

macrolides

no
macrolides

prescribe
macrolides

FT

FT

days with fever

ch
ild

 a
ge



Learning Algorithm

• Similar to kNN, traditional decision tree learning algorithms do not fit 
in the loss minimization framework
• Computing the optimal decision tree is NP complete

• Recent work has tried to devise more efficient algorithms

• Instead, they are heuristically constructed in a top-down fashion



Learning Algorithm

no
macrolides



Learning Algorithm
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Learning Algorithm

# days with fever ≥ 2?

no
macrolides

prescribe
macrolides

FT



Learning Algorithm

# days with fever ≥ 2?

no
macrolides

prescribe
macrolides

FT



Learning Algorithm

# days with fever ≥ 2?

child age ≥ 3?
no

macrolides

no
macrolides

prescribe
macrolides

FT

FT



Learning Algorithm

• Let 𝑍 𝐶 = 𝑥, 𝑦 ∈ 𝑍 𝐶 𝑥, 𝑦  be the subset of 𝑍 where 𝐶 holds

𝐝𝐞𝐟 LearnTree 𝑍 : 

 𝐢𝐟 all labels in 𝑍 are the same and equal 𝑦: 

  𝐫𝐞𝐭𝐮𝐫𝐧 LeafNode 𝑦  

𝑗, 𝑡 ← BestSplit(𝑍)

 𝑇left ← LearnTree 𝑍 𝑥𝑗 ≥ 𝑡

 𝑇right ← LearnTree 𝑍 𝑥𝑗 < 𝑡  

 𝐫𝐞𝐭𝐮𝐫𝐧 InternalNode 𝑗, 𝑡, 𝑇left, 𝑇right  

𝑍



Learning Algorithm

• Let 𝑍 𝐶 = 𝑥, 𝑦 ∈ 𝑍 𝐶 𝑥, 𝑦  be the subset of 𝑍 where 𝐶 holds

𝐝𝐞𝐟 LearnTree 𝑍 : 

 𝐢𝐟 all labels in 𝑍 are the same and equal 𝑦: 

  𝐫𝐞𝐭𝐮𝐫𝐧 LeafNode 𝑦  

𝑗, 𝑡 ← BestSplit(𝑍)

 𝑇left ← LearnTree 𝑍 𝑥𝑗 ≥ 𝑡

 𝑇right ← LearnTree 𝑍 𝑥𝑗 < 𝑡  

 𝐫𝐞𝐭𝐮𝐫𝐧 InternalNode 𝑗, 𝑡, 𝑇left, 𝑇right  

# days with fever ≥ 2?

𝑍



Learning Algorithm

• Let 𝑍 𝐶 = 𝑥, 𝑦 ∈ 𝑍 𝐶 𝑥, 𝑦  be the subset of 𝑍 where 𝐶 holds

𝐝𝐞𝐟 LearnTree 𝑍 : 

 𝐢𝐟 all labels in 𝑍 are the same and equal 𝑦: 

  𝐫𝐞𝐭𝐮𝐫𝐧 LeafNode 𝑦  

𝑗, 𝑡 ← BestSplit(𝑍)

 𝑇left ← LearnTree 𝑍 𝑥𝑗 ≥ 𝑡

 𝑇right ← LearnTree 𝑍 𝑥𝑗 < 𝑡  

 𝐫𝐞𝐭𝐮𝐫𝐧 InternalNode 𝑗, 𝑡, 𝑇left, 𝑇right  

# days with fever ≥ 2?

T

𝑍

𝑍 #days fever ≥ 2



Learning Algorithm

• Let 𝑍 𝐶 = 𝑥, 𝑦 ∈ 𝑍 𝐶 𝑥, 𝑦  be the subset of 𝑍 where 𝐶 holds

𝐝𝐞𝐟 LearnTree 𝑍 : 

 𝐢𝐟 all labels in 𝑍 are the same and equal 𝑦: 

  𝐫𝐞𝐭𝐮𝐫𝐧 LeafNode 𝑦  

𝑗, 𝑡 ← BestSplit(𝑍)

 𝑇left ← LearnTree 𝑍 𝑥𝑗 ≥ 𝑡

 𝑇right ← LearnTree 𝑍 𝑥𝑗 < 𝑡  

 𝐫𝐞𝐭𝐮𝐫𝐧 InternalNode 𝑗, 𝑡, 𝑇left, 𝑇right  

# days with fever ≥ 2?

T

𝑍

𝑍 #days fever ≥ 2

child age ≥ 3?



Learning Algorithm

• Let 𝑍 𝐶 = 𝑥, 𝑦 ∈ 𝑍 𝐶 𝑥, 𝑦  be the subset of 𝑍 where 𝐶 holds

𝐝𝐞𝐟 LearnTree 𝑍 : 

 𝐢𝐟 all labels in 𝑍 are the same and equal 𝑦: 

  𝐫𝐞𝐭𝐮𝐫𝐧 LeafNode 𝑦  

𝑗, 𝑡 ← BestSplit(𝑍)

 𝑇left ← LearnTree 𝑍 𝑥𝑗 ≥ 𝑡

 𝑇right ← LearnTree 𝑍 𝑥𝑗 < 𝑡  

 𝐫𝐞𝐭𝐮𝐫𝐧 InternalNode 𝑗, 𝑡, 𝑇left, 𝑇right  

# days with fever ≥ 2?

T

𝑍

𝑍 #days fever ≥ 2

child age ≥ 3?

𝑍
days fever ≥ 2
∧ child age ≥ 3 T



Learning Algorithm

• Let 𝑍 𝐶 = 𝑥, 𝑦 ∈ 𝑍 𝐶 𝑥, 𝑦  be the subset of 𝑍 where 𝐶 holds

𝐝𝐞𝐟 LearnTree 𝑍 : 

 𝐢𝐟 all labels in 𝑍 are the same and equal 𝑦: 

  𝐫𝐞𝐭𝐮𝐫𝐧 LeafNode 𝑦  

𝑗, 𝑡 ← BestSplit(𝑍)

 𝑇left ← LearnTree 𝑍 𝑥𝑗 ≥ 𝑡

 𝑇right ← LearnTree 𝑍 𝑥𝑗 < 𝑡  

 𝐫𝐞𝐭𝐮𝐫𝐧 InternalNode 𝑗, 𝑡, 𝑇left, 𝑇right  

# days with fever ≥ 2?

T

𝑍

𝑍 #days fever ≥ 2

child age ≥ 3?

𝑍
days fever ≥ 2
∧ child age ≥ 3 T

prescribe
macrolides



Learning Algorithm

• Let 𝑍 𝐶 = 𝑥, 𝑦 ∈ 𝑍 𝐶 𝑥, 𝑦  be the subset of 𝑍 where 𝐶 holds

𝐝𝐞𝐟 LearnTree 𝑍 : 

 𝐢𝐟 all labels in 𝑍 are the same and equal 𝑦: 

  𝐫𝐞𝐭𝐮𝐫𝐧 LeafNode 𝑦  

𝑗, 𝑡 ← BestSplit(𝑍)

 𝑇left ← LearnTree 𝑍 𝑥𝑗 ≥ 𝑡

 𝑇right ← LearnTree 𝑍 𝑥𝑗 < 𝑡  

 𝐫𝐞𝐭𝐮𝐫𝐧 InternalNode 𝑗, 𝑡, 𝑇left, 𝑇right  

# days with fever ≥ 2?

T

𝑍

𝑍 #days fever ≥ 2

child age ≥ 3?

𝑍
days fever ≥ 2
∧ child age ≥ 3 T

prescribe
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Learning Algorithm

• Let 𝑍 𝐶 = 𝑥, 𝑦 ∈ 𝑍 𝐶 𝑥, 𝑦  be the subset of 𝑍 where 𝐶 holds

𝐝𝐞𝐟 LearnTree 𝑍 : 

 𝐢𝐟 all labels in 𝑍 are the same and equal 𝑦: 

  𝐫𝐞𝐭𝐮𝐫𝐧 LeafNode 𝑦  

𝑗, 𝑡 ← BestSplit(𝑍)

 𝑇left ← LearnTree 𝑍 𝑥𝑗 ≥ 𝑡

 𝑇right ← LearnTree 𝑍 𝑥𝑗 < 𝑡  

 𝐫𝐞𝐭𝐮𝐫𝐧 InternalNode 𝑗, 𝑡, 𝑇left, 𝑇right  

# days with fever ≥ 2?

T

𝑍

𝑍 #days fever ≥ 2

child age ≥ 3?

𝑍
days fever ≥ 2
∧ child age ≥ 3 T

prescribe
macrolides

F

𝑍
days fever ≥ 2
∧ child age < 3



Learning Algorithm

• Let 𝑍 𝐶 = 𝑥, 𝑦 ∈ 𝑍 𝐶 𝑥, 𝑦  be the subset of 𝑍 where 𝐶 holds

𝐝𝐞𝐟 LearnTree 𝑍 : 

 𝐢𝐟 all labels in 𝑍 are the same and equal 𝑦: 

  𝐫𝐞𝐭𝐮𝐫𝐧 LeafNode 𝑦  

𝑗, 𝑡 ← BestSplit(𝑍)

 𝑇left ← LearnTree 𝑍 𝑥𝑗 ≥ 𝑡

 𝑇right ← LearnTree 𝑍 𝑥𝑗 < 𝑡  

 𝐫𝐞𝐭𝐮𝐫𝐧 InternalNode 𝑗, 𝑡, 𝑇left, 𝑇right  

# days with fever ≥ 2?

T

𝑍

𝑍 #days fever ≥ 2

child age ≥ 3?

𝑍
days fever ≥ 2
∧ child age ≥ 3 T

prescribe
macrolides

F

𝑍
days fever ≥ 2
∧ child age < 3

no
macrolides



Learning Algorithm

• Let 𝑍 𝐶 = 𝑥, 𝑦 ∈ 𝑍 𝐶 𝑥, 𝑦  be the subset of 𝑍 where 𝐶 holds

𝐝𝐞𝐟 LearnTree 𝑍 : 

 𝐢𝐟 all labels in 𝑍 are the same and equal 𝑦: 

  𝐫𝐞𝐭𝐮𝐫𝐧 LeafNode 𝑦  

𝑗, 𝑡 ← BestSplit(𝑍)

 𝑇left ← LearnTree 𝑍 𝑥𝑗 ≥ 𝑡

 𝑇right ← LearnTree 𝑍 𝑥𝑗 < 𝑡  

 𝐫𝐞𝐭𝐮𝐫𝐧 InternalNode 𝑗, 𝑡, 𝑇left, 𝑇right  

# days with fever ≥ 2?

T

𝑍

𝑍 #days fever ≥ 2

child age ≥ 3?

𝑍
days fever ≥ 2
∧ child age ≥ 3 T

prescribe
macrolides

F

𝑍
days fever ≥ 2
∧ child age < 3

no
macrolides



Learning Algorithm
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