
CIS 3800 Spring 2024: Midterm

Feb 29, 2024

First Name : ___

Last Name : ___

Penn ID : ___

Please fill in your information above, read the following pledge, and sign in the space below:

I neither cheated myself nor helped anyone cheat on this exam. All answers on this exam are

my own. Violation of this pledge can result in a failing grade.

Sign Here : ___

Exam Details & Instructions:

• There are 8 questions made of 10 parts (and a short bonus) worth a total of 100 points.

• You have 120 minutes to complete this exam.

• The exam is closed book. This includes textbooks, phones, laptops, wearable devices,

other electronics, and any notes outside of what is mentioned below.

• You are allowed one 8.5 x 11 inch sheet of paper (double sided) for notes.

• Any electronic or noise-making devices you do have should be turned off and put away.

• Remove all hats, headphones, and watches.

• Your explanations should be more than just stating a topic name. Don't just say

something like (for example) "because of threads" or just state some facts like

"threads are parallel and lightweight processes". State how the topic(s) relate to the

exam problem and answer the question being asked.

Advice:

• Remember that there are 8 questions made up of a total of 10 parts (and a short bonus

question). Please budget your time so you can get to every question.

• Do not be alarmed if there seems to be more space than needed for an answer, we try to

include a lot of space just in case it is needed.

• Try to relax and take a deep breath. Remember that we also want you to learn from this.

A bad grade on this exam is not the end of the world. This grade also can be overwritten

by a better grade with the Midterm “Clobber” Policy (details in the course syllabus)

Please put your PennID at the top of each page in case the pages become separated.

If you need extra space, the last page of this exam is blank for you as scratch space and to

write answers. If you use it, please clearly indicate on that page and under the

corresponding question prompt that you are using the extra page to answer that question.

Please also write your full name and PennID at the top of the sheet.

PennID: ______________________

2

Question 1 {15 pts}

For worse or better Python is becoming an increasingly popular programming language and C is

used less than it used to be used in the past. Despite this, operating system interfaces are largely

written in C, so for python to support some of the functionality it needs, it must invoke some of

the system calls we have seen in this class.

Consider the python function subprocess.check_output(). You are not expected to know python

for this course, so here is some pseudo-code for how it works

string check_output(string program_name)

int main() {

 string output = check_output("grep -r comrade");

 // do something with the output afterwards...

}

Put into words: the check_output function runs the specified program and returns to you a string

containing the stdout and stderr output for the specified program.

You may use this blank space for scratch work. The questions begin on the next page.

PennID: ______________________

3

Question 1 {15 pts}

Which of the system calls below are likely needed to implement the function check_output and

how many times do we need each to be called?

System call Number of times called

fork()

waitpid()

pipe()

execvp()

kill()

signal()
For each system call, please briefly (3 sentences max) justify why we need it that many

times (or why it is not needed in the case of 0)

Reminder: we have an appendix at the end of the exam containing part of the man page for most

of these functions

PennID: ______________________

4

Question 2 {15 pts}

Pipes are one method we have seen for Inter Process Communication (IPC). A student wrote the

following short program to send a message from the child to the parent, and from the parent to

the child, using a pipe. Unfortunately, this implementation is flawed. In a few sentences describe

the following:

• Identify a possible flow of execution which results in undesired behavior (Note: desired output

would be “Hello! (from parent)” and “Howdy! (from child)”)

• Explain why this undesired behavior occurs

• Describe the conceptual misunderstanding of pipes in this code and propose a solution to

achieve consistent desired behavior (Note: you do not have to write the code itself, just

describing it at a high level is fine)

Write your answer on the next page.

int main() {

 int pipe_fds[2];

 pipe(pipe_fds);

 int pid = fork();

 if (pid == 0) {

 // Child

 write(pipe_fds[1], "Hello!", 6);

 char str[7];

 ssize_t chars_read = read(pipe_fds[0], str, 6);

 if (chars_read != -1) {

 str[chars_read] = '\0';

 printf("%s (from child)\n", str);

 }

 exit(EXIT_SUCCESS);

 }

 // Parent

 char str[7];

 ssize_t chars_read = read(pipe_fds[0], str, 6);

 if (chars_read != -1) {

 str[chars_read] = '\0';

 printf("%s (from parent)\n", str);

 }

 write(pipe_fds[1], "Howdy!", 6);

 return EXIT_SUCCESS;

}

PennID: ______________________

5

Question 2 continued {15 pts}

In a few sentences describe the following:

• Identify a possible flow of execution which results in undesired behavior (Note: desired output

would be “Hello! (from parent)” and “Howdy! (from child)”)

• Explain why this undesired behavior occurs

• Describe the conceptual misunderstanding of pipes in this code and propose a solution to

achieve consistent desired behavior (Note: you do not have to write the code itself, just

describing it at a high level is fine)

PennID: ______________________

6

Question 3 {15 pts}

In class we talked about critical sections and how accessing shared resources in the process and

the signal handler at the same time can cause that resource to enter an invalid state.

In our examples in class, we demonstrated this by trying to modify a shared global data structure.

However, critical sections are possible even just with modifying an integer variable.

Consider this code that declares a global integer variable and a way for that variable to be

incremented.

int global_counter = 0;

void increment() {

 global_counter++;

}

Despite the modification of the integer being 1 line of code, it is actually composed of multiple

steps. First we need to load the variable global_counter from memory into a register, increment

the value and then store it back into memory.

We can rewrite the increment function in two different ways to better show this is happening:

Assembly pseudo code C pseudo expansion
void increment() {

 LOAD register global_counter

 ADD register, register, 1

 STORE register global_counter

}

void increment() {

 int local_counter = global_counter;

 local_counter = local_counter + 1;

 global_counter = local_counter

}

Part 1 {7 pts}

Suppose the function increment() is executed twice, once in a signal handler and once in the

main() function of a process. (see the example code below)

void handler(int signo) {

 increment();

}

int main() {

 signal(SIGALRM, handler);

 alarm(1); // set an alarm for 1 second

 increment(); // might be interrupted by alarm handler

 sleep(5); // try and give time to make sure alarm goes off

 // at some point

 printf("%d\n", global_counter); // print global counter;

}

Part 1 continues onto the next page.

PennID: ______________________

7

Part 1 continued {7 pts}

In the code on the previous page, it’s possible for the signal handler to interrupt main executing

the increment function and for us to get an output different than expected (which would be 2).

What is the minimum possible value that global_counter could be left at after both the signal

handler and main() have called increment? Please explain how that value is possible

You should assume that none of the functions fail and that the alarm goes off while main is

executing the increment function.

Hint: we highly suggest thinking about the assembly and C pseudo code of increment()

Note: This answer space is big, but you do not have to use this whole space. We are giving it just

in case you need it and because we want the next problem to start on the next page.

PennID: ______________________

8

Part 2 {8 pts}

Consider the following solution that tries to fix the critical section:

void handler(int signo) {

 increment();

}

int main() {

 signal(SIGALRM, handler);

 alarm(1); // set an alarm for 1 second

 signal(SIGALRM, SIG_IGN);

 increment(); // might be interrupted by alarm handler

 signal(SIGALRM, handler);

 sleep(5); // try and give time to make sure alarm goes off

 // at some point

 printf("%d\n", global_counter); // print global counter;

}

It is possible that the alarm goes off while main invokes increment, but still under this solution

we would not get the expected output (2). In a few sentences, answer the following:

- Why may we not get 2 as our printed output?

- At a high level describe how we would need to change the program to fix this problem?

(you do not need to write any code for this)

You should assume that none of the system calls fail and that the alarm goes off while main is

executing the increment function.

PennID: ______________________

9

Question 4 {10 pts}

Oh no! The C standard library implementation of the sleep() function was found to be buggy, and

so we need to re-implement it ourselves using the functions we have learned in this class. Nate

and Seungmin each come up with their own implementation of sleep().

Nate’s implementation:

void handler(int signo) {

 // do nothing

}

void sleep(unsigned int seconds) {

 signal(SIGALRM, handler);

 alarm(seconds);

 sigset_t suspend_set;

 sigfillset(&suspend_set);

 sigdelset(&suspend_set, SIGALRM);

 sigsuspend(&suspend_set);

}

Seungmin’s implementation:

bool sleep_done = false;

void handler(int signo) {

 if(signo == SIGALRM) {

 sleep_done = true;

 }

}

void sleep(unsigned int seconds) {

 sleep_done = false;

 signal(SIGALRM, handler);

 alarm(seconds);

 while (!sleep_done) {

 // waiting for alarm to go off so sleep can finish...

 }

}

Both of these work, but one of these implementations is generally considered better than the

other. Which implementation and why? Put your answer on the next page

Note: you should be familiar with sigsuspend and signal, but we’ve included part of the man

page for it in the appendix if you need it.

Remember what we say on the front page about the requirements for an explanation.

PennID: ______________________

10

Question 4 {10 pts}

Note: This answer space is big, but you do not have to use this whole space. We are giving it just

in case you need it and because we want the next problem to start on the next page.

PennID: ______________________

11

Question 5 {14 pts}

On some systems it may make sense to have multiple pieces of hardware that make up our file

system and have different block allocation schemes on each. In this case, some files are stored

using contiguous allocation, but for others an Inode-based approach is used. The creator of this

system chose this design in order to balance file access times and the overheads of managing

larger blocks of data. In particular, minimizing the amount of time we need to seek (reposition)

within disk and the number of times we want to access disk in general.

Part 1{7 pts}

The system needs to frequently access some small files on the system. These files will always

take up about the same amount of space. These files are usually read from, but sometimes written

to. Which allocation scheme (contiguous or Inodes) would work best for storing these files?

Please justify your answer.

Part 2 {7 pts}

The system also stores many very large files that stretch several blocks. These files will be

frequently modified: contents overwritten, contents re-arranged, the file extended, and the file

shortened. Which allocation scheme (contiguous or Inodes) would work best for storing these

files? Please justify your answer.

PennID: ______________________

12

Question 6 {10 pts}

We are reading a FAT with the following contents:

Index Entry

0 SPECIAL / METADATA

1 9

2 4

3 8

4 0xFFFF

5 0xFFFF

6 0

7 0xFFFF

8 0xFFFF

9 7

For this FAT, we will follow what we will do with PennFAT:

- 0 and 0xFFFF are special values. 0 indicates the block is unused, and 0xFFFF indicates

that it is the current end block of a file.

- The FAT starts counting from index 1, with the first block being the first block that comes

after the FAT stored on disk

We read the root directory and get the following directory entries:

File Name First Block #

A 2

B 5

C 3

For each of the blocks below, fill in either:

- EMPTY if the block is unused.

- The name of the file the block belongs to.

o This includes the Root Directory itself.

Your answers go in the box below:

FAT

PennID: ______________________

13

Question 7 {10 pts}

We have written a short program that uses fork() and manipulates file descriptors.

Here is the program:

int main() {

 pid_t pid = fork();

 if (pid == 0) {

 close(STDOUT_FILENO);

 printf("HELLO!\n");

 return EXIT_SUCCESS;

 }

 dup2(STDOUT_FILENO, STDIN_FILENO);

 write(STDIN_FILENO, "pan", strlen("pan"));

 return EXIT_SUCCESS;

}

What are the possible outputs of this program? You can assume that all system calls succeed.

Please justify your answer:

PennID: ______________________

14

Question 8 {10 pts}

Suppose that we have an array of floats that is very large, roughly 1,000,000 of them, and we

want to perform several computations on each of those floats.

float arr[1000000];

// function declarations. Assume each function is very long

float compute1(float f);

float compute2(float f);

float compute3(float f);

We have two different ways of performing the computations on each of the floats:

The first implementation:

for (int i = 0; i < 1000000; i++) {

 arr[i] = compute1(arr[i]);

 arr[i] = compute2(arr[i]);

 arr[i] = compute3(arr[i]);

}

And the second implementation:

for (int i = 0; i < 1000000; i++) {

 arr[i] = compute1(arr[i]);

}

for (int i = 0; i < 1000000; i++) {

 arr[i] = compute2(arr[i]);

}

for (int i = 0; i < 1000000; i++) {

 arr[i] = compute3(arr[i]);

}

Our L1 cache is too small to hold the entire array, and the instruction cache cannot hold the code

for a single one of the compute functions.

How does the speed of these two implementations compare? Please justify your answer.

PennID: ______________________

15

Question 9 {1 pt} all submissions will get this point

This course has you program in C! Describe your outfit in terms of C code

If you don’t want to do that, then put anything here! What’s your favourite thing about C

programming? Anything you want to show us or want us to know?

PennID: ______________________

16

Appendix

Waitpid man page

SYNOPSIS

 pid_t waitpid(pid_t pid, int *wstatus, int options);

Description

This system call is used to wait for state changes in a child of

the calling process and obtains information about the child

whose state has changed.

If a child has already changed state, then these calls return

immediately. Otherwise, they block until either a child changes

state or a signal handler interrupts the call.

The value of options is an OR of zero or more of the following

constants:

WNOHANG

 return immediately if no child has exited.

WUNTRACED

 also return if a child has stopped.

If wstatus is not NULL, waitpid() stores status information in

the int to which it points. This integer can be inspected with

the following macros

WIFEXITED(wstatus)

 returns true if the child terminated normally, that is, by

calling exit() or by returning from main().

WIFSIGNALED(wstatus)

 returns true if the child process was terminated by a

signal

RETURN VALUE

on success, returns the process ID of the child whose state has

changed; if WNOHANG was specified and one or more child(ren)

specified by pid exist, but have not yet changed state, then 0

is returned. On error, -1 is returned.

PennID: ______________________

17

execvp man page

SYNOPSIS

int execvp(const char *file, char *const argv[]);

DESCIRPTION

replaces the current process image with a new process image.

This causes the program that is currently being run by the

calling process to be replaced with a new program specified by

the argument file and, that program will have the arguments

specified by argv. The process will have a newly initialized

stack, heap, and data segments.

RETURN VALUE

does not return on success, and the text, initialized data,

uninitialized data (bss), and stack of the calling process are

overwritten according to the contents of the newly.

Returns -1 on error

pipe man page

SYNOPSIS

int pipe(int pipefd[2]);

DESCRIPTION

pipe() creates a pipe, a unidirectional data channel that can be

used for interprocess communication. The array pipefd is used to

return two file descriptors referring to the ends of the pipe.

pipefd[0] refers to the read end of the pipe. pipefd[1] refers

to the write end of the pipe.

dup2 man page

SYNOPSIS

int dup2(int oldfd, int newfd);

DESCRIPTION

The dup2() system call creates a copy of the file descriptor

oldfd, using the file descriptor number specified in newfd. If the

file descriptor newfd was previously open, it is silently closed

before being reused.

PennID: ______________________

18

kill man page

SYNOPSIS

int kill(pid_t pid, int sig);

DESCRIPTION

The kill() system call can be used to send any signal to any

process group or process. In normal usage, signal sig is sent to

the process with the ID specified by pid.

signal man page

SYNOPSIS

 typedef void (*sighandler_t)(int);

 sighandler_t signal(int signum, sighandler_t handler);

DESCRIPTION

signal() sets the disposition of the signal signum to handler,

which is either SIG_IGN, SIG_DFL, or the address of a

programmer-defined function (a "signal handler").

sigsuspend

SYNOPSIS

int sigsuspend(const sigset_t *mask);

DESCRIPTION

sigsuspend() temporarily replaces the signal mask of the calling

thread with the mask given by mask and then suspends the thread

until delivery of a signal whose action is to invoke a signal

handler or to terminate a process.

If the signal terminates the process, then sigsuspend() does not

return. If the signal is caught, then sigsuspend() returns

after the signal handler returns, and the signal mask is

restored to the state before the call to sigsuspend().

PennID: ______________________

19

This page is intentionally left blank.

