
CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Processes (cont.): exec, wait, signal
Computer Systems Programming, Spring 2025

Instructors: Joel Ramirez Travis McGaha

Head TAs: Ash Fujiyama Emily Shen Maya Huizar

TAs:

Ahmed Abdellah Bo Sun Joy Liu Susan Zhang Zihao Zhou

Akash Kaukuntla Connor Cummings Khush Gupta Vedansh Goenka

Alexander Cho Eric Zou Kyrie Dowling Vivi Li

Alicia Sun Haoyun Qin Rafael Sakamoto Yousef AlRabiah

August Fu Jonathan Hong Sarah Zhang Yu Cao

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Poll: how are you?

❖ How is penn-vector going?

▪ I haven’t started

▪ I have read the spec

▪ I’ve setup the container

▪ I’ve started writing code

▪ I’ve started writing code and I am pretty sure
I understand what is going on

▪ I’m done!

2

pollev.com/tqm

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Administrivia

❖ First Assignment (HW00 penn-vector)

▪ Released already!

▪ “Due” Friday 01/24

▪ Extended to be due the same time as HW01 (Friday the 31st)

▪ Mostly a C refresher

❖ Pre semester Survey

▪ Anonymous

▪ Short!

▪ Due Wednesday the 28th

❖ Some OH later today 3:30 – 7pm (Levine 307)

3

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Administrivia

❖ Second Assignment (HW01 penn-shredder)

▪ Releases after today’s lecture

▪ Due Friday next week 01/31

▪ Intro to system calls, processes, etc.

▪ Short Q&A and demo at end of class ☺

❖ Github repo setup instructions

▪ Posted after lecture today

❖ First Check-in

▪ Releases tomorrow

▪ Due before lecture on the 30th (please do before 28th)

4

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Lecture Outline

5

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Processes & Fork Summary

❖ Processes are instances of programs that:

▪ Each have their own independent address space

▪ Each process is scheduled by the OS

• Without using some functions we have not talked about (yet),
there is no way to guarantee the order processes are executed

▪ Processes are created by fork() system call

• Only difference between processes is their process id and
the return value from fork() each process gets

6

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

❖ How many
numbers are
printed? What
number(s) get
printed from
each process?

7

pollev.com/tqm

int global_num = 1;

void function() {

 global_num++;

 printf("%d\n", global_num);

}

int main() {

 pid_t id = fork();

 if (id == 0) {

 function();

 id = fork();

 if (id == 0) {

 function();

 }

 return EXIT_SUCCESS;

 }

 global_num += 2;

 printf("%d\n", global_num);

 return EXIT_SUCCESS;

}

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

❖ How many times is ":)" printed?

8

int main(int argc, char* argv[]) {

 for (int i = 0; i < 4; i++) {

 fork();

 }

 printf(":)\n");

 return EXIT_SUCCESS;

}

pollev.com/tqm

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Lecture Outline

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

9

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

exec*()

❖ Loads in a new program for execution

❖ PC, SP, registers, and memory are all reset so that the specified program can
run

10

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

execve()

❖ execvp

❖ Duplicates the action of the shell (terminal) in terms of finding the
command/program to run

❖ Argv is an array of char*, the same kind of argv that is passed to main() in a
C program
▪ argv[0] MUST have the same contents as the file parameter

▪ argv must have NULL as the last entry of the array

❖ Just pass in an array of { NULL }; as envp

❖ Returns -1 on error. Does NOT return on success

11

int execve(const char *file,

 char* const argv[]

 char* const envp[]);

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Exec Visualization

❖ Exec takes a process and discards or “resets” most of it

12

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

example.cc

other.cc

NOTE that the following
do NOT change
- Process ID
- Open files
- The kernel

NOTE that the following
DO change
- The stack
- The heap
- Globals
- Loaded code
- Registers

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Aside: Exiting a Process

❖

▪ Causes the current process to exit normally

▪ Automatically called by main() when main returns

▪ Exits with a return status (e.g. EXIT_SUCCESS or EXIT_FAILURE)

• This is the same int returned by main()

▪ The exit status is accessible by the parent process with wait() or waitpid(). (more
on these functions next lecture)

13

void exit(int status);

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Exec Demo

❖ See exec_example.c

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens to allocated memory when we call exec?

14

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Any questions so far?

15

This code is broken. It compiles, but it
doesn’t do what we want. It is trying to
compile some code and then run it.

Why is this broken?

▪ Clang is a C compiler

▪ Assume exec’ing the compiler works
(hello_world.c compiles correctly)

▪ Assume I gave the correct args to exec in
both cases

broken_autograder.c

pollev.com/tqm

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 // fork a process to exec clang

 pid_t clang_pid = fork();

 if (clang_pid == 0) {

 // we are the child

 char* clang_argv[] = {"/bin/clang", "-o",

 "hello","hello_world.c", NULL};

 execve(clang_argv[0], clang_argv, envp);

 exit(EXIT_FAILURE);

 }

 // fork to run the compiled program

 pid_t hello_pid = fork();

 if (hello_pid == 0) {

 // the process created by fork

 char* hello_argv[] = {"./hello", NULL};

 execve(hello_argv[0], hello_argv, envp);

 exit(EXIT_FAILURE);

 }

 return EXIT_SUCCESS;

}

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Any questions so far?

16

This code is broken. It
compiles, but it
doesn’t do what we
want. Why?

▪ Clang is a C
compiler

▪ Assume it compiles

▪ Assume I gave the
correct args to exec

main()

fork()

fork()

exit()

execve(compile hello_world)

execve(run hello_world)

exit()

exit()

pollev.com/tqm

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Poll: how are you?

❖ In each of these, how often is ":) \n" printed? Assume functions don’t fail

17

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 pid_t pid = fork();

 if (pid == 0) {

 // we are the child

 char* argv[] = {"/bin/echo",

 "hello",

 NULL};

 execve(argv[0], argv, envp);

 }

 printf(":) \n");

 return EXIT_SUCCESS;

}

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 pid_t pid = fork();

 if (pid == 0) {

 // we are the child

 return EXIT_SUCCESS;

 }

 printf(":) \n");

 return EXIT_SUCCESS;

}

pollev.com/tqm

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Lecture Outline

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

18

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

From a previous poll:

19

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 // fork a process to exec clang

 pid_t clang_pid = fork();

 if (clang_pid == 0) {

 // we are the child

 char* clang_argv[] = {"/bin/clang", "-o",

 "hello","hello_world.c", NULL};

 execve(clang_argv[0], clang_argv, envp);

 exit(EXIT_FAILURE);

 }

 // fork to run the compiled program

 pid_t hello_pid = fork();

 if (hello_pid == 0) {

 // the process created by fork

 char* hello_argv[] = {"./hello", NULL};

 execve(hello_argv[0], hello_argv, envp);

 exit(EXIT_FAILURE);

 }

 return EXIT_SUCCESS;

}

This code is broken. It compiles, but
it doesn’t always do what we want.
Why?

▪ Clang is a C compiler

▪ Assume it compiles

▪ Assume I gave the correct args to
exec

broken_autograder.c

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

“waiting” for updates on a Process

❖

▪ Calling process waits for any child process to change status

• Also cleans up the child process if it was a zombie/terminated

▪ Gets the exit status of child process through output parameter wstatus

▪ Returns process ID of child who was waited for or -1 on error

20

pid_t wait(int *wstatus);
Usual change in status

is to “terminated”

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Execution Blocking

❖ When a process calls wait() and there is a process to wait on, the calling
process blocks

❖ If a process blocks or is blocking it is not scheduled for execution.

▪ It is not run until some condition “unblocks” it

▪ For wait(), it unblocks once there is a status update in a child

21

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Fixed code from broken_autograder.c

22

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 // fork a process to exec clang

 pid_t clang_pid = fork();

 if (clang_pid == 0) {

 // we are the child

 char* clang_argv[] = {"/bin/clang", "-o",

 "hello","hello_world.c", NULL};

 execve(clang_argv[0], clang_argv, envp);

 exit(EXIT_FAILURE);

 }

 wait(NULL); // should error check, not enough slide space :(

 // fork to run the compiled program

 pid_t hello_pid = fork();

 if (hello_pid == 0) {

 // the process created by fork

 char* hello_argv[] = {"./hello", NULL};

 execve(hello_argv[0], hello_argv, envp);

 exit(EXIT_FAILURE);

 }

 return EXIT_SUCCESS;

} autograder.c

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Demo: wait_example

❖ See wait_example.c

▪ Brief demo to see how a process blocks when it calls wait()

▪ Makes use of fork(), execve(), and wait()

❖ Execution timeline:

23

Program starts

fork() Parent
calls wait

Child exec’s sleep 10
Child exits

Parent is blocked Parent is unblocked
finishes wait()
exits

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Poll: how are you?

❖ Can a child finish before parent calls wait?

24

discuss

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

What if the child finishes first?

❖ In the timeline I drew, the parent called wait before the child executed.
▪ In the program, it is extremely likely this happens if the child is calling sleep 10

▪ What happens if the child finishes before the parent calls wait?
Will the parent not see the child finish?

25

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Process Tables & Process Control Blocks

❖ The operating system maintains a table of all processes that aren’t “completely
done”

❖ Each process in this table has a process control block (PCB) to hold information
about it.

❖ A PCB can contain:

▪ Process ID

▪ Parent Process ID

▪ Child process IDs

▪ Process Group ID

▪ Status (e.g. running/zombie/etc)

▪ Other things (file descriptors, register values, etc)

26

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Zombie Process

❖ Answer: processes that are terminated become “zombies”

▪ Zombie processes deallocate their address space, don’t run anymore

▪ still “exists”, has a PCB still, so that a parent can check its status one final time

▪ If the parent call’s wait(), the zombie becomes “reaped” all information related to it has
been freed (No more PCB entry)

27

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

28

Process Table

User Processes

OS

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

29

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = running

…

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

30

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = running

…

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

31

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = running

…

fork()

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

32

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = running

…

fork()

./wait_example

 pid = 101

PCB: wait_example
id = 101

status = running

…

101

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

33

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

./wait_example

 pid = 101

PCB: wait_example
id = 101

status = running

…

101

wait(&status)

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

34

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

./wait_example

 pid = 101

PCB: wait_example
id = 101

status = running

…

101

wait(&status) exec(/bin/sleep)

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

35

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

/bin/sleep

 pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

wait(&status) exec(/bin/sleep)

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

36

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

/bin/sleep

 pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

wait(&status) exit()

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

37

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

PCB: /bin/sleep
id = 101

status = ZOMBIE

…

101

wait(&status)

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

38

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

PCB: /bin/sleep
id = 101

status = ZOMBIE

…

101

wait(&status)

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

39

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

40

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

exit()

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

41

User Processes

OS

Process Table

./wait_example

Is reaped by its

parent. In our

example, that is the

terminal shell

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Demo: state_example

❖ See state_example.c

▪ Brief code demo to see the various states of a process

• Running

• Zombie

• Terminated

▪ Makes use of sleep(), waitpid() and exit()!

▪ Aside: sleep() takes in an integer number of seconds and blocks till those seconds
have passed

42

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

More: waitpid()

❖

▪ Calling process waits for a child process (specified by pid) to exit

• Also cleans up the child process

▪ Gets the exit status of child process through output parameter wstatus

▪ options are optional, pass in 0 for default options in most cases

▪ Returns process ID of child who was waited for or -1 on error

43

pid_t waitpid(pid_t pid, int *wstatus,

 int options);

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

wait() status

❖ status output from wait() can be passed to a macro to see what changed

❖ Fdddddddddddd true iff the child exited nomrally

❖ Sss true iff the child was signaled to exit

❖ Ssss true iff the child stopped

❖ Ssssddddddddddddd true iff child continued

❖ See example in state_check.c

44

WIFEXITED()

WIFSIGNALED()

WIFSTOPPED()

WIFCONTINUED()

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Lecture Outline

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

45

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Control Flow

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

❖ Processors do only one thing:

▪ From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

▪ This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

The bge instruction is being
executed for the first time,
which instruction is executed
next?

❖ A. bge

❖ B. add

❖ C. sub

❖ D. j

❖ E. I’m not sure

47

li t0, 5 # load immediate 5 into t0

 li t1, 2 # load immediate 2 into t1

 li t2, 0 # load immediate 0 into t2

.LOOP

 add t2, t2, 1 # t2 = t2 + 1

 sub t0, t0, t1 # t0 = t0 - t1

 bge t0, x0, .LOOP # GOTO .loop if t0 > 0

.END

 j .END # GOTO .END

 # (infinite loop)

pollev.com/tqm

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Altering the Control Flow

❖ Up to now: two mechanisms for changing control flow:

▪ Jumps and branches

▪ Call and return

React to changes in program state

❖ Insufficient for a useful system:
Difficult to react to changes in system state

▪ Data arrives from a disk or a network adapter

▪ Instruction divides by zero

▪ User hits Ctrl-C at the keyboard

▪ System timer expires

❖ System needs mechanisms for “exceptional control flow”

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Exceptional Control Flow

❖ Exists at all levels of a computer system

❖ Low level mechanisms

▪ 1. Hardware Interrupts

• Change in control flow in response to a system event
(i.e., change in system state)

• Implemented using combination of hardware and OS software

❖ Higher level mechanisms

▪ 2. Process context switch

• Implemented by OS software and hardware timer

▪ 3. Signals

• Implemented by OS software

What we will be looking at today

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Interrupts

❖ An Interrupt is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

▪ Kernel is the memory-resident part of the OS

▪ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O
request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

0

1

2

...
n-1

Interrupt Tables

❖ Each type of event has a
unique number k

❖ k = index into table
(a.k.a. interrupt vector)

❖ Handler k is called each time
interrupt k occurs

Interrupt
Table

Code for
interrupt handler 0

Code for
interrupt handler 1

Code for
interrupt handler 2

Code for
interrupt handler n-1

...

Interrupt
Numbers

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Asynchronous Interrupts

❖ Caused by events external to the processor

▪ Indicated by setting the processor’s interrupt pin

▪ Handler returns to “next” instruction

❖ Examples:

▪ Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

• Used by the kernel to take back control from user programs

▪ I/O interrupt from external device

• Hitting Ctrl-C at the keyboard

• Arrival of a packet from a network

• Arrival of data from a disk

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Synchronous Interrupts
❖ Caused by events that occur as a result of executing an

instruction:
▪ Traps

• Intentional

• Examples: system calls, breakpoint traps, special instructions

• Returns control to “next” instruction

▪ Faults
• Unintentional but theoretically recoverable

• Examples: page faults (recoverable), protection faults
(recoverable sometimes), floating point exceptions

• Either re-executes faulting (“current”) instruction or aborts

▪ Aborts
• Unintentional and unrecoverable

• Examples: illegal instruction, parity error, machine check

• Aborts current program

FUN FACT: the terminology and definitions aren’t

fully agreed upon. Many people may use these

interchangeably

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Lecture Outline

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

54

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Signals

❖ A Process can be interrupted with various types of signals

▪ This interruption can occur in the middle of most code

❖ Each signal type has a different meaning, number associated with it, and a way
it is handled

❖ These are different from an interrupt, but similar idea

▪ signals are “higher level” and apply to a process. The kernel / some process will deliver the
signal.

▪ Interrupts are lower level mechanisms that cause the hardware to poke the kernel and
respond

▪ Some interrupts lead to a signal being sent (CTRL + C on keyboard -> SIGINT)

55

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Signals

❖ A Process can be interrupted with various types of signals

▪ This interruption can occur in the middle of most code

❖ Each signal type has a different meaning, number associated with it, and a way
it is handled

❖ Examples:
▪ SIGCHLD

▪ SIGINT

▪ SIGKILL

▪ SIGALRM

▪ SIGSEGV

56

Default: ignore

Default: terminate the process

Default: terminate & core dump

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

sigaction()

❖ You can change how a certain signal is handled

❖ signal

❖ Signum specifies a signal

❖ Uses the struct sigaction type to specify which signal handler to run
and other options for how the signal should be handled

❖ Returns previous handler & behaviour for that signal through the old output
parameter

❖ Some signals like SIG_KILL and SIG_STOP can’t be handled differently

57

int sigaction(int signum, struct sigaction* act,

 struct sigaction* old);

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Signal handlers

❖ d

❖ A function that takes in as parameter, the signal number that raised this
handler. Return type is void

❖ Is automatically called when your process is interrupted by a signal

❖ Can manipulate global state

❖ If you change signal behaviour within the handler, it will be undone when you
return

❖ Signal handlers set by a process will be retained in any children that are
created

58

typedef void (*sighandler_t)(int);

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

struct sigaction

❖ Has 5 different fields to specify the behaviour of how a signal should be
handled. For our case, we only care about sa_handler and sa_flags

▪ (for now)

59

struct sigaction {

 void (*sa_handler)(int);

 void (*sa_sigaction)(int, siginfo_t *, void *);

 sigset_t sa_mask;

 int sa_flags;

 void (*sa_restorer)(void);

};

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

struct sigaction

❖ Struct sigaction

❖ Set sa_handler equal to the signal handler we want to use
▪ Set sa_handler to SIG_IGN to ignore the signal

▪ Set sa_handler to SIG_DFL for default behaviour

❖ In this class: set sa_flags to SA_RESTART

▪ This makes it so that system calls are automatically restart/continue if they are interrupted
by a signal.

60

struct sigaction {

 void (*sa_handler)(int);

 int sa_flags;

 ...

};

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Demo ctrlc.c

❖ See ctrlc.c

▪ Brief code demo to see how to use a signal handler

▪ Blocks the ctrl + c signal: SIGINT

▪ Note: will have to terminate the process with the kill command in the terminal, use ps
–u to fine the process id

61

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

alarm()

❖ Alarm

❖ Delivers the SIGALRM signal to the calling process after the specified number
of seconds

❖ Default SIGALRM behaviour: terminate the process

❖ How to cancel alarms?

▪ I leave this as an exercise for you: try reading the man pages

❖ HINT FOR EXTRA CREDIT: What is the default behaviour of SIGALRM? Can you
take advantadge of the default behaviour? 62

unsigned int alarm(unsigned int seconds);

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Poll: how are you?

❖ Finish this program

❖ After 15 seconds, print a message and then exit

❖ Can’t use the sleep() function, must use alarm()

❖ Currently: program calls alarm then immediately exits

63

discuss

int main(int argc, char* argv[]) {

 alarm(15U);

 return EXIT_SUCCESS;

}

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Demo no_sleep.c

❖ See no_sleep.c

▪ “Sleeps” for 10 seconds without sleeping, using alarm

▪ Brief code demo to see how to use a signal handler & alarm

▪ Signal handler manipulates global state

64

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

kill()

❖ Can send specific signals to a specific process manually

❖ D

❖ pid: specifies the process

❖ sig: specifies the signal

❖ Example:

❖ If for some reason kill() is not recognized and you #include everything you
need: Put this at the top of your penn-shredder.c file (before #includes) to use
kill()

65

int kill(pid_t pid, int sig);

kill(child, SIGKILL);

#define _POSIX_C_SOURCE 1

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Non blocking wait w/ waitpid()

❖

▪ Can pass in WNOHANG for options to make waitpid() not block or “hang”.

▪ Returns process ID of child who was waited for or -1 on error
or 0 if there are no updates in children processes and WNOHANG was passed in

66

pid_t waitpid(pid_t pid, int *wstatus,

 int options);

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Demo impatient.c

❖ See impatient.c

▪ Parent forks a child, checks if it finishes every second for 5
seconds, if child doesn’t finish send SIGKILL

▪ LOOKS SIMILAR TO WHAT YOU ARE DIONG IN
penn-shredder. DO NOT COPY THIS

• waitpid() IS NOT ALLOWED

• USING sleep() AND alarm()
TOGETHER CAN CAUSE ISSUES

67

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

SIGCHLD handler

❖ Whenever a child process updates, a SIGCHLD signal is received, and by
default ignored.

❖ You can write a signal handler for SIGCHLD, and use that to help handle
children update statuses: allowing the parent process to do other things
instead of calling wait() or waitpid()

❖ Relevant for proj2: penn-shell

68

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Lecture Outline

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

69

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Process State Lifetime

Process creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process finished

Running Zombie

blocked
Terminated

CIS 5480, Spring 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Lecture Outline

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

71

	Default Section
	Slide 1: Processes (cont.): exec, wait, signal Computer Systems Programming, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Lecture Outline
	Slide 6: Processes & Fork Summary
	Slide 7
	Slide 8
	Slide 9: Lecture Outline
	Slide 10: exec*()
	Slide 11: execve()
	Slide 12: Exec Visualization
	Slide 13: Aside: Exiting a Process
	Slide 14: Exec Demo
	Slide 15: Any questions so far?
	Slide 16: Any questions so far?
	Slide 17: Poll: how are you?
	Slide 18: Lecture Outline
	Slide 19: From a previous poll:
	Slide 20: “waiting” for updates on a Process
	Slide 21: Execution Blocking
	Slide 22: Fixed code from broken_autograder.c
	Slide 23: Demo: wait_example
	Slide 24: Poll: how are you?
	Slide 25: What if the child finishes first?
	Slide 26: Process Tables & Process Control Blocks
	Slide 27: Zombie Process
	Slide 28: Diagram: wait_example.c
	Slide 29: Diagram: wait_example.c
	Slide 30: Diagram: wait_example.c
	Slide 31: Diagram: wait_example.c
	Slide 32: Diagram: wait_example.c
	Slide 33: Diagram: wait_example.c
	Slide 34: Diagram: wait_example.c
	Slide 35: Diagram: wait_example.c
	Slide 36: Diagram: wait_example.c
	Slide 37: Diagram: wait_example.c
	Slide 38: Diagram: wait_example.c
	Slide 39: Diagram: wait_example.c
	Slide 40: Diagram: wait_example.c
	Slide 41: Diagram: wait_example.c
	Slide 42: Demo: state_example
	Slide 43: More: waitpid()
	Slide 44: wait() status
	Slide 45: Lecture Outline
	Slide 46: Control Flow
	Slide 47
	Slide 48: Altering the Control Flow
	Slide 49: Exceptional Control Flow
	Slide 50: Interrupts
	Slide 51: Interrupt Tables
	Slide 52: Asynchronous Interrupts
	Slide 53: Synchronous Interrupts
	Slide 54: Lecture Outline
	Slide 55: Signals
	Slide 56: Signals
	Slide 57: sigaction()
	Slide 58: Signal handlers
	Slide 59: struct sigaction
	Slide 60: struct sigaction
	Slide 61: Demo ctrlc.c
	Slide 62: alarm()
	Slide 63: Poll: how are you?
	Slide 64: Demo no_sleep.c
	Slide 65: kill()
	Slide 66: Non blocking wait w/ waitpid()
	Slide 67: Demo impatient.c
	Slide 68: SIGCHLD handler
	Slide 69: Lecture Outline
	Slide 70: Process State Lifetime
	Slide 71: Lecture Outline

