
CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

I-Nodes, Super Block, and Boot Block
Computer Operating Systems, Spring 2025

Instructors: Joel Ramirez Travis McGaha

Head TAs: Ash Fujiyama Emily Shen Maya Huizar

TAs:

Ahmed Abdellah Bo Sun Joy Liu Susan Zhang Zihao Zhou

Akash Kaukuntla Connor Cummings Khush Gupta Vedansh Goenka

Alexander Cho Eric Zou Kyrie Dowling Vivi Li

Alicia Sun Haoyun Qin Rafael Sakamoto Yousef AlRabiah

August Fu Jonathan Hong Sarah Zhang Yu Cao

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Poll: how are you?

❖ Hope your Valentines day was nice! How is life? File systems is almost over! ☺

2

pollev.com/tqmpollev.com/cis5480

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Lecture Outline

❖ Linux Filesystem Implementation

▪ Quick Review

▪ Reserved Inodes & Root Inode

❖ File Paths
▪ Absolute Paths & Relative Paths

❖ Resolving Absolute Paths

▪ Directory Entries

❖ Accessing a Struct Dirent

❖ Putting It All Together

▪ Bitmaps

▪ Super Block

▪ Boot Block
3

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Review: Filesystem and inodes

4note: this is an attempt to present information as truthful as possible while trying to make it digestible

❖ The filesystem is composed of blocks that are at the smallest size, 512
bytes.

▪ Today, filesystems blocks are much larger as we saw on Thursday.

▪ On some, blocks reach up to 4096 bytes (4 KB).

❖ Linux Filesystem ext2, blocks smallest size is 1024 bytes.

❖ Physical Block Numbers start from 0. They correspond to physical blocks of
memory on the memory device (e.g. hdd, ssd, sd cards, cds, floppy disk)

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Review: Filesystem and inodes

5note: this is an attempt to present information as truthful as possible while trying to make it digestible

❖ From our perspective, the inode table starts on Block 2

▪ Each block in the inode table is full of inodes, even if the inode it does not refer to a file

• (i.e. is unallocated)

▪ You can also think of the inode table as: inode_array[]

• Where the inode_array is split up across blocks

inode table ……………

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Review: Filesystem and inodes

6note: this is an attempt to present information as truthful as possible while trying to make it digestible

❖ From our perspective, the inode table starts on Block 2

▪ Each block in the inode table is full of inodes, even if the inode it does not refer to a file

• (i.e. is unallocated)

▪ You can also think of the inode table as: inode_array[]

❖ Let’s assume;

▪ Block Size: 1024 Bytes

▪ Inode Size: 128 bytes

• Yes. They’re that big in ext2.

inode table ……………

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Inodes at a glance: Physical Block 2

7

inode table ……………

Each Inode contains
12 Physical Block Numbers
1 Singly Indirect Pointer
1 Doubly Indirect Pointer
1 Triple Indirect Pointer

*we say pointer, but they’re physical block numbers.

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Inodes at a glance: Physical Block 2

8

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Lecture Outline

❖ Linux Filesystem Implementation

▪ Reserved Inodes

▪ Root Inode

❖ File Paths
▪ Absolute Paths & Relative Paths

❖ Resolving Absolute Paths

▪ Directory Entries

❖ Accessing a Struct Dirent

❖ Putting It All Together

▪ Bitmaps

▪ Super Block

▪ Boot Block
9

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Inodes at a glance: Reserved Inodes

10

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Inodes at a glance: Reserved Inodes

11

There are up to 10 inodes that are reserved for special purposes, although many are unused and were never implemented for their use case.

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

The Most Important Special Inode: Inode 2

12

❖ Inode 2

▪ Is the “root” directory of the filesystem (i.e. '/')

▪ Does not contain the physical file information for the root directly

▪ The block numbers within the Inode tell us where to expect the data to be.

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

The Most Important Special Inode: Inode 2

13

❖ Inode 2

▪ Is the “root” directory of the filesystem (i.e. '/')

▪ /Users/joelrmrz/Documents/file.txt

The corresponding inode for this directory is inode 2.

Wait, so where is the rest of “Users/joelrmrz/Documents/file.txt” ?

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Lecture Outline

❖ Linux Filesystem Implementation

▪ Quick Review

▪ Reserved Inodes & Root Inode

❖ File Paths
▪ Absolute Paths & Relative Paths

❖ Resolving Absolute Paths

▪ Directory Entries

❖ Accessing a Struct Dirent

❖ Putting It All Together

▪ Bitmaps

▪ Super Block

▪ Boot Block
14

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Resolving Paths; Looking for a file

❖ Let’s say I want to find: /Users/joelrmrz/Documents/file.txt
▪ How would you usually go about it?

❖ You’d probably search for the Users directory first,
▪ then joelrmrz,

▪ then Documents,

▪ and finally, file.txt.

❖ The way absolute pathnames are resolved is very similar, albiet, with a bit
more technical details. ☺

15

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Absolute Paths

❖ /Users/joelrmrz/Documents/file.txt
▪ Is an example of an absolute path, where the entire path, starting from root, /, is given.

❖ Not an absolute path: file.txt
▪ Doesn’t tell us where in the file system we can find a file with that name unless we

traverse the whole thing.

16

/root
├── dir_one
│ ├── file.txt
│ └── subdir_one
├── dir_two
│ ├── file.txt
│ └── subdir_two
├── dir_three
│ ├── file.txt
│ └── subdir_three

Which file.txt are we referring to?
No clue.

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Relative Paths

❖ ./file.txt
▪ Is an example of a relative path, where the starting directory is relative to the “.”

▪ Recall that a ”.” is a self reference to a directory.

❖ ./file.txt

▪ Does tell us where in the file system we can find it, namely, in the directory we are 'in’.

17

Which ./file.txt are we referring to?

If we are "in" dir_one,
then we are referring to /root/dir_one/file.txt

And so forth.

/root
├── dir_one
│ ├── file.txt
│ └── subdir_one
├── dir_two
│ ├── file.txt
│ └── subdir_two
├── dir_three
│ ├── file.txt
│ └── subdir_three

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Lecture Outline

❖ Linux Filesystem Implementation

▪ Quick Review

▪ Reserved Inodes & Root Inode

❖ File Paths
▪ Absolute Paths & Relative Paths

❖ Resolving Absolute Paths

▪ Directory Entries

❖ Accessing a Struct Dirent

❖ Putting It All Together

▪ Bitmaps

▪ Super Block

▪ Boot Block
18

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Walkthrough: Resolving an Absolute Pathname

19

more inodes … data blocks …

inode 2

Let’s say I want to find: /Users/joelrmrz/Documents/file.txt

First: we need to look for the “Users” directory starting from the
root directory. But, where exactly is the root directory
(i.e. what blocks contain the actual data for the root directory?)

The inode tells us where! Blocks 101 and 110!

101

110

assume we only need direct block numbers

Recall, the inode tells us where all relevant data blocks can be
found for a directory/file!

Other
metadata

here

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

20

more inodes … data blocks …

inode 2

101

110

assume we only need direct block numbers

Recall, the inode tells us where
all relevant data blocks can be
found for the directory/file!

Other
metadata

here

block 101

Let’s go ahead and traverse the information in these blocks to find the directory “Users”

block 110

Walkthrough: Resolving an Absolute Pathname

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

❖ Blocks 101 & 110 hold the information of directory “/”

▪ These are the files/directories we would find ‘inside’ the root directory.

▪ We need to look for the directory entry “Users” within the data blocks for
the root directory.

21

more inodes … data blocks …

inode 2

101

110

Other
metadata

here

Walkthrough: Resolving an Absolute Pathname
/Users/joelrmrz/Documents/file.txt block 101 block 110

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

❖ The directory entries in the root directory.

22

more inodes … data blocks …

inode 2

101

110

Other
metadata

here

Walkthrough: Resolving an Absolute Pathname
/Users/joelrmrz/Documents/file.txt block 101 block 110

/root
├── bin
├── usr
├── USERS
├── .
├── ..
│
├── tmp
├── dev

}These are the “entries” within the root directory.
Shorted to the name “dirent” for directory entry.

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

❖ Blocks 101 & 110 hold the information of directory “/”

▪ These are the files/directories we would find ‘inside’ the root directory.

▪ We need to look for the directory entry “Users” within the data blocks for the root directory.

❖ Directory Entries
▪ Are structs that represent the files/subdirectories within a directory.

23

more inodes … data blocks …

struct dirent {
ino_t d_ino; /* File inode number */
char d_name[]; /* Null terminated name of file */
uint8_t d_type; /* Indicator of file type ONLY IN ext2, 3, 4 */

}

A Necessary Evil: Directory Entries
/Users/joelrmrz/Documents/file.txt block 101 block 110

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

❖ Directory Entries

▪ Are structs that represent the files/subdirectories within a directory.

❖ If we come across d_name == “Users”, we know where to look for “joelrmrz” now
▪ namely, in the data blocks for the corresponding inode for this entry, d_ino.

24

more inodes … data blocks …

A Necessary Evil: Directory Entries
/Users/joelrmrz/Documents/file.txt

struct dirent {
ino_t d_ino; /* File inode number */
char d_name[]; /* Null terminated name of file */
uint8_t d_type; /* Indicator of file type ONLY IN ext2, 3, 4 */

}

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

❖ Directory Entries

▪ Are structs that represent the files/subdirectories within a directory.

❖ d_type

▪ Not defined in ALL file systems but is useful in telling us the type of file we are referring to.

▪ Directory, Regular File, Buffer File (pipe), and much more.
25

more inodes … data blocks …

A Necessary Evil: Directory Entries
/Users/joelrmrz/Documents/file.txt

struct dirent {
ino_t d_ino; /* File inode number */
char d_name[]; /* Null terminated name of file */
uint8_t d_type; /* Indicator of file type ONLY IN ext2, 3, 4 */

}

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

❖ Directory Entries

▪ These exist within the file system itself; the inode tells us the data blocks that contain these.

▪ You know where to start looking, inode 2.

▪ You can not just start reading the values in a directory via “open”; if only life were that simple.

• More on that later….

26

more inodes … data blocks …

A Necessary Evil: Directory Entries
/Users/joelrmrz/Documents/file.txt

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

27

more inodes … data blocks …

inode 2

101

110

Other
metadata

here

Block 101

entry 1

entry 2

entry 3

entry 10

entry 11

….

inode: 2 d_name: "."

inode: 2 d_name: ".."

Yup, these have their own directory
entries.

We are in the root directory, so "..” just
refers to the root again as it has no
parent.

inode: 107 d_name: ”Users"
Awesome! Here it is!

But, where is Inode 101?

inode: 243 d_name: ”bin"

Walkthrough: Resolving an Absolute Pathname
/Users/joelrmrz/Documents/file.txt

}

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Directories in the Filesystem

28

Block 101

entry 0

entry 1

entry 2

entry 10

entry 11

….

inode: 2 d_name: "."

inode: 2 d_name: ".."

inode: 107 d_name: ”Users"

inode: 243 d_name: ”bin"

pollev.com/cis5480

Assume:
• The inode table starts at Block 2
• A block is 1024 bytes
• Each inode is 128 bytes

Which physical block contains inode 107?

reminder: we start counting inodes from 1 (there is no inode 0)

First ask yourself:
How would I find Inode 8? What about inode 15?

We’ll give you around 10 minutes to figure it out…really try to find out!

You’ll have to do similar math to find which physical block FAT entries
are in, you can’t just index normally. You need to load the block first.

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Directories in the Filesystem

29

pollev.com/cis5480

Which physical block contains inode 107?

Left blank for any work you’d like to do here:

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Directories in the Filesystem

30

pollev.com/cis5480

Which physical block contains inode 107?

First ask yourself:
How would I find inode 8?

inode 8 is in the first block! How would you know this?

(8 – 1) * sizeof(inode) / sizeof(block)

7 * 128 / 1024 = 0

This tells us, inode 8 is in the 0th block of the inode
table (the first block).

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Directories in the Filesystem

31

pollev.com/cis5480

Which physical block contains inode 107?

First ask yourself:
How would I find inode 8?

How to find the physical block number that contains the inode?

block_number = INODE_TABLE_BLOCK_START + ((inode_num – 1) * sizeof(inode))/sizeof(block)

block_number = 2 + (8 – 1) * 128 / 1024

Why is this zero?
Integer Division

block_number = 2 + (7 * 128)/1024

block_number = 2 + 0

block_number = 2

Note: Need to do the multiplication first in software, integer division will make the quotient zero.

#define INODE_TABLE_BLOCK_START 2

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Directories in the Filesystem

32

pollev.com/cis5480

Which physical block contains inode 107?

First ask yourself:
What about inode 15?

How to find the physical block number that contains the inode?

block_number = INODE_TABLE_BLOCK_START + ((inode_num – 1) * sizeof(inode))/sizeof(block)

block_number = 2 + ((15 – 1) * 128)/1024

block_number = 2 + (14 * 128) / 1024

block_number = 2 + 1

block_number = 3

Why is this one?
Integer Division

#define INODE_TABLE_BLOCK_START 2

You could also do: INODE_TABLE_BLOCK_START + ((inode_num – 1) / INODES_PER_BLOCK)

#define INODES_PER_BLOCK sizeof(BLOCK)/sizeof(inode)

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Directories in the Filesystem

33

pollev.com/cis5480

Which physical block contains inode 107?

First ask yourself:
What about inode 15?

block_number = INODE_TABLE_BLOCK_START + ((inode_num – 1) * sizeof(inode))/sizeof(block)

block_number = 3

The Second Block of the Inode Table (Physical Block 3)

How to find the physical block number that contains the inode?

#define INODE_TABLE_BLOCK_START 2

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Directories in the Filesystem

34

pollev.com/cis5480

Which physical block contains inode 107?

block_number = 2 + (inode_num – 1) * sizeof(inode) /sizeof(block)

block_number = 2 + ((107 – 1) * 128) / 1024

block_number = 2 + 13

block_number = 15

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Directories in the Filesystem

35

Block 101

entry 0

entry 1

entry 2

entry 10

entry 11

….

inode: 2 d_name: "."

inode: 2 d_name: ".."

inode: 107 d_name: ”Users"

inode: 243 d_name: ”bin"

pollev.com/cis5480

Assume:
• The inode table starts at Block 2
• A block is 1024 bytes
• Each inode is 128 bytes

What is the index of the inode 107 relative to the block it is in?

reminder: we start counting inodes from 1 (there is no inode 0)

First ask yourself:
how would I find Inode 8? What about inode 15?

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Directories in the Filesystem

36

pollev.com/cis5480

What is the index of the inode 107 relative to the block it is in?

Left blank for any work you’d like to do here:

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Directories in the Filesystem

37

pollev.com/cis5480

What is the index of the inode 107 relative to the block it is in?

First ask yourself:
What about inode 15?

How would I be able to find the index of the inode relative to the physical block itself?

The Second Block of the Inode Table (Physical Block 3)

index = (inode_num – 1) % INODES_PER_BLOCK

index = (14) % 8 = 6

struct inode curr = inode_table_blocktwo[6];

psuedocode btw.

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Directories in the Filesystem

38

pollev.com/cis5480

So, where is inode 107?

block_number = 2 + (inode_num – 1) * sizeof(inode) /sizeof(block)

block_number = 2 + ((107 – 1) * 128) / 1024

block_number = 2 + 13

block_number = 15

index = (inode_num – 1) % INODES_PER_BLOCK

index = (107 – 1) % 8

index = 106 % 8

index = 2

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Directories in the Filesystem

39

pollev.com/cis5480

block_number = 15 index = 2

The InodeTableBlock[13] (Physical Block 15)

So, where is inode 107?

Finally, we’re done!

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Directories in the Filesystem

❖ Now that we know where inode 107 is, let’s look at its directory entries

▪ Now, "." is the current directories inode and ".." is the root directory inode!

▪ And there is only one user on my computer, so we only have 3 entries in this directory.

▪ Now, we go to inode 645 and continue on doing the same thing.

40

inode 107

510Other
metadata

here

entry 0

entry 1

entry 2

inode: 107 d_name: "."

inode: 2 d_name: ".."

inode: 645 d_name: ”joelrmrz"

Block 510 /Users/

We are currently “inside”
the Users/ directory; or

rather examining the
entries for this directory.

note: there is no natural ordering to
the dirents.

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Resolving Absolute Paths for Regular Files

41

❖ To open /dir_one/dir_two/dir_three/file.txt:
1. Start from the root directory (inode 2).

2. Check the data blocks associated with this inode.

3. If it’s not a directory, you’ve found your file! Otherwise, continue.

4. Iterate through the directory entries.

5. If d_name matches the target file or directory, follow its inode (d_inode).

6. Repeat from step 2 with the new inode.

7. If d_name is not found at any step, the path cannot be resolved.

• i.e. the file does not exist

The way to resolve paths to directories is incredibly similar.

If directories are huge,

this requires

calculating singly,

doubly, or even triple

indirect blocks.

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Resolving Absolute Paths for Regular Files

42

To open /dir_one/dir_two/dir_three/file.txt, what is the minimum
number of inodes that must be accessed to fully resolve the path and retrieve
the data blocks of file.txt? Assume you have not accessed the root inode.

pollev.com/cis5480

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Resolving Absolute Paths for Regular Files

43

To open /dir_one/dir_two/dir_three/file.txt, what is the minimum
number of inodes that must be accessed to fully resolve the path and retrieve
the data blocks of file.txt? Assume you have not accessed the root inode.

pollev.com/cis5480

Let’s walk through this:

➢The first inode we need is inode 2, the root directory
➢Next, we need the inode for dir_one
➢Next, we need the inode for dir_two
➢Next, we need the inode for dir_three
➢Next, we need the inode for file.txt

➢This final inode contains the block numbers with the data which contains
the actual file.txt.

So, in total, 5 inodes!

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Resolving Absolute Paths for Regular Files

44

What is the minimum number of directory entries (struct dirents) that must be
traversed to resolve the path /dir_one/dir_two/dir_three/file.txt
and access the data blocks of file.txt in the best-case scenario? Assume you have
not accessed the root inode.

pollev.com/cis5480

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Resolving Absolute Paths for Regular Files

45

What is the minimum number of directory entries (struct dirent) that must be
traversed to resolve the path /dir_one/dir_two/dir_three/file.txt
and access the data blocks of file.txt in the best-case scenario? Assume you have
not accessed the root inode.

pollev.com/cis5480

Let’s walk through this best case scendario:

➢ The first struct dirent we encounter within the data blocks of the root inode is
• the directory entry for dir_one

➢ The second struct dirent we encounter in the data blocks of the dir_one inode is
• the directory entry for dir_two

➢ The third struct dirent we encounter in the data blocks of the dir_two inode is
• the directory entry for dir_three

➢ The fourth struct dirent we encounter in the data blocks of the dir_three inode is
• the directory entry for file.txt

➢ And we are done!

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

A Possible Scenario for Resolving Paths

46

A possible scenario /dir_one/dir_two/dir_three/file.txt

root inode

block with dirent
dir_one

dir_one
 inode

block with dirent
dir_two

dir_two
 inode

block with dirent
dir_three

dir_three
 inode

block with dirent
file.txt

file.txt
inode

direct blocks
for file.txt

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Resolving Absolute Paths for Regular Files

47

A possible scenario /dir_one/dir_two/dir_three/file.txt

root inode

block with dirent
dir_one

dir_one
 inode

block with dirent
dir_two

dir_two
 inode

block with dirent
dir_three

dir_three
 inode

block with dirent
file.txt

file.txt
inode

direct blocks
for file.txt

5 inodes
4 Dirents!

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Resolving Absolute Paths for Regular Files

48

pollev.com/cis5480

A perfect scenario /dir_one/dir_two/dir_three/file.txt

root inode

block with dirent
dir_one

dir_one
 inode

block with dirent
dir_two

dir_two
 inode

block with dirent
dir_three

dir_three
 inode

block with dirent
file.txt

file.txt
inode

direct blocks
for file.txt

5 inodes
4 Dirents!

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Lecture Outline

❖ Linux Filesystem Implementation

▪ Quick Review

▪ Reserved Inodes & Root Inode

❖ File Paths
▪ Absolute Paths & Relative Paths

❖ Resolving Absolute Paths

▪ Directory Entries

❖ Accessing a Struct Dirent

❖ Putting It All Together

▪ Bitmaps

▪ Super Block

▪ Boot Block
49

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Accessing a Struct Dirent

❖ returns a “directory stream” which is just a maintained iterator over the entries in the
directory.

❖ returns a struct dirent that is allocated by the kernal for you (do not free it)
▪ Returns the dirent the dir_stream is currently pointing to

❖ The directory entry remains valid until the next call to readdir() or closedir()
on the same directory stream, dir_stream.

❖ Does what you think it does.

50

DIR *opendir(const char *pathname);

struct dirent *readdir(DIR *dir_stream);

int closedir(DIR *dir_stream)

#include <dirent.h>

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Filtering and Sorting Dirents

❖ The scandir() function reads the directory pathname (relative or absolute) and builds an
array of pointers to directory entries using malloc.
▪ It returns the number of entries in the array.

▪ A pointer to the array of directory entries is stored in the location referenced by direntry_pointer_array

❖ The filter argument is a pointer to a user supplied subroutine to select which entries are
to be included in the array.
▪ Should return a non-zero value if the directory entry is to be included in the array.

▪ If filter is null, then all the directory entries will be included.

❖ The generic_compare argument is a pointer to a user supplied subroutine which is passed
to qsort(3) to sort the completed array. If this pointer is null, the array is not sorted.

51

int scandir(const char *restrict pathname,
 struct dirent ***restrict direntry_pointer_array,
 typeof(int (const struct dirent *)) *filter,
 typeof(int (const struct dirent **, const struct dirent **)) *generic_compare);

This is here purely for completeness. And gives you a way to manually implement the “ls” command.

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

Lecture Outline

❖ Linux Filesystem Implementation

▪ Quick Review

▪ Reserved Inodes & Root Inode

❖ File Paths
▪ Absolute Paths & Relative Paths

❖ Resolving Absolute Paths

▪ Directory Entries

❖ Accessing a Struct Dirent

❖ Putting It All Together

▪ Bitmaps

▪ Super Block

▪ Boot Block
52

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

A more realistic rendition of the Linux Filesystem

❖ When the filesystem is formatted (set up), the entire inode table is created
with a set number of inodes.

❖ Thus, the number of blocks that can hold file data is also limited and can be
tracked.

❖ We need two things:

▪ A bit map for the inodes to correspond to allocated and unallocated inodes.

▪ A bit map for the blocks to correspond to allocated and unallocated blocks.

▪ These bitmaps should take up at least one block each prior to the inode table.

53

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

A more realistic rendition of the Linux Filesystem

❖ We need two things:

▪ A bit map for the inodes to correspond to allocated and unallocated inodes.

▪ A bit map for the blocks to correspond to allocated and unallocated blocks.

▪ These bitmaps take up at least one block each prior to the inode table.

54

Block
Bit Map

Inode
Bit Map

inode table………………………..

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

A much more realistic rendition of the Linux Filesystem

❖ We have the bit maps now, what else do we need?

▪ We don’t have any information about the file system itself. Some questions we need
answers to.

• How large are the blocks, how many inodes in the inode table, how many free
blocks in total, how many blocks are allocated to data, how many blocks are
hidden from the user (just for the os usage), what type of file system is this, what
is the size of each inode, which is the first nonspecial inode, is the file system in a
valid state, and much much more.

55

Block
Bit Map

Inode
Bit Map

inode table………………………..

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

A much more realistic rendition of the Linux Filesystem

❖ The Super Block

▪ Is a block in the filesystem that contains metadata about the file system itself.

▪ Used by the operating system to maintain the file system

• Because it is so important, many copies of the super block are maintained within the file system.

• Just incase the super block the kernel has becomes corrupted

• Required overhead, as the superblock is written back to disk frequently.

56

Block
Bit Map

Inode
Bit Map

inode table………………………..

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

A much more realistic rendition of the Linux Filesystem

❖ Linux ext2: Super Block Values

▪ inode_count, block_count, reserved_blocks for the kernel (why is this important?)

▪ free_inode_count, free_block_count, first_data_block, block_size,

▪ filesystem_magic_number, error_no

▪ first_real_inode (version 0 set to 11, can be set to any in future versions)

▪ inode_table_start

▪ There are many many more; 1024 bytes worth of information.

57

Block
Bit Map

Inode
Bit Map

inode table………………………..

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

A much more realistic rendition of the Linux Filesystem

❖ To make room for the Super Block, let’s scoot everything over one block.

❖ Can you believe we’re still missing one thing?

▪ Probably the most important piece…

58

Super
Block…

Block
Bit Map

Inode
Bit Map inode table………………………..

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

A much more realistic rendition of the Linux Filesystem

❖ WHERE IS THE OPERATING SYSTEM/KERNAL?

▪ It is not just going to appear on the computer.

❖ The code for the operating system is stored within the filesystem itself!

❖ It is stored at the start of the file system device and “only” takes up 1024
bytes; so let’s scoot everything over.

❖ Ah, finally, a more realistic design.

59

Boot
Block

Super
Block…

Block
Bit Map

Inode
Bit Map

inode table………………………..

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

A much more realistic rendition of the Linux Filesystem

❖ The boot block

▪ Contains the initial segments of code necessary to bootstrap the operating system

• (that is, so that the operating system can install itself)

• 1024 bytes might seem like a little bit, but really, the boot code is much smaller
than this.

– 512 bytes minimum needed for the boot block, with 446 bytes dedicated to the actual

bootloader itself. Talk about optimization.

– Why 512? (legacy support).

60

Boot
Block

Super
Block…

Block
Bit Map

Inode
Bit Map

inode table………………………..

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

A much more realistic rendition of the Linux Filesystem

❖ The boot block

▪ 512 bytes minimum needed for the boot block, with 446 bytes dedicated to the
actual bootloader itself. Talk about optimization.

▪ The boot block also contains information not about the operating system itself, but
also about the physical disk itself. It tells it (the cpu) where to find the rest of the
OS code. Because, the linux kernal is not going to fit in 446 bytes, that would be
silly.

61

Boot
Block

Super
Block…

Block
Bit Map

Inode
Bit Map

inode table………………………..

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

A closer look at the boot block

❖ The boot block

▪ 512 bytes minimum needed for the boot block, with 446 bytes dedicated to the

actual bootloader itself. Talk about optimization.

62

boot loader code

The bootloader/pre-kernal code tells the cpu
What it should do to prepare itself to install the actual kernel.
1. How to set up registers.
2. How to set up memory allocation

A. (literally, a small stack and text segment, and others)
3. Validate the file system
4. Establish permissions (software execution permission)
5. Examines the CPU to denote which type it is and what other

hardware it can use.
6. Tells it where to locate the rest of the kernel is within the

filesystem.

 It is an extremely intricate processes that itself could be an entire class.

Partition 1

Partition 2

Partition 3

Partition 4

signature to verify boot

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

A closer look at the boot block

❖ The boot block

▪ 512 bytes minimum needed for the boot block, with 446 bytes dedicated to the

actual bootloader itself. Talk about optimization.

63

boot loader code

Partition 1

Partition 2

Partition 3

Partition 4

signature to verify boot

What are these partitions?

They tell the boot loader “mini kernel” which portions of the file system
denote which is ‘active’, that is, which contains the rest of the kernel code.
If you have both windows and macos on your machine, then you have two
sperate partitions that are active and can be activated by you manually/by
the firmware (BIOS).

They can also denote that you have other filesystems on the same disks
(hence that it is partitioned).

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

A real realistic rendition of the Linux Filesystem

64

Boot
Block

Inactive
Partition Two

Inactive
Three

Inactive
Four

Partition one

Kernal Code
Compressed

The hardware searches for attached storage devices (CDs, hard drives, flash drives, etc.) to find a boot block.
1. The boot block is always at the start of the device or contains a pointer to the actual location of the bootloader or kernel.
2. The boot block provides the CPU with its first non-firmware instructions, which are loaded into RAM and executed. This

process sets up the system to install the full kernel, which is stored in the file system.
3. After setting up memory, initializing registers, and handling other necessary configurations, the CPU loads the kernel code

from the location specified by the bootloader in the active partition.
4. The kernel then decompresses itself and loads into memory (RAM), either all at once or in parts.
5. It loads in the super block for the file system and configures everything (that it needs to).
6. And finally, you are running the operating system for the first time, and it spawns our first processes

A. init on linux, launchd on mac, sessionmanager on windows which are daemons
7. Yeah, I know. ☺

Fat32 FS Other FS Other FS

Data Blocks
Inode
Table

Block
Bit

Map

Inode
Bit

Map

Super
BlocK

You press the power button; what happens?

CIS 4480, Spring 2024L09: Inodes, Super Block, and Boot BlockUniversity of Pennsylvania

And that was file systems! Truly a miracle.

❖ Next up, Multithreading with Travis on Thursday!

65

	Default Section
	Slide 1: I-Nodes, Super Block, and Boot Block Computer Operating Systems, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Lecture Outline
	Slide 4: Review: Filesystem and inodes
	Slide 5: Review: Filesystem and inodes
	Slide 6: Review: Filesystem and inodes
	Slide 7: Inodes at a glance: Physical Block 2
	Slide 8: Inodes at a glance: Physical Block 2
	Slide 9: Lecture Outline
	Slide 10: Inodes at a glance: Reserved Inodes
	Slide 11: Inodes at a glance: Reserved Inodes
	Slide 12: The Most Important Special Inode: Inode 2
	Slide 13: The Most Important Special Inode: Inode 2
	Slide 14: Lecture Outline
	Slide 15: Resolving Paths; Looking for a file
	Slide 16: Absolute Paths
	Slide 17: Relative Paths
	Slide 18: Lecture Outline
	Slide 19: Walkthrough: Resolving an Absolute Pathname
	Slide 20: Walkthrough: Resolving an Absolute Pathname
	Slide 21: Walkthrough: Resolving an Absolute Pathname
	Slide 22: Walkthrough: Resolving an Absolute Pathname
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Directories in the Filesystem
	Slide 29: Directories in the Filesystem
	Slide 30: Directories in the Filesystem
	Slide 31: Directories in the Filesystem
	Slide 32: Directories in the Filesystem
	Slide 33: Directories in the Filesystem
	Slide 34: Directories in the Filesystem
	Slide 35: Directories in the Filesystem
	Slide 36: Directories in the Filesystem
	Slide 37: Directories in the Filesystem
	Slide 38: Directories in the Filesystem
	Slide 39: Directories in the Filesystem
	Slide 40: Directories in the Filesystem
	Slide 41: Resolving Absolute Paths for Regular Files
	Slide 42: Resolving Absolute Paths for Regular Files
	Slide 43: Resolving Absolute Paths for Regular Files
	Slide 44: Resolving Absolute Paths for Regular Files
	Slide 45: Resolving Absolute Paths for Regular Files
	Slide 46: A Possible Scenario for Resolving Paths
	Slide 47: Resolving Absolute Paths for Regular Files
	Slide 48: Resolving Absolute Paths for Regular Files
	Slide 49: Lecture Outline
	Slide 50: Accessing a Struct Dirent
	Slide 51: Filtering and Sorting Dirents
	Slide 52: Lecture Outline
	Slide 53: A more realistic rendition of the Linux Filesystem
	Slide 54: A more realistic rendition of the Linux Filesystem
	Slide 55: A much more realistic rendition of the Linux Filesystem
	Slide 56: A much more realistic rendition of the Linux Filesystem
	Slide 57: A much more realistic rendition of the Linux Filesystem
	Slide 58: A much more realistic rendition of the Linux Filesystem
	Slide 59: A much more realistic rendition of the Linux Filesystem
	Slide 60: A much more realistic rendition of the Linux Filesystem
	Slide 61: A much more realistic rendition of the Linux Filesystem
	Slide 62: A closer look at the boot block
	Slide 63: A closer look at the boot block
	Slide 64: A real realistic rendition of the Linux Filesystem
	Slide 65: And that was file systems! Truly a miracle.

