
CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Scheduler & Threads (cont.)
Computer Operating Systems, Spring 2025

Instructors: Joel Ramirez Travis McGaha

Head TAs: Ash Fujiyama Emily Shen Maya Huizar

TAs:

Ahmed Abdellah Bo Sun Joy Liu Susan Zhang Zihao Zhou

Akash Kaukuntla Connor Cummings Khush Gupta Vedansh Goenka

Alexander Cho Eric Zou Kyrie Dowling Vivi Li

Alicia Sun Haoyun Qin Rafael Sakamoto Yousef AlRabiah

August Fu Jonathan Hong Sarah Zhang Yu Cao

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Poll: how are you?

❖ How are you doing? Any questions?

2

pollev.com/tqm

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Administrivia

❖ Penn-shell is out (this shouldn’t be news)!

▪ Full thing is due (Fri, Feb 28) (This week!)

▪ Done in partners

• Everything was covered already that you would need…

❖ Midterm is Thursday next week

▪ Old exams and exam policies are posted on the course website

▪ Review session in Recitation Thursday this week!!!!!!!!!!!! (7pm in Towne 217)

▪ Some midterm review in Lecture Tuesday Next Week

▪ What we get to in this lecture will be testable.

❖ SIGCSE TS

▪ Some office hours moving around as well. Calendar updated soon.
3

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Lecture Outline

❖ Scheduler

▪ Round robin variants

▪ Linux Scheduler

❖ Threads & Shared Data

▪ Thread Refresher

▪ Mutex

▪ TSL

▪ Disable Interrupts

▪ Petersons

4

Lecture ended right before TSL

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Types of Scheduling Algorithms

❖ Non-Preemptive: if a thread is running, it continues to run until it completes or
until it gives up the CPU

▪ First come first serve (FCFS)

▪ Shortest Job First (SJF)

❖ Preemptive: the thread may be interrupted after a given time and/or if
another thread becomes ready

▪ Round Robin

▪ Priority Round Robin

▪ …

5

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Round Robin

❖ Sort of a preemptive version of FCFS

▪ Whenever a thread is ready, add it to the end of the queue.

▪ Run whatever job is at the front of the queue

❖ BUT only let it run for a fixed amount of time (quantum).

▪ If it finishes before the time is up, schedule another thread to run

▪ If time is up, then send the running thread back to the end of the queue.

6

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Example of Round Robin

7

❖ Same example workload:

Job 1: 24 units, Job 2: 3 units, Job 3: 3 units

❖ RR schedule with time quantum=2:
 |Job 1|Job 2|Job 3|Job 1|Jo2|Jo3|Job 1| … |Job 1|

 0 2 4 6 8 9 10 12,14… 30

❖ Total waiting time: (0 + 4 + 2) + (2 + 4) + (4 + 3) = 19
▪ Counting time spent waiting between each “turn” a job has with the CPU

❖ Average waiting time: 19/3 (~6.33)

❖ Total turnaround time: 30 + 9 + 10 = 49

❖ Average turnaround time: 49/3 (~16.33)

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Round Robin Analysis

❖ Advantages:

▪ Still relatively simple

▪ Can works for interactive systems

❖ Disadvantages

▪ If quantum is too small, can spend a lot of time context switching

▪ If quantum is too large, approaches FCFS

▪ Still assumes all processes have the same priority.

❖ Rule of thumb:

▪ Choose a unit of time so that most jobs (80-90%) finish in one usage of CPU time

8

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

RR Variant: PennOS Scheduler

❖ In PennOS you will have to implement a priority scheduler based mostly off of
round robin.

❖ You will have 3 queues, each with a different priority
(0, 1, 2)

▪ Each queue acts like normal round robin within the queue

❖ You spend time quantum processing each queue proportional to the priority

▪ Priority 0 is scheduled 1.5 times more often than priority 1

▪ Priority 1 is scheduled 1.5 times more often than priority 2

9

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

RR Variant: Priority Round Robin

❖ Same idea as round robin, but with multiple queues for different priority
levels.

❖ Scheduler chooses the first item in the highest priority queue to run

❖ Scheduler only schedules items in lower priorities if all queues with higher
priority are empty.

10

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

RR Variant: Multi Level Feedback

11

❖ Each priority level has a ready queue, and a time quantum

❖ Thread enters highest priority queue initially, and lower queue with each
timer interrupt

❖ If a thread voluntarily stops using CPU before time is up, it is moved to
the end of the current queue

❖ Bottom queue is standard Round Robin

❖ Thread in a given queue not scheduled until all higher queues are empty

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Multi Level Feedback Analysis

❖ Threads with high I/O bursts are preferred

▪ Makes higher utilization of the I/O devices

▪ Good for interactive programs (keyboard, terminal, mouse is I/O)

❖ Threads that need the CPU a lot will sink to lower priority, giving shorter
threads a chance to run

❖ Still have to be careful in choosing time quantum

❖ Also have to be careful in choosing how many layers

12

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Multi Level Feedback Variants: Priority

❖ Can assign tasks different priority levels upon initiation that decide which
queue it starts in

▪ E.g. the scheduler should have higher priority than HelloWorld.java

❖ Update the priority based on recent CPU usage rather than overall cpu usage
of a task

▪ Makes sure that priority is consistent with recent behavior

❖ Many others that vary from system to system

13

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Lecture Outline

❖ Scheduler

▪ Round robin variants

▪ Linux Scheduler

❖ Threads & Shared Data

▪ Thread Refresher

▪ Mutex

▪ TSL

▪ Disable Interrupts

▪ Petersons

14

Lecture ended right before TSL

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Multiple Cores

❖ On a modern machine, we have multiple CPU Cores, each can run tasks

▪ Generally each core has its own run-queue

▪ It helps to keep threads in the same process on the same processor

• Threads in the same process use the same memory: lower overhead

• If we want to there are ways to make sure a thread/process is “pinned” to a CPU

– See: Thread Affinity / Processor Affinity / CPU Pinning

❖ There is other stuff to balance tasks across cores, but I am leaving that out for
time ☺

15

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

"Completely Fair Scheduling"

❖ “Fairness” – making sure that each task gets its fair share of the CPU

▪ This is not always achievable

▪ “Fairness, it turns out, is enough to solve many CPU-scheduling problems.”

16

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

"Completely Fair Scheduling"

❖ “Fairness” – making sure that each task gets its fair share of the CPU

▪ This is not always achievable

▪ “Fairness, it turns out, is enough to solve many CPU-scheduling problems.”

❖ Here is an example of fairness:

▪ Within some “slice” of time, each task gets an equal proportion of the
processor

17

THIS IS WHAT CFS IS TRYING TO
REPLICATE. AS IF WE ARE ON AN
“IDEAL PROCESSOR”

TASK Run Time

A 1

B 5

C 2

Task

A 1/3

B 1/3

C 1/3

0 1 2 3 4 5 6 7 8

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

"Completely Fair Scheduling"

❖ “Fairness” – making sure that each task gets its fair share of the CPU

▪ This is not always achievable

▪ “Fairness, it turns out, is enough to solve many CPU-scheduling problems.”

❖ Here is an example of fairness:

▪ Within some “slice” of time, each task gets an equal proportion of the
processor

18

THIS IS WHAT CFS IS TRYING TO
REPLICATE. AS IF WE ARE ON AN
“IDEAL PROCESSOR”

TASK Run Time

A 1

B 5

C 2

Task

A 1/3 1/3 1/3

B 1/3 1/3 1/3

C 1/3 1/3 1/3

0 1 2 3 4 5 6 7 8

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

"Completely Fair Scheduling"

❖ “Fairness” – making sure that each task gets its fair share of the CPU

▪ This is not always achievable

▪ “Fairness, it turns out, is enough to solve many CPU-scheduling problems.”

❖ Here is an example of fairness:

▪ Within some “slice” of time, each task gets an equal proportion of the
processor

19

THIS IS WHAT CFS IS TRYING TO
REPLICATE. AS IF WE ARE ON AN
“IDEAL PROCESSOR”

TASK Run Time

A 1

B 5

C 2

Task

A 1/3 1/3 1/3

B 1/3 1/3 1/3 1/2

C 1/3 1/3 1/3 1/2

0 1 2 3 4 5 6 7 8

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

"Completely Fair Scheduling"

❖ “Fairness” – making sure that each task gets its fair share of the CPU

▪ This is not always achievable

▪ “Fairness, it turns out, is enough to solve many CPU-scheduling problems.”

❖ Here is an example of fairness:

▪ Within some “slice” of time, each task gets an equal proportion of the
processor

20

THIS IS WHAT CFS IS TRYING TO
REPLICATE. AS IF WE ARE ON AN
“IDEAL PROCESSOR”

TASK Run Time

A 1

B 5

C 2

Task

A 1/3 1/3 1/3

B 1/3 1/3 1/3 1/2 1/2

C 1/3 1/3 1/3 1/2 1/2

0 1 2 3 4 5 6 7 8

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

"Completely Fair Scheduling"

❖ “Fairness” – making sure that each task gets its fair share of the CPU

▪ This is not always achievable

▪ “Fairness, it turns out, is enough to solve many CPU-scheduling problems.”

❖ Here is an example of fairness:

▪ Within some “slice” of time, each task gets an equal proportion of the
processor

21

THIS IS WHAT CFS IS TRYING TO
REPLICATE. AS IF WE ARE ON AN
“IDEAL PROCESSOR”

TASK Run Time

A 1

B 5

C 2

Task

A 1/3 1/3 1/3

B 1/3 1/3 1/3 1/2 1/2 1 1 1

C 1/3 1/3 1/3 1/2 1/2

0 1 2 3 4 5 6 7 8

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

CFS – Reality

❖ In reality there are things that prevent us from having a “perfect multi-tasking
processor”

▪ Time to context switch

▪ Time for the scheduler run

▪ Time spent running other things in the krenel that dno’t really belong to a single task

▪ Etc.

22

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

CFS – Implementation

❖ CFS maintains a current count for “how long has a task run” called vruntime.

❖ The runtimes of all tasks are stored by the scheduler

❖ Unlike round robin, a thread is not run for a fixed amount of time
▪ Run a task till there is some thing with a lower vruntime

▪ To avoid constantly switching back and forth between two tasks there is a minimum
“granularity” (~2.25 miliseconds iirc)

23

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

CFS – Implementation Details

❖ CFS maintains a current count for “how long has a task run” called vruntime.

❖ The runtimes of all tasks are stored by the scheduler inside of a Red-Black Tree

▪ Red-Black Tree is a Self balancing binary tree

▪ Sorted on the vruntime for each task

▪ Smallest vruntime task is the leftmost node

❖ Adding a node is O(log N) operation

❖ Pointer to leftmost node is maintained,
so looking up is O(1)

24

7

124

5 9 13

Root

min_vruntime

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

CFS – Implementation Details

❖ CFS maintains a current count for “how long has a task run” called vruntime.

❖ On each scheduler “tick” the processor compares the current
running task to the leftmost task

❖ If the min_vruntime is less than the current node
(and granularity has passed) then start
running the minimum task.

25

7

124

5 9 13

Root

min_vruntime

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

CFS – New Tasks

❖ New tasks haven’t run on the CPU, so their vruntime is 0 when they are
created?

▪ No, instead new tasks start with their vruntime equal to the min_vruntime.

▪ This way fairness is maintained between newer and older tasks.

26

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

CFS – I/O Bound Tasks

❖ CFS will also maintain whether a job is sleeping or blocked. Won’t schedule to
run those tasks and store them in a separate structure.

❖ CFS handles I/O bound tasks pretty well :)

❖ Tasks with many I/O bursts will have small usage of CPU.
So they also have a low vruntime and have higher priority.

27

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

nice

❖ nice

28

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

nice

❖ Linux has a way to set priority with a `nice` value.

▪ Each process starts with a nice value of 0

▪ Nice is clamped to [-20, 19]

❖ The higher your nice score, the “nicer” you are
(the task runs less often thus letting other tasks run instead of it)

❖ Higher nice score -> lower priority

❖ Lower nice score -> higher priority

29

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

CFS – Vruntime

❖ CFS uses vruntime as the dominant metric

▪ V stands for virtual (into not real runtime)

❖ You may have though:
▪ curr_task->runtime += time_running

▪ This is false

❖ vruntime takes other things (like nice scores) into consideration
▪ curr_task->vruntime += (time_running * weight_based_on_nice)

❖ CFS takes other things into consideration that make it more complex :)

30

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Earliest Eligible Virtual Deadline First (EEVDF)

❖ New Linux scheduler!

▪ Replaced CFS less than a year ago (April 2024)

▪ Still aims for fairness, just with some different metrics

❖ Utilizes a new concept called “lag” (in addition to vruntime)

▪ A measurement for how much time a task is “owed” if it did not get its fair share of time

▪ Tasks that took more CPU time than its fair share have negative “lag”

• Will not be considered “Eligible”. will not be run until lag >= 0

• Sleeping / blocked tasks will not get free lag increases

31

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Earliest Eligible Virtual Deadline First (EEVDF)

❖ Not going over it due to:

▪ Time in lecture, looks like it may be more complex and take longer to explain

▪ It is new! Not as much information out there on it

• I could read the Linux kernel source code, but that takes time :)))))))

❖ Take a look at these articles from LWN.net if you want to learn more about
EEVDF

▪ https://lwn.net/Articles/925371/

▪ https://lwn.net/Articles/969062/

32

https://lwn.net/Articles/925371/
https://lwn.net/Articles/969062/

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

33

The Priority Inversion Problem

T1

T2

T3

failed attempt to lock R lock(R) unlock(R)

lock(R) unlock(R)

Priority order: T1 > T2 > T3

T2 is causing a higher priority task T1 wait !

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Why did we talk about this?

❖ Scheduling is fundamental towards how computer can multi-task

❖ This is a great example of how “systems” intersects with algorithms :)

❖ It shows up occasionally in the real world :)

▪ Scheduling threads with priority with shared resources can cause a priority inversion,
potentially causing serious errors.

34

What really happened on Mars Rover Pathfinder, Mike Jones.
http://www.cs.cornell.edu/courses/cs614/1999sp/papers/pathfinder.html

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

More

❖ For those curious, there was a LOT left out

❖ RTOS (Real Time Operating Systems)

▪ For real time applications

▪ CRITICAL that data and events meet defined time constraints

▪ Different focus in scheduling. Throughput is de-prioritized

❖ Fair-share scheduling

▪ Equal distribution across different users instead of by processes

❖ Etc.
35

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

More Round Robin Practice

❖ Four processes are executing on one CPU following round robin scheduling:

❖ You can assume:

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

36

Solutions at end of slide deck

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

More Round Robin Practice

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

❖ What is the earliest time that process C could have arrived?

❖ Which processes are in the ready queue at time 9?

❖ If this algorithm used a quantum of 3 instead of 2, how many fewer context
switches would there be?

37

Solutions at end of slide deck

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Lecture Outline

❖ Scheduler

▪ Round robin variants

▪ Linux Scheduler

❖ Threads & Shared Data

▪ Thread Refresher

▪ Mutex

▪ TSL

▪ Disable Interrupts

▪ Petersons

38

Lecture ended right before TSL

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Introducing Threads

❖ Separate the concept of a process from the “thread of execution”

▪ Threads are contained within a process

▪ Usually called a thread, this is a sequential execution stream within a process

❖ In most modern OS’s:

▪ Threads are the unit of scheduling.

39

thread

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources,
 & security attributes

▪ A Thread has a unique: stack, stack pointer, program counter,
 & registers

▪ Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

40

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Threads vs. Processes

41

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Threads vs. Processes

42

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

POSIX Threads (pthreads)

❖ The POSIX APIs for dealing with threads
▪ Declared in pthread.h

• Not part of the C/C++ language

▪ To enable support for multithreading, must include -pthread
flag when compiling and linking with gcc command

• gcc –g –Wall –pthread –o main main.c

▪ Implemented in C

• Must deal with C programming practices and style

43

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Creating and Terminating Threads

❖

▪ Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check
against error constants)

▪ The new thread runs start_routine(arg)

44

int pthread_create(

 pthread_t* thread,

 const pthread_attr_t* attr,

 void* (*start_routine)(void*),

 void* arg);

Output parameter.

Gives us a “thread_descriptor”

Function pointer!

Takes & returns void*

to allow “generics” in C

Argument for the thread function

start_routine

continues

parentpthread_create

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

What To Do After Forking Threads?

❖

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval

45

int pthread_join(pthread_t thread, void** retval);

Parent thread waits for child

thread to exit, gets the child’s

return value, and child thread is

cleaned up

start_routine

continues

parentcreate join

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel if you have multiple CPUs/cores

• Takes advantage of the multiple cores

• Can make progress on multiple tasks at once, even if only 1 core

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads

46

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Lecture outline

❖ Scheduler

▪ Round robin variants

▪ Linux Scheduler

❖ Threads & Shared Data

▪ Thread Refresher

▪ Mutex

▪ TSL

▪ Disable Interrupts

▪ Petersons

47

Lecture ended right before TSL

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Shared Resources

❖ Some resources are shared between threads and processes

❖ Thread Level:

▪ Memory

▪ Things shared by processes

❖ Process level

▪ I/O devices

• Files

• terminal input/output

• The network

48

Issues arise when we

try to shared things

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Data Races

❖ Two memory accesses form a data race if different threads access the same
location, and at least one is a write, and they occur one after another

▪ Means that the result of a program can vary depending on chance (which thread ran first?
When did a thread get interrupted?)

49

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Data Race Example

❖ If your fridge has no milk,
then go out and buy some more

▪ What could go wrong?

❖ If you live alone:

❖ If you live with a roommate:

50

if (!milk) {

 buy milk

}

! !

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

51

if (!note) {

 if (!milk) {

 leave note

 buy milk

 remove note

 }

}

pollev.com/tqm

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

52

if (!note) {

 if (!milk) {

 leave note

 buy milk

 remove note

 }

}

time

you roommate

Check note

Check milk

Leave note

Buy milk

Check note

Check milk

Leave note

Buy milk

*There are other

possible scenarios

that result in

multiple milks

We can be interrupted

between checking note and

leaving note 

pollev.com/tqm

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Threads and Data Races

❖ Data races might interfere in painful, non-obvious ways, depending on the
specifics of the data structure

❖ Example: two threads try to read from and write to the same shared memory
location

▪ Could get “correct” answer

▪ Could accidentally read old value

▪ One thread’s work could get “lost”

❖ Example: two threads try to push an item onto the head of the linked list at the
same time

▪ Could get “correct” answer

▪ Could get different ordering of items

▪ Could break the data structure! 
53

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Poll: how are you?

❖ What does this print?

54

Always prints 0, the global

counter is not shared across

processes, so the parent’s

global never changes

pollev.com/tqm

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Poll: how are you?

❖ What does this print?

55

Usually 5000

pollev.com/tqm

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Demos:

❖ See total.c and total_processes.c

▪ Threads share an address space, if one thread increments a global, it is seen by other
threads

▪ Processes have separate address spaces, incrementing a global in one process does not
increment it for other processes

❖ NOTE: sharing data between threads is actually kinda unsafe if done wrong (we
are doing it wrong in this example), more on this NOW

56

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Increment Data Race

❖ What seems like a single operation
is actually multiple operations in one. The increment
looks something like this in assembly:

❖ What happens if we context switch to a different thread while executing these
three instructions?

❖ Reminder: Each thread has its own registers to work with. Each thread would
have its own R0

57

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

++sum_total

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

58

LOAD sum_total into R0

++sum_total

Thread 0

Thread 1

R0 = 0

sum_total = 0

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

59

LOAD sum_total into R0

++sum_total

LOAD sum_total into R0

Thread 0

Thread 1

R0 = 0

sum_total = 0

R0 = 0

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

60

LOAD sum_total into R0

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

Thread 0

Thread 1

R0 = 0

sum_total = 0

R0 = 1

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

61

LOAD sum_total into R0

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 0

sum_total = 1

R0 = 1

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

62

LOAD sum_total into R0

ADD R0 R0 #1

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 1

sum_total = 1

R0 = 1

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

❖ With this example, we could get 1 as an output instead of 2, even though we
executed ++sum_total twice

63

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 1

sum_total = 1

R0 = 1

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Synchronization

❖ Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data

▪ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”

▪ Many different coordination mechanisms have been invented

❖ Goals of synchronization:

▪ Liveness – ability to execute in a timely manner
(informally, “something good eventually happens”)

▪ Safety – avoid unintended interactions with shared data
structures (informally, “nothing bad happens”)

64

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that only one thread can
operate there at a time

▪ Executed in an uninterruptible (i.e. atomic) manner

❖ Lock Acquire

▪ Wait until the lock is free,
then take it

❖ Lock Release

▪ Release the lock

▪ If other threads are waiting, wake exactly one up to pass lock to

65

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

block
if locked

❖ Pseudocode:

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Lock API

❖ Locks are constructs that are provided by the operating system to help ensure
synchronization

▪ Often called a mutex or a semaphore

❖ Only one thread can acquire a lock at a time,
No thread can acquire that lock until it has been released

❖ Has memory barriers built into it and usually uses TSL to ensure that acquiring
the lock is atomic (more on TSL and memory barriers in a little bit)

66

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Milk Example – What is the Critical Section?

❖ What if we use a lock on the
refrigerator?

▪ Probably overkill – what if
roommate wanted to get eggs?

❖ For performance reasons, only
put what is necessary in the
critical section

▪ Only lock the milk

▪ But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

67

fridge.lock()

if (!milk) {

 buy milk

}

fridge.unlock()

milk_lock.lock()

if (!milk) {

 buy milk

}

milk_lock.unlock()

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)
▪ pthread.h defines datatype pthread_mutex_t

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()

▪ Releases the lock

❖

▪ “Uninitializes” a mutex – clean up when done

68

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,

 const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Un-blocks when lock is acquired

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

pthread Mutex Examples

❖ See total.c

▪ Data race between threads

❖ See total_locking.c

▪ Adding a mutex fixes our data race

❖ How does total_locking compare to sequential code and to total?

▪ Likely slower than both– only 1 thread can increment at a time, and must deal with
checking the lock and switching between threads

▪ One possible fix: each thread increments a local variable and then adds its value (once!) to
the shared variable at the end

• See total_locking_better.c

69

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

Lecture Outline

❖ Scheduler

▪ Round robin variants

▪ Linux Scheduler

❖ Threads & Shared Data

▪ Thread Refresher

▪ Mutex

▪ TSL

▪ Disable Interrupts

▪ Petersons

70

Lecture ended right before TSL
We will cover it after break!

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

That’s all!

❖ See you next time!

88

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

More Round Robin Practice

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

❖ What is the earliest time that process C could have arrived?

▪ If C arrived at time 0, 1, or 2, it would have run at time 4

▪ C could have shown up at time 3 and come after A in the queue

▪ C showed up at time 3 at earliest

89

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

More Round Robin Practice

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

❖ Which processes are in the ready queue at time 9?

▪ D is running, so it is not in the queue

▪ A has finished

▪ B and C still have to finish, so they are in the queue.

90

CIS 4480/5480, Spring 2025L12: Scheduling & Threads ResumeUniversity of Pennsylvania

More Round Robin Practice

❖ If this algorithm used a quantum of 3 instead of 2, how many fewer context
switches would there be?

▪ Currently there are 7 context switches

▪ If quantum was 3:

▪ Or:

91

Depends on if C shows

up at time 3 or 4

Either way, only 4

context switches, so 3

less than quantum = 2

	Default Section
	Slide 1: Scheduler & Threads (cont.) Computer Operating Systems, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Types of Scheduling Algorithms
	Slide 6: Round Robin
	Slide 7: Example of Round Robin
	Slide 8: Round Robin Analysis
	Slide 9: RR Variant: PennOS Scheduler
	Slide 10: RR Variant: Priority Round Robin
	Slide 11: RR Variant: Multi Level Feedback
	Slide 12: Multi Level Feedback Analysis
	Slide 13: Multi Level Feedback Variants: Priority
	Slide 14: Lecture Outline
	Slide 15: Multiple Cores
	Slide 16: "Completely Fair Scheduling"
	Slide 17: "Completely Fair Scheduling"
	Slide 18: "Completely Fair Scheduling"
	Slide 19: "Completely Fair Scheduling"
	Slide 20: "Completely Fair Scheduling"
	Slide 21: "Completely Fair Scheduling"
	Slide 22: CFS – Reality
	Slide 23: CFS – Implementation
	Slide 24: CFS – Implementation Details
	Slide 25: CFS – Implementation Details
	Slide 26: CFS – New Tasks
	Slide 27: CFS – I/O Bound Tasks
	Slide 28: nice
	Slide 29: nice
	Slide 30: CFS – Vruntime
	Slide 31: Earliest Eligible Virtual Deadline First (EEVDF)
	Slide 32: Earliest Eligible Virtual Deadline First (EEVDF)
	Slide 33: The Priority Inversion Problem
	Slide 34: Why did we talk about this?
	Slide 35: More
	Slide 36: More Round Robin Practice
	Slide 37: More Round Robin Practice
	Slide 38: Lecture Outline
	Slide 39: Introducing Threads
	Slide 40: Threads vs. Processes
	Slide 41: Threads vs. Processes
	Slide 42: Threads vs. Processes
	Slide 43: POSIX Threads (pthreads)
	Slide 44: Creating and Terminating Threads
	Slide 45: What To Do After Forking Threads?
	Slide 46: Why Threads?
	Slide 47: Lecture outline
	Slide 48: Shared Resources
	Slide 49: Data Races
	Slide 50: Data Race Example
	Slide 51: Data Race Example
	Slide 52: Data Race Example
	Slide 53: Threads and Data Races
	Slide 54: Poll: how are you?
	Slide 55: Poll: how are you?
	Slide 56: Demos:
	Slide 57: Increment Data Race
	Slide 58: Increment Data Race
	Slide 59: Increment Data Race
	Slide 60: Increment Data Race
	Slide 61: Increment Data Race
	Slide 62: Increment Data Race
	Slide 63: Increment Data Race
	Slide 64: Synchronization
	Slide 65: Lock Synchronization
	Slide 66: Lock API
	Slide 67: Milk Example – What is the Critical Section?
	Slide 68: pthreads and Locks
	Slide 69: pthread Mutex Examples
	Slide 70: Lecture Outline
	Slide 88: That’s all!
	Slide 89: More Round Robin Practice
	Slide 90: More Round Robin Practice
	Slide 91: More Round Robin Practice

