
CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Midterm Review
Computer Operating Systems, Spring 2025

Instructors: Joel Ramirez Travis McGaha

Head TAs: Ash Fujiyama Emily Shen Maya Huizar

TAs:

Ahmed Abdellah Bo Sun Joy Liu Susan Zhang Zihao Zhou

Akash Kaukuntla Connor Cummings Khush Gupta Vedansh Goenka

Alexander Cho Eric Zou Kyrie Dowling Vivi Li

Alicia Sun Haoyun Qin Rafael Sakamoto Yousef AlRabiah

August Fu Jonathan Hong Sarah Zhang Yu Cao

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Poll: how are you?

❖ Any questions?

2

pollev.com/tqm

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Administrivia

❖ Penn-shell

▪ Late deadline is tonight

▪ You and your partner should not submit separately.
You and your partner should have 1 submission together.

▪ If you submitted already, you must add your partner to your submission.

▪ Please do this so we know which submission to grade.

❖ Midterm Exam

▪ Thursday This Week

• In AGH 106 and AGH 105 (the overflow room)

▪ Midterm review in Class Today

▪ Makeup exam is possible, email us ASAP

3

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Administrivia

❖ PENNOS

▪ Spec to be released after the midterm (Friday/Saturday)

▪ Done in groups of four, partner signup will open on Friday

• Will do random assignment after break

▪ First lecture after break will be a lecture given by TA’s to talk about PennOS

4

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Lecture Outline

❖ Some Brief History on “Operating Systems”

▪ Human computers

▪ Eniac

▪ Punch cards

▪ Unix & Linux

❖ "Modern" Scheduling

5

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Poll: how are you?

❖ Which topic do you want to practice and then have us go over?

▪ Fork

▪ Signals

▪ Processes

▪ Processes vs threads

▪ File System

▪ Scheduling

▪ Threads & data races

6

pollev.com/tqm

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

fork

❖ Consider the following C code that uses fork()

▪ Which of these outputs are
possible? Please justify your
answer

▪ 380380

▪ 338008

▪ 380803

7

int main() {

 pid_t pid = fork();

 pid = fork();

 if (pid == 0) {

 printf("3");

 } else {

 printf("8");

 int status;

 waitpid(pid, &status, 0);

 printf("0");

 }

}

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Signals: Critical Sections

❖ A vector is data structure that represents a resizable array. For those used to
Java, think of it like an ArrayList.

❖ Consider the following C snippet that outlines what a vector of floats is and
how we would push a value to the end of it. Is there a critical section in the
vec_push function? If so, what line(s)?

11

typedef struct vec_st {

 size_t length, capacity;

 float* eles;

} Vector;

void vec_push(Vector* this, float to_push) {

 // assume that we don't have to resize for simplicity

 assert(this->length < this->capacity);

 this->length += 1; // increment length to include it

 this->eles[this->length - 1] = to_push; // add the ele to the end

}

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Signals Continued

❖ Signals can happen at any time and thus there are issues with making signal
handlers safe to avoid any critical sections. In general, it is advised to keep
signal handlers as short as possible or just avoid them at all costs.

❖ In each of these scenarios, tell us whether it is necessary to use signals and
register a signal handler. If it is necessary, how safe is it?

❖ We want to have our program acknowledge when a user presses CTRL + Z or
CTRL + C and print a message before exiting/stopping

13

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Signals Continued

❖ The user needs to type floating point numbers to stdin, but there are some
special floating point numbers like NaN, infinity, and –infinity. To avoid this, we
have the user hit CTRL + C for NaN, CTRL + Z for infinity and other key
combinations for other special values.

15

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes

❖ We want to write a in C program that will compile and evaluate some other
program. The program we are grading is similar to penn-shredder. For this
program we write, lets assume we are running penn-shredder once and
evaluating it. We need to be able to:

▪ Specify the input and get output of the shredder

▪ Set a time limit so that penn-shredder doesn’t go infinite

▪ Setup penn-shredder to receive signals from the keyboard (e.g. CTRL + C and CTRL + Z)

❖ Roughly how many times do we need to call each of these system calls? Briefly
explain any system call you specify non-zero for

17

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these system calls? Briefly
explain your answer for every system call.

18

System Call Number Justification

fork()

execvp()

pipe()

waitpid()

kill()

signal()

tcsetpgrp()

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Let’s say we had a program that did an expensive computation we wanted to
parallelize, we could use either threads or processes. Which one would be
faster and why?

❖ Sometimes we want to call software that is written in another language. If it is
written as a library with the proper support (e.g. TensorFlow is in C++ but
callable from Python), we could use threads. If we want to invoke a program
that is already compiled (isn’t a library/doesn't have a callable interface) we
could not use threads. We would have to use fork & exec. Why?

25

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes vs Threads

❖ We have seen two concurrency models so far

▪ Forking processes (fork)

• Creates a new process, but each process will have 1 thread inside it

▪ Kernel Level Threads (pthread_create)

• User level library, but each thread we create is known by the kernel

• 1:1 threading model

28

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes vs Threads

❖ For each of the concurrency models, state whether it is possible to do each of
the following.

❖ In a real exam, we would ask you to briefly explain why

29

Processes pthread

Can share files and concurrently access those files.

Can communicate through pipes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Modify and read the same data structure that is
stored in the heap

Switch to another concurrent task when one
makes a blocking system call.

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Scheduling
❖ You manage the back-end servers for an online puzzle game. Players

worldwide expect fast response times when navigating mazes in real time.

❖ Workload:

▪ A large number of short, interactive tasks: e.g., responding to player movements and chat
messages.

▪ Occasional long-running background tasks (e.g., map generation, analytics).

❖ Constraints/Goals:

▪ Fast response for interactive players to keep them engaged.

▪ No single player (or background job) should monopolize the CPU.

❖ Which single scheduling algorithm or hybrid approach would you use, and how
would it ensure both short interactive tasks and longer background processes
get fair treatment? Consider context-switch overhead, time quantum size, and
priority adjustments.

35

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Scheduling (cont.)

❖ Four processes are executing on one CPU following round robin scheduling:

❖ You can assume:

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

37

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Scheduling (cont.)

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

❖ What is the earliest time that process C could have arrived?

❖ Which processes are in the ready queue at time 9?

❖ If this algorithm used a quantum of 3 instead of 2, how many fewer context
switches would there be?

38

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

File System Block Allocation

❖ Consider that we want to read the 5th block of the file
/home/me/script.txt, what is the worst-case number of physical blocks
that must be read (including the 5th block) given the following :

▪ Blocks are 4096 bytes

▪ Each directory we are looking for is within the first block of the directory.

▪ We are using a Linked List Allocation (Implicit) file system.

• Assume we know the physical block number for the root directory.

42

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

File System Block Allocation

❖ Consider that we want to read the 5th block of the file
/home/me/script.txt, what is the worst-case number of physical blocks
that must be read (including the 5th block) given the following :

▪ Each directory we are looking for is within the first block of the directory.

▪ We are using a Linked List Allocation via FAT

• Assume we know where the root directory starts in the FAT.

• The FAT is only one block.

• Assume we know the physical block number for the root directory.

44

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

File System Block Allocation

❖ Consider that we want to read the 5th block of the file
/home/me/script.txt, what is the worst-case number of physical blocks
that must be read (including the 5th block) given the following :

▪ assume that directory entries we are looking for are in the first block of each directory we
search

❖ I-nodes

▪ assume we know where the I Node for the root directory is

46

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

File System Block Allocation

❖ Consider that we want to read the 5th block of the file
/home/me/script.txt, what is the best-case number of physical blocks
that must be read (including the 5th block) given the following :

▪ assume that directory entries we are looking for are in the first block of each directory we
search

❖ I-nodes

▪ assume we know where the I Node for the root directory is

48

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

File System Block Allocation

❖ How does the numbers change if we instead wanted to write to the 5th block of
the file?

❖ Despite not having the best numbers, I nodes are still chosen over FAT. Why is
this the case?

51

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

I-Node Design

❖ Assume that blocks are 4,096 bytes and an inode is 128 bytes large.

❖ Inode numbers are uint32_t (that is, unsigned integers).

❖ How many blocks do we need in this file system configuration to create an
inode table for each possible inode number? Feel free to write an expression,
not a definite value. (It’s a somewhat big value)

53

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Wait, where do we know how large the Inode Table is?

❖ The previous question alluded to the fact the number of inodes in the table is
capped. Where would we need to look for to know how many total inodes
there are?

55

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Fat Design

❖ Assume that blocks are 4,096 bytes.

❖ FAT numbers are 16 bits.

❖ How many blocks do we need in this file system configuration to create an fat
table for each possible fat number? Feel free to write an expression, not a
definite value.

57

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Has your friend been misled?

❖ You missed a super important lecture on filesystems and you think your friend
has gone mad. They say that on a single disk (Hard Drive), you can have
multiple different file systems! Is your friend correct? Why or why not?

59

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Has your friend been misled again?

❖ You missed yet another super important lecture on filesystems and you think
your friend has gone mad (again!). They say that the operating system on your
machine exists on the CPU and RAM prior to the first time turning on the
machine. Have they been misled? Why or why not?

61

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

63

Are we in the same directory?

❖ You’re given two inodes, A and B. And you’re tasked with writing a program
that tells us whether or not they share a common directory.

▪ (excluding the root directory).

• .e.g. /usr/bin/echo and /usr/huh share the /usr/ directory

• .e.g. /usr/bin/echo and /dev/tty06 do not share a directory.

• .e.g. /usr/local/lib/stdio.h and /usr/local/lib/stdlib.h share a directory, the /usr/local/lib/
directory.

▪ In other words, if somewhere up the path they share a directory, they have a common
directory!

▪ You are also given the Inode number for the directory that A and B are stored in.

▪ Describe at a high level, what you would need to do to accomplish this. And what critical
aspects of the file system structure would you need? Hint: What about the structure of the
directory blocks is imperative here?

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ Consider the following pseudocode that uses threads. Assume that file.txt is
large file containing the contents of a book. Assume that
there is a main() that
creates one thread
running first_thread()
and one thread for
second_thread()

❖ There is a data race.
How do we fix it
using just a mutex?
(where do we add calls to
lock and unlock?)

65

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

66

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ After we remove the data race on the global string, do we have deterministic
output? (Assuming the contents of the file stays the same).

69

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is an issue of inefficient CPU utilization going on in this code. What is it
and how can we fix it?

❖ (You can describe the
fix at a high level, no
need to write code)

71

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 4480/5480, Spring 2025L13: Midterm ReviewUniversity of Pennsylvania

That’s all!

❖ See you next time!

73

	Default Section
	Slide 1: Midterm Review Computer Operating Systems, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Lecture Outline
	Slide 6: Poll: how are you?
	Slide 7: fork
	Slide 11: Signals: Critical Sections
	Slide 13: Signals Continued
	Slide 15: Signals Continued
	Slide 17: Processes
	Slide 18: Processes Cont.
	Slide 25: Processes vs Threads
	Slide 28: Processes vs Threads
	Slide 29: Processes vs Threads
	Slide 35: Scheduling
	Slide 37: Scheduling (cont.)
	Slide 38: Scheduling (cont.)
	Slide 42: File System Block Allocation
	Slide 44: File System Block Allocation
	Slide 46: File System Block Allocation
	Slide 48: File System Block Allocation
	Slide 51: File System Block Allocation
	Slide 53: I-Node Design
	Slide 55: Wait, where do we know how large the Inode Table is?
	Slide 57: Fat Design
	Slide 59: Has your friend been misled?
	Slide 61: Has your friend been misled again?
	Slide 63: Are we in the same directory?
	Slide 65: Threads & Data Races
	Slide 66: Threads & Data Races
	Slide 69: Threads & Data Races
	Slide 71: Threads & Data Races
	Slide 73: That’s all!

