
CIS 5480
PennOS Lecture

Tuesday, March 17, 2025

2

Logistics

- Mid-Semester Survey due EOD 3/24
- Form groups ASAP (random assignments EOD)
- Milestone 0: In the week of 3/24 - 3/28
- Milestone 1: In the week of 4/7 - 4/11
- Final Submission: 4/29
- Demo: Anytime after you have submitted your

final submission

3

Grading Breakdown

- 5% Documentation
- 45% Kernel/Scheduler
- 35% File System
- 15% Shell

4

Documentation

- Required to provide a Companion Document
- Consider this like APUE or K-and-R
- Describes how OS is built and how to use it
- Recommended to use Doxygen

- README
- Describes implementation and design choices

5

Agenda

- PennOS Overview
- PennFAT file system
- Scheduling & Process Life Cycle
- spthreads
- PennOS Shell
- Demo

PennOS Overview

7

Projects so Far
- Penn Shredder

- Mini Shell with Signal Handling
- Penn Shell

- Redirections and Pipelines
- Process Groups and Terminal Control
- Job Control

- You will be implementing major user-level calls in
PennOS

8

PennOS Diagram

PennOS as a Guest OS

10

User, System, and Kernel Abstractions

- User Land - What an actual user interacts with

- Kernel Land - What happens ‘under the hood’

- System Land - The API calls to connect user land
with kernel land

User and Kernel Land

PennFAT File System

13

What is a File System
- A File System is a collection of data structures and

methods an operating system uses to structure and
organize data and allow for consistent storage and
retrieval of information
- Basic unit: a file

- A file (a sequence of data) is stored in a file system as a
sequence of data-containing blocks

14

What is FAT?
- FAT stands for file allocation table, which is an architecture for

organizing and referring to files and blocks in a file system.
- There exist many methods for organizing file systems, for

example:
- FAT (DOS, Windows)
- Mac OS X
- ext{1,2,3,4} (Linux)
- NTFS (Windows)

15

FAT Example

File System Layout

17

File Alignment

- Files are distributed along blocks

Adjusting File Size

22

PennFAT Spec

20

File System

- Array of unsigned, little endian, 16-bit entries
- mkfs NAME BLOCKS_IN_FAT BLOCK_SIZE
- FAT region and DATA region

Layout

22

FAT Region

- FAT entry size: 2 bytes
- First entry – special entry for FAT and block sizes

- LSB: size of each block
- MSB: number of blocks in FAT

23

FAT first-entry examples

Other Entries of FAT

FAT first-entry examples

Example FAT

27

Data Region
- Each FAT entry represents a file block in data region -

Data Region size = block size * (# of FAT entries - 1)
- b/c first FAT entry (fat[0]) is metadata - block

numbering begins at 1:

- block numbering begins at 1:
- block 1 – always the first block of the root directory
- other blocks – data for files, additional blocks of the

root directory, subdirectories (extra credit)

28

What is a Directory?

- A directory is a file consisting of entries that
describe the files in the directory.

- Each entry includes the file name and other
information about the file.

- The root directory is the top-level directory.

29

Directory entry
- Fixed size of 64 bytes each
- file name: 32 bytes (null terminated)

- legal characters: [A-Za-z0-9._-] (POSIX portable
filename character set)

- first byte special values:

30

Directory entry (cont.)

- file size: 4 bytes
- first block number: 2 bytes (unsigned)
- file type: 1 byte

31

Directory entry (cont.)

- file permission: 1 byte

- timestamp: 8 bytes returned by time(2)
- remaining 16 bytes: reserved for E.C

Example
- fat[0] = 0x2002

- 32 blocks of 1024 bytes in
FAT

- First block of Data Region is first
block of root directory

- Correspondingly, fat[1] refers to
that Block 1, which ends there.
So it has value of 0xFFFF

Creating a File

2025-03-16 14:30:00

Writing to a File

2025-03-16 14:30:00

Removing the File

36

Standalone PennFAT

- Milestone 1
- Implementation of kernel-level functions

(k_functions)
- Simple shell for reading, parsing, and executing File

system modification routines
- System-wide Global File Descriptor Table

37

Kernel-Level Functions

- Interacting directly with the filesystem you created
- Also interacts directly with the system-wide Global FD Table
- k_write(int fd, const char* str, int n)

- Access the file associated with file descriptor fd
- Access through the FD table

- Write up to n bytes of str
- literally modify the binary filesystem you created. This should be loaded in

memory, so you can modify the in-memory array

38

Standalone Routines
- Special Commands

- mfks, mount, unmount
- These can be implemented using C System Calls

- Standard Routines
- touch, mv, rm, cat, cp, chmod, ls

- These should ONLY use k_functions unless interacting with the

HOST filesystem
- Your filesystem: PennFAT binary file you created HOST

filesystem: Your docker filesystem

39

Standalone Routines

- cat FILE … [-w OUTPUT_FILE] - get input from
multiple FILE(s), output to stdout or
OUTPUT_FILE if specified

- The following would be logical flow of cat
- k_open(FILEs)
- k_read(FILEs)
- k_write(stdout / OUTPUT_FILE)

40

Standalone Routines
- cp [-h] SOURCE DEST - copy contents from SOURCE

to DEST. If -h flag exists, copy from HOST filesystem

- The following would be logical flow of cp

- If -h flag:
- read(SOURCE) ← Note this is C sys-call
- k_write(DEST)

- else
- k_read(SOURCE)
- k_write(DEST)

PennOS Kernel

42

Scheduling in PennOS
Algorithm: round-robin with queue

-

Exponential Relationship:
● Queue 0 scheduled 1.5 times

more frequently than Queue 1
● Queue 1 scheduled 1.5 times

more frequent than Queue 2

43

Process Life Cycle

-
Init process

44

Process Control Block

● handle to the spthread
● PID, parent PID, child PID(s)
● open file descriptors
● priority level
● process state
● etc.

45

POSIX threads

● User-level thread management API
● Isolate code execution with distinct threads
● Resource sharing (within same process space)
● Concurrent execution

Pros: efficient, lightweight, simple
What are the cons?

46

How does pthread work?

47

Spthread
Wrapper around pthread, provided by us
Provides additional tooling to:
● Create, then immediately suspend the thread
● Suspend a thread
● Continue (unsuspend) a thread

48

Spthread for Scheduling
Leverage suspend + continue to execute one spthread at a time

PennOS Shell

50

Shell Requirements

● Synchronous child waiting
● Redirection
● Parsing
● Terminal Signaling
● Terminal Control

Shell Functions

● Basic interaction with PennOS
● Two types:

○ Functions that run as separate processes
○ Functions that run as shell subroutines

Built-ins Running as Processes

● cat
● sleep
● busy
● ls
● touch

● mv
● cp
● rm
● ps

Built-ins Running as Subroutines

● nice
● nice_pid
● man
● bg
● fg
● jobs
● logout

● Quick aside: Why?
○ Think about why it might be

problematic/difficult to run
these commands from a
separate process

● Consider the kernel structure &
process lifecycle

Error Handling

● errno.h
● u_perror
● Have global ERRNO macros
● Call u_perror for PennOS system call errors like

s_open, s_spawn
● Call perror(3) for any host OS system call error like

malloc(3), open(2)

Maintaining the Abstraction

Shell Scripts

Demo

Questions?

