CIS 5480
PennOS Lecture

Tuesday, March 17,2025

oY Enoineerin
NIVERgSITY of PENNSYLVAI\%

Logistics

- Mid-Semester Survey due EOD 3/24

- Form groups ASAP (random assignments EOD)

- Milestone 0: In the week of 3/24 - 3/28

- Milestone I:In the week of 4/7 - 4/1 |

- Final Submission: 4/29

- Demo:Anytime after you have submitted your
final submission

= m] o .
& Penn Engmccrmg

Grading Breakdown

5% Documentation
45% Kernel/Scheduler
35% File System

5% Shell

= m] o .
& Penn Engineering
o O

Documentation

- Required to provide a Companion Document
- Consider this like APUE or K-and-R
- Describes how OS is built and how to use it
- Recommended to use Doxygen

- README

- Describes implementation and design choices

= m] o .
& Penn Engmccrmg

Agenda

- PennOS Overview

- PennFAT file system

- Scheduling & Process Life Cycle
- spthreads

- PennOS Shell
- Demo

= m] o .
& Penn Engmccrmg

PennOS Overview

oY Enoineerin
NIVERgSITY of PENNSYLVAI\%

Projects so Far

- Penn Shredder
- Mini Shell with Signal Handling
- Penn Shell
- Redirections and Pipelines
- Process Groups and Terminal Control
- Job Control

- You will be implementing major user-level calls in
PennOS

= m] o .
& Penn Engmccrmg

PennOS Diagram

-

PennFAT
Filesystem

_

<_>

Kernel

Scheduler -

~

Shell

$ sleep 2

U

_/

= m] o o
& Penn Engmccrmg
o

(=

PennOS as a Guest OS

Single Process]
<‘ Host Operating System \

f l’enn(); \
\ LINUX Kernel
\) 1/0

\& = 7

m o m] . .
N P(’I'l n Engmccrlng
(- O

/

User, System, and Kernel Abstractions
- User Land - What an actual user interacts with
- Kernel Land - What happens ‘under the hood’

- System Land - The API calls to connect user land

with kernel land

= m] o .
& Penn Engmccrmg

User and Kernel Land

Kernel

Scheduler

= m] o o
& Penn Engineering
O -

PennFAT File System

Engineerin
NIVERgSITY of PENNSYLVAI\%

What is a File System

- A File System is a collection of data structures and
methods an operating system uses to structure and

organize data and allow for consistent storage and
retrieval of information

- Basic unit: a file

- Afile (a sequence of data) is stored in a file system as a
sequence of data-containing blocks

= m] o .
& Penn Engmccrmg

What is FAT?

- FAT stands for file allocation table, which is an architecture for
organizing and referring to files and blocks in a file system.
- There exist many methods for organizing file systems, for
example:
- FAT (DOS,Windows)
- Mac OS X
- ext{l,2,3,4} (Linux)
- NTFS (Windows)

= m] o .
& Penn Engmccrmg

FAT Example

Each value 1n the
FAT table refers t0 a —=—p-
block number

How can we read file 11?
Find Block 11, 14, and 15?

m] . .
& Penn Engineering
<o

og

Physical Link
11 14
2 13
13 3
14 15 >
15 |

File System Layout

—
Physical Link - Offset 0
— FAT (Before Blocks) mmap() to memory
® i 14 Block 1
12 13
Block 2
13 -1
14 15 > Block 3
15 -1
Block 4
—_—
Block 5
I 1

= m] _ R
& Penn Engmccrmg
O O

File Alignment

- Files are distributed along blocks

|

|

Block 11

Block 14

Block 15

lseek (n, F_SEEK SET, 60)

lseek (n, F_SEEK SET, block size - 1)

lseek (n, F_SEEK SET, block _size * 2 + 100)

m] . .
& Penn Engineering
O <O

Adjusting File Size

Physical Link
11 14
12 13
13 -1
14 15
15 oy write(n, buffer, block size)
22 -1
Block 11 Block 14 Block 15 Blocl) 22

m o m] . .
N Pcn n Engmccrmg
(- O

PennFAT Spec

Engineerin
NIVERgSITY of PENNSYLVAI\%

File System

- Array of unsigned, little endian, | 6-bit entries

- mkfs NAME BLOCKS IN_FAT BLOCK SIZE
- FAT region and DATA region

= m] o .
& Penn Engmccrmg

20

Layout

FAT Region block size * number of blocks in FAT File Allocation Table
Data Region block size * (number of FAT entries — 1) directories and files

2 bytes
/\ PennFAT FileSystem
FAT DATA

& Penn Engineering

FAT Region

- FAT entry size: 2 bytes

- First entry — special entry for FAT and block sizes

- LSB: size of each block
- MSB: number of blocks in FAT

& Penn Engineering

0
|
2
3
4

Block Size
256

512

1,024
2,048
4,096

22

FAT first-entry examples

fat|0] Block Size FAT Size FAT Entries

0x0100

0x0101 B 512 1 512 256
0x1003 16 3 2048 16 32768 16384
0x2004 32 4 4,096 32 131,072 65,536"

" fat[65535] is undefined.
Why?

& Penn Engineering 23

Other Entries of FAT

fat[i] (i>0) Data region block type

0 free block
OxFFFF last block of file
[2, number of FAT entries) next block of file

& Penn Engineering

FAT first-entry examples

fat|0] Block Size FAT Size FAT Entries

0x0100

0x0101 1 [512 1 512 256
0x1003 16 3 2048 16 32768 16384
0x2004 32 4 4,096 32 131,072 65,536"

" fat[65535] is undefined.
Why?
OxFFFF 1s reserved for last block of file

& Penn Engineering

Example FAT
____Index | Link | Notes

0 0x2004 32 blocks, 4KB block size

1 OxFFFF Root directory

2 4 File A starts, links to block 4
3 7 File B starts, links to block 7
4 5 File A continues to block 5
5 OxFFFF Last block of file A

6 18 File C starts, links to block 18
7 {75 File B continues to block 17
8 0x0000 Free block

& Penn Engincering

Data Region

- Each FAT entry represents a file block in data region -
Data Region size = block size * (# of FAT entries - |)
- b/c first FAT entry (fat[0]) is metadata - block
numbering begins at |:

- block numbering begins at |:
- block | —always the first block of the root directory
- other blocks — data for files, additional blocks of the
root directory, subdirectories (extra credit)

& Penn Enginccring 27

What is a Directory?

- A directory is a file consisting of entries that
describe the files in the directory.

- Each entry includes the file name and other
information about the file.

- The root directory is the top-level directory.

= m] o .
& Penn Engmccrmg

28

Directory entry

- Fixed size of 64 bytes each
- file name: 32 bytes (null terminated)
- legal characters: [A-Za-z0-9. -] (POSIX portable
filename character set)
- first byte special values:

name[0] | Description ______

0 end of directory
1 deleted entry; the file is also deleted
2 deleted entry; the file is still being used

& Penn Engineering

29

Directory entry (cont.)

- file size: 4 bytes
- first block number: 2 bytes (unsigned)
- file type: | byte

0 unknown

1 regular file

2 directory

4 symbolic link (extra credit)

& Penn Engineering

30

Directory entry (cont.)

- file permission: | byte | Value | Permission |
0 none

write only

read only

read and executable

read and write

~N N BN

read, write, and executable

- timestamp: 8 bytes returned by time(2)
- remaining |16 bytes: reserved for E.C

& Penn Engineering

31

[fat[0] 0x2002 2 bytes

Exa m P I e R::;irm 1024 | fat[1] OXFFFF 2 bytes

Byt 0x0000

- fat[0] = 0x2002 o ™
- 32 blocks of 1024 bytes in -
FAT
- First block of Data Region is first S]
block of root directory b s : .] sk ot “
- Correspondingly, fat[1] refers to |
that Block |, which ends there. yes | Block 2
16,383

So it has value of OxFFFF ‘“ _ = piocks

& Penn Engineering .

Creating a File

FAT (fat[0] | 0x2002 T2 bytes
Region 1024 | fat[1] OxFFFF 2 bytes
byies ™} 0x0000
1024
bytes]| L. 32
blocks
0x0000 g
Data i
Region 1024 | first block of
bytes | Block 1 root directory
1024
bytes 1 Block 2
5 16,383
blocks

& Penn Enginccring

directory <
entries

PennFAT after
creating an
empty file

Block 1

bar\0

0x00000000

64 |
bytes

2025-03-16 14:30:00

64 |
bytes

32 bytes
4 bytes

8 bytes

Writing to a File

FAT " fat[0] 0x2002 2bytes |
Region 1024 | fat{1] OXFFFF 2 bytes
bytes 7 fat[2] OxFFFF 2 bytes
1024
bytes]| L 32
blocks
0x0000]
s | first block of |
Region 1024 it rst block o
bytes -] Block 1 root directory
B hello\n
1024
bytes Block 2
L 16,383
™ blocks

& Penn Enginccring

16
directory 4
entries

PennFAT after
writing to the file

Block 1
[bar\0 32 bytes
0x00000006 4 bytes
0x0002 2 bytes
b64 4 0x01 1 byte
yee 0x06 1byte
2025-03-16 14:30:00 | 8 bytes
d |
64 |
bytes

Removing the File

EAT | fat[o] | 0x2002 2bytes |
Region 1024 | fat[1] OxXFFFF 2 bytes
byies 7 fat[2] 0x0000 2 bytes
1024
bytes] -
blocks
0x0000
Data [
Regi 1024 first block of
egion byt { Block 1 root directory
‘" hello\n
1024
bytes Block 2
L 16,383
™ blocks

& Penn Enginccring

16
directory 4
entries

PennFAT after
removing the file

Block 1
[1far\0 32 bytes
0x00000006 4 bytes
0x0002 2 bytes
b614 . 0x01 1 byte
- 0x06 1byte
8 bytes
|o
64 |
bytes

Standalone PennFAT

- Milestone |

- Implementation of kernel-level functions
(k_functions)

- Simple shell for reading, parsing, and executing File
system modification routines

- System-wide Global File Descriptor Table

& Penn Enginccring 36

Kernel-Level Functions

- Interacting directly with the filesystem you created

- Also interacts directly with the system-wide Global FD Table
- k_write(int fd, const char* str; int n)

- Access the file associated with file descriptor fd
- Access through the FD table
- Write up to n bytes of str

- literally modify the binary filesystem you created.This should be loaded in
memory, so you can modify the in-memory array

= m] o .
& Penn Engmccrmg

37

Standalone Routines

- Special Commands

- mfks, mount, unmount
- These can be implemented using C System Calls

- Standard Routines

- touch, my, rm, cat, cp, chmod, Is
- These should ONLY use k_functions unless interacting with the
HOST filesystem
- Your filesystem: PennFAT binary file you created HOST
filesystem:Your docker filesystem

= m] o .
& Penn Engmccrmg

38

Standalone Routines

- cat FILE ... [-w OUTPUT _FILE] - get input from
multiple FILE(s), output to stdout or
OUTPUT _FILE if specified

- The following would be logical flow of cat
- k_open(FILEs)
- k_read(FILEs)
- k_write(stdout / OUTPUT _FILE)

= m] o .
& Penn Engmccrmg

39

Standalone Routines

- ¢cp [-h] SOURCE DEST - copy contents from SOURCE
to DEST. If -h flag exists, copy from HOST filesystem

- The following would be logical flow of cp

- If -h flag:
- read(SOURCE) « Note this is C sys-call
- k_write(DEST)
- else
- k_read(SOURCE)
- k_write(DEST)

= m] o .
& Penn Engmccrmg

40

PennOS Kernel

oY Enoineerin
NIVERgSITY of PENNSYLVAI\%

Scheduling in PennOS

Algorithm: round-robin with queue | sptreads
/ Scheduler

Queue 0 Queue 1 Queue 2
Exponential Relationship:
e Queue 0 scheduled 1.5 times e oy -
more frequently than Queue | busy
® Queue | scheduled |.5 times
more frequent than Queue 2 . 3 e 4 .
- | N i |

L

[mm] o .
& Penn Engineering 42
(- (=

Process Life Cycle

S_spawn

CREATE | —

s _kill()
Ctrl-2
citte

f Running \
l

Blocked

!
Stopped

!

Running

i
Stopped

!

Running

= m] o o
& Penn Engineering
O -

Store in zombie queue
until reaped by parent

Termination s_waitpid ()
)
ZOMBIE
WAITED
ORPHAN
Init process
return;
s_exit()
s_kill()
CErl=C
e ¢

43

Process Control Block

typedef struct pcb {
pid_t pid;

int foo;
char *bar;

} pcb_t;

= m] o .
& Penn Engineering
o O

handle to the spthread

PID, parent PID, child PID(s)
open file descriptors
priority level

process state

etc.

44

POSIX threads

User-level thread management API
Isolate code execution with distinct threads
Resource sharing (within same process space)

Concurrent execution

Pros: efficient, lightweight, simple
What are the cons!?

= m] o .
& Penn Engmccrmg

45

How does pthread work!?

t=0

main thread

pthread join(...)

thread 3]

| . 1 pthread cancel(...

'thread 2 !

'thread 1 1

pthread created. ..)

& Penn Ene

w—

nccrmg

o

46

Spthread

Wrapper around pthread, provided by us
Provides additional tooling to:

e Create, then immediately suspend the thread
e Suspend a thread

e Continue (unsuspend) a thread

spthread_t new_thread;

spthread_create(&new_thread, NULL, routine, argv);
spthread_continue(new_thread);
spthread_suspend(new_thread);

= m] o .
& Penn Engmccrmg

47

Spthread for Scheduling

Leverage suspend + continue to execute one spthread at a time

1 quantum (100 ms)

Priority
Level
0 shell shell shell shell shell
| cat cat ps
2 busy busy
@

= m] o .
& Penn Engineering
o O

PennOS Shell

oY Enoineerin
NIVERgSITY of PENNSYLVAI\%

Shell Requirements

Synchronous child waiting
Redirection

Parsing

Terminal Signaling

Terminal Control

= m] o .
& Penn Engineering
o O

50

Shell Functions

® Basic interaction with PennOS

e Two types:
O Functions that run as separate processes
o Functions that run as shell subroutines

= m] o .
& Penn Engmccrmg

Built-ins Running as Processes

cat
sleep
busy
N

touch

= m] o .
& Penn Engineering
o S

mv

cp
rm

ps

Built-ins Running as Subroutines

® nice ® Quick aside:Why!?

® nice pid o Think about why it might be
® man problematic/difficult to run
® bg these commands from a

o fg separate process

® jobs e Consider the kernel structure &
® |ogout process lifecycle

= m] o .
& Penn Engmccrmg

Error Handling

errno.h

u_perror
Have global ERRNO macros
Call u_perror for PennOS system call errors like

S_open, s_spawn
e Call perror(3) for any host OS system call error like
malloc(3), open(2)

= m] o .
& Penn Engmccrmg

Maintaining the Abstraction

= m] o .
& Penn Engmccrmg

O

Shell User Land

__>
<

r

\

Kernel Land

No access PennOS Kernel-Level
Functions

C System Calls

o - No access

SS820e ON

Shell Scripts

$ echo echo linel > script
$ echo echo line2 >> script
$ cat script

echo linel

echo line2

$ chmod +x script

$ script > out

$ cat out

linel

line2

[mm] . .
& Penn Engineering
(- O

Demo

Engmeermg

NNNNN SITY of PENNSYLVANIA

Questions?

oY Enoineerin
NIVERgSITY of PENNSYLVAI\%

