
CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Threads & Deadlock
Computer Operating Systems, Spring 2025

Instructors: Joel Ramirez Travis McGaha

Head TAs: Ash Fujiyama Emily Shen Maya Huizar

TAs:

Ahmed Abdellah Bo Sun Joy Liu Susan Zhang Zihao Zhou

Akash Kaukuntla Connor Cummings Khush Gupta Vedansh Goenka

Alexander Cho Eric Zou Kyrie Dowling Vivi Li

Alicia Sun Haoyun Qin Rafael Sakamoto Yousef AlRabiah

August Fu Jonathan Hong Sarah Zhang Yu Cao

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Poll: how are you?

❖ Any planned courses for Fall 2025?

2

pollev.com/tqm

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Administrivia

❖ PennOS

▪ Groups have been assigned

▪ TA’s have been assigned to groups

▪ You have the first milestone, which needs to be done sometime next week

▪ Your group (or at least most of your group) needs to meet with your assigned TA and
display the expectations laid out in the PennOS Specification

▪ We will send emails to every group that had to be filled by course staff soon (let us know if
you don’t get this by the end of the week)

❖ Will post a small assignment with some readings sometime before next lecture

▪ Details coming soon

3

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Administrivia

❖ PennOS Advice:

▪ Will announce this on Ed as well

▪ In your FAT code you may do something like this:

• Sometimes though, the write and lseek will return a success, but it won’t actually write to your
file system

• Most commonly happens with blocks near the end of the FAT
(as in blocks not in the allocation table but show up shortly after the end of the allocation table)

• Most likely related to an issue between mmap and write

• Shows up inconsistently!

• What’s the fix?
Just do it twice, that usually
fixes it.

4

lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);

lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);
lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Lecture Outline

❖ Mutex refresher

❖ Mutex alternatives
▪ tsl

▪ Disable interrupts

▪ Petersons

❖ Deadlocks

❖ Dining Philosophers

❖ Deadlock Handling

5

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)
▪ pthread.h defines datatype pthread_mutex_t

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()

▪ Releases the lock

❖

▪ “Uninitializes” a mutex – clean up when done

6

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,

 const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Un-blocks when lock is acquired

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

pthread Mutex Examples

❖ See total.c

▪ Data race between threads

❖ See total_locking.c

▪ Adding a mutex fixes our data race

❖ How does total_locking compare to sequential code and to total?

▪ Likely slower than both– only 1 thread can increment at a time, and must deal with
checking the lock and switching between threads

▪ One possible fix: each thread increments a local variable and then adds its value (once!) to
the shared variable at the end

• See total_locking_better.c

7

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate threads. Note that these are
not thread entry points, just functions used by threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 21.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 15 while

Thread-2 executes line 15.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

pollev.com/tqm

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate threads. Note that these are
not thread entry points, just functions used by threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 14

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 14 while

Thread-2 executes line 16.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

pollev.com/tqm

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Lecture Outline

❖ Mutex refresher

❖ Mutex alternatives
▪ tsl

▪ Disable interrupts

▪ Petersons

❖ Deadlocks

❖ Dining Philosophers

❖ Deadlock Handling

12

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

TSL

❖ TSL stands for Test and Set Lock, sometimes just called test-and-set.

❖ TSL is an atomic instruction that is guaranteed to be atomic at the hardware
level

❖ TSL R, M

▪ Pass in a register and a memory location

▪ R gets the value of M

▪ M is set to 1 AFTER setting R

13

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

TSL to implement Mutex

❖ A mutex is pretty much this:

14

pthread_mutex_lock(lock) {

 prev_value = TSL(lock);

 // if prev_value = 1, then it was already locked

 while (prev_value == 1) {

 block();

 prev_value = TSL(lock);

 }

}

pthread_mutex_unlock(lock) {

 lock = 0;

 wakeup_blocked_threads(lock);

}

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Disabling Interrupts

❖ If data races occur when one thread is interrupted while it is accessing some
shared code….

What is we don’t switch to other threads while executing that code?

❖ This can be done by disabling interrupts: no interrupts means that the clock
interrupt won’t go off and interrupt the currently running thread

15

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Disabling Interrupts

❖ Consider that sum_total starts at 0 and two threads try to execute

16

disable_interrupts();

++sum_total;

enable_interrupts();

++sum_total

Thread 0 Thread 1

sum_total = 1

disable_interrupts();

++sum_total;

enable_interrupts();

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Disabling Interrupts

❖ Advantages:

▪ This is one way to fix this issue

❖ Disadvantages

▪ This is usually overkill

▪ This can stop threads that aren’t trying to access the shared resources in the critical
section. May stop threads that are executing other processes entirely

▪ If interrupts disabled for a long time, then other threads will starve

▪ In a multi-core environment, this gets complicated

17

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Software Synchronization

❖ Lets try a more complicated software approach..

❖ We create two threads running thread_code,
one with arg = 0, other thread has arg = 1

❖ Each thread tries to increment sum_total. Does this work?

18

int sum_total = 0;

bool flag[2] = {false, false};

int turn = 0

void thread_code(int arg) {

 int me = arg;

 flag[me] = true;

 turn = 1 - me;

 while((flag[1-me] == true) && (turn != me)) { }

 ++sum_total;

 flag[me] = false;

}

Check the index of the other thread

Discuss

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Peterson’s Algorithm

❖ What we just did was Peterson's algorithm

❖ Why does it work? (using an analogy)

▪ Each thread first declares that they want to enter the critical section by setting their flag

▪ Each thread then states (once) that the other should “go first”.

• This is done by setting the turn variable to 1 – me

• One of these assignments to the turn variable will happen last, that is the one that decides who
goes first

▪ One of the thread goes first (decided by the value of turn) and accesses the critical section,
before saying it is done (by changing their flag to false)

19

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Peterson’s Algorithm

❖ What we just did was Peterson's algorithm

❖ Why does it work?

▪ Case1:
If P0 enters critical section, flag[0] = true, turn = 0. It enters the critical section successfully.

▪ Case2:
If P0 and P1 enter critical section, flag[0] and flag[1] = true

Race condition on turn. Suppose P0 sets turn = 0 first. Final value is turn = 1. P0 will get to
run first.

20

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Explanation

flag[0] = true

Thread 0 Thread 1

turn = 1

while(flag[1] == true

 && turn != 0)

flag[1] = true

turn = 0

++sum_total

flag[1] = false

++sum_total

RACE

TIME

// suppose turn = 1 came after turn = 0
// the turn variable is set to 1

turn = 1

while(flag[0] == true

 && turn != 1)

turn = ?

turn = 1

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Peterson’s Assumptions

❖ Some operations are atomic:

▪ Reading from the flag and turn variables cannot be interrupted

▪ Writing to the flag and turn variables cannot be interrupted

▪ E.g setting turn = 1 or 0 will set turn to 0 or 1, you can be interrupted before or after, but
not “during” when turn may have some intermediate value that is not 0 or 1

❖ That the instructions are executed in the specific order laid out in the code

22

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Atomicity

❖ Atomicity: An operation or set of operations on some data are atomic if the
operation(s) are indivisible, that no other operation(s) on that same data can
interrupt/interfere.

❖ Aside on terminology:

▪ Often interchangeable with the term “Linearizability”

▪ Atomic has a different (but similar-ish) meaning in the context of data bases and ACID.

23

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Aside: Instruction & Memory Ordering

❖ Do we know that t is set before g is set?

24

bool g = false;

int t = 0

void some_func(int arg) {

 t = arg;

 g = true;

}

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Aside: Instruction & Memory Ordering

❖ The compiler may generate instructions with different ordering if it does not
appear that it will affect the semantics of the function

▪ Since is not affected by
then either one could execute first.

❖ The Processor may also execute these in a different order than what the
compiler says

❖ Why? Optimizations on program performance

▪ If you want to know more, look into “Out-of-Order Execution” and “Memory Order”

26

g = true; t = arg;

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Aside: Memory Barriers

❖ How do we fix this?

❖ We can emit special instructions to the CPU and/or compiler to create a
“memory barrier”

▪ “all memory accesses before the barrier are guaranteed to happen before the memory
accesses that come after the barrier”

▪ A way to enforce an order in which memory accesses are ordered by the compiler and the
CPU

▪ This is done for us when we mark a variable as atomic or use a lock.

27

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Lecture Outline

❖ Mutex refresher

❖ Mutex alternatives
▪ tsl

▪ Disable interrupts

▪ Petersons

❖ Deadlocks

❖ Dining Philosophers

❖ Deadlock Handling

28

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Liveness

❖ Liveness: A set of properties that ensure that threads execute in a timely
manner, despite any contention on shared resources.

❖ When is called, the calling thread blocks (stops
executing) until it can acquire the lock.

▪ What happens if the thread can never acquire the lock?

29

pthread_mutex_lock();

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Liveness Failure: Releasing locks

❖ If locks are not released by a thread, then other threads cannot acquire that
lock

❖ See release_locks.c

▪ Example where locks are not released once critical section is completed.

30

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Liveness Failure: Deadlocks

❖ Consider the case where there are two threads and two locks

▪ Thread 1 acquires lock1

▪ Thread 2 acquires lock2

▪ Thread 1 attempts to acquire lock2 and blocks

▪ Thread 2 attempts to acquire lock1 and blocks

❖ See milk_deadlock.c

❖ Note: there are many algorithms for detecting/preventing deadlocks

31

Neither thread can make progress 

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Liveness Failure: Mutex Recursion

❖ What happens if a thread tries to re-acquire a lock that it has already
acquired?

❖ See recursive_deadlock.c

❖ By default, a mutex is not re-entrant.

▪ The thread won’t recognize it already has the lock, and block until the lock is released

32

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Aside: Recursive Locks

❖ Mutex’s can be configured so that you it can be re-locked if the thread already
has locked it. These locks are called recursive locks (sometimes called re-
entrant locks).

❖ Acquiring a lock that is already held will succeed

❖ To release a lock, it must be released the same number of times it was
acquired

❖ Has its uses, but generally discouraged.

33

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Deadlock Definition

❖ A computer has multiple threads, finite resources, and the threads want to
acquire those resources

▪ Some of these resources require exclusive access

❖ A thread can acquire resources:

▪ All at once

▪ Accumulate them over time

▪ If it fails to acquire a resource, it will (by default) wait until it is available before doing
anything

❖ Deadlock: Cyclical dependency on resource acquisition so that none of them
can proceed

▪ Even if all unblocked threads release, deadlock will continue
34

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Preconditions for Deadlock

❖ Deadlock can only happen if these occur simultaneously:

▪ Mutual Exclusion: at least one resource must be held exclusively by one thread

▪ Hold and Wait: a thread must be holding a resource, requesting a resource that is held by
a thread, and then waiting for it.

▪ No preemption: A resource is held by a thread until it explicitly releases it. It cannot be
preempted by the OS or something else to force it to release the resource

▪ Circular Wait:
Can be a chain of more than 2 threads
Each thread must be waiting for a resource that is held by another thread. That other
thread must waiting on a resource that forms a chain of dependency

35

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Circular Wait Example

❖ A cycle can exist of more than just two threads:

36

Has R1

Wants R1

Has R2

Has R3

Thread 1

Thread 2

Thread 3

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Poll:

❖ Can a thread deadlock if there is only one thread?

37

Discuss

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Deadlock Prevention

❖ If we can remove the conditions for deadlock, we could avoid prevent
deadlock from every happening

38

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Deadlock Prevention: Mutual Exclusion

❖ Mutual Exclusion: at least one resource must be held exclusively by one thread

❖ You usually need mutual exclusion or you don’t, so it is hard to avoid.

❖ Some resources require exclusive access

❖ A lot of work done related to this

▪ called: Lock-free programming, Lock-less programming, or Non-blocking algorithms

▪ General idea is to take advantage of operations that are atomic at the hardware level
when sharing is needed

39

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Deadlock Prevention: Hold and Wait

❖ Hold and Wait: a thread must be holding a resource, requesting a resource
that is held by a thread, and then waiting for it.

❖ What if we had each thread acquire all resources it needs in the beginning “at
once”

▪ Not always practical, a thread may not know ahead of time all the resources it will need

40

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Deadlock Prevention: No Preemption

❖ No preemption: A resource is held by a thread until it explicitly releases it. It
cannot be preempted by the OS or something else to force it to release the
resource

❖ If we force a thread to release a resource, how do we ensure it is in a valid
state?

▪ Undoing actions and recovering valid state is complex (more on this next lecture)

41

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Deadlock Prevention: Circular Wait

❖ Circular Wait: Each thread must be waiting for a resource that is held by
another thread. That other thread must waiting on a resource that forms a
chain of dependency

❖ Break cycles in resource acquisition.

❖ We could enforce an ordering to resource acquisition.

❖ Challenge: Still we may not know all resources we need ahead of time

42

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Deadlock Prevention Summary

❖ Prevent deadlocks by removing any one of the four deadlock preconditions

❖ But eliminating even one of the preconditions is often hard/impossible

▪ Mutual Exclusion is necessary in a lot of situations

▪ Forcing a lower priority process to release resources early requires rollback of execution

▪ Not always possible to know all resources that an operating system or process will use
upfront

43

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Lecture Outline

❖ Mutex refresher

❖ Mutex alternatives
▪ tsl

▪ Disable interrupts

▪ Petersons

❖ Deadlocks

❖ Dining Philosophers

❖ Deadlock Handling

44

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Dining Philosophers

❖ Assume the following situation

▪ There are N philosophers (computer
scientists) that are trying to eat rice.

▪ They only have one chopstick each!

• Need two chopsticks to eat 

▪ Alternate between two states:

• Thinking

• Eating

▪ They are arranged in a circle with a
chopstick between each of them

45

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Dining Philosophers

❖ Philosophers have good table manners

▪ Must acquire two chopsticks to eat

▪ Only one philosopher can have
a chopstick at a time

❖ Useful abstraction / “standard problem”
try to achieve:

▪ Deadlock Free

• No state where no one gets to eat

▪ Starvation Free

• Solution guarantees that all philosophers
occasionally eat

• Ideally maximize parallel eating

46

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

First Solution Attempt

❖ If we number each philosopher 0 – N and then each chopstick is also 0 – N, we
can model the problem with mutexes, each chopstick is a mutex and each
philosopher is a thread
▪ To eat, thread I must acquire lock I and I + 1

▪ This ensures that each chopstick is only in use by one philosopher at a time

47

while (true) {

 pthread_mutex_lock(&chopstick[i]);

 pthread_mutex_lock(&chopstick[(i + 1) % N]);

 eat();

 pthread_mutex_unlock(&chopstick[(i + 1) % N]);

 pthread_mutex_unlock(&chopstick[i]);

 think();

}

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Producer Consumer Example

❖ What’s wrong with this? Any Ideas on how to fix it?

▪ Reminder: we number each philosopher 0 – N and then each
chopstick is also 0 – N

48

while (true) {

 pthread_mutex_lock(&chopstick[i]);

 pthread_mutex_lock(&chopstick[(i + 1) % N]);

 eat();

 pthread_mutex_unlock(&chopstick[(i + 1) % N]);

 pthread_mutex_unlock(&chopstick[i]);

 think();

}

pollev.com/tqm

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Second Attempt: Round Robin

❖ Our first attempt deadlocks.

❖ What if we instead we tried doing this “round robin”, we pass around a token
that says “it is your turn to eat”

❖ Can this deadlock?

❖ What issues arise with this solution?

50

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Third Attempt: Global Mutex

❖ What if instead, we add another “global” mutex that controls permission to
pick up chopsticks. Once a philosopher has chopsticks, they can release the
lock before they eat

❖ In our metaphor, this means that each philosopher “waits in line” to pick up
chopsticks

❖ Can this deadlock?

❖ What issues arise
with this solution?

52

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Fourth Attempt: More Human Approach

❖ What if instead, if a philosopher fails to get a chopstick, it puts down any
chopsticks it has, waits for a little bit and then tries again?

❖ Can we do this in code?
▪ pthread_mutex_trylock: if the lock can’t be acquired, return immediately

▪ pthread_mutex_timedlock: timeout after trying to get a mutex for some specified
amount of time

❖ Can this deadlock?

❖ What issues arise with this solution?

54

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Fifth Attempt: Break the Symmetry

❖ What if the even numbered philosophers and odd numbered philosophers do
things differently?

▪ Even Numbered: Grab chopstick on their left and then right

▪ Odd Numbered: Grab chopstick on their right and then left

❖ Can this deadlock?

❖ What issues arise with this solution?

56

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Lecture Outline

❖ Mutex refresher

❖ Mutex alternatives
▪ tsl

▪ Disable interrupts

▪ Petersons

❖ Deadlocks

❖ Dining Philosophers

❖ Deadlock Handling

58

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Deadlock Handling: Ostrich Algorithm

59

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Deadlock Handling: Ostrich Algorithm

60Ostriches don’t actually do this, but it is an old myth

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Deadlock Handling: Ostrich Algorithm

❖ Ignoring potential problems

▪ Usually under the assumption that it is either rare, too expensive to handle, and/or not a
fatal error

❖ Used in real world contexts, there is a real cost to tracking down every possible
deadlock case and trying to fix it

▪ Cost on the developer side: more time to develop

▪ Cost on the software side: more computation for these things to do, slows things down

61

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Deadlock Handling: Prevention

❖ Ad Hoc Approach

▪ Key insights into application logic allow you to write code that avoids cycles/deadlock

▪ Example: Dining Philosophers breaking symmetry with even/odd philosophers

❖ Exhaustive Search Approach

▪ Static analysis on source code to detect deadlocks

▪ Formal verification: model checking

▪ Unable to scale beyond small programs in practice
Impossible to prove for any arbitrary program (without restrictions)

62

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Detection

❖ If we can’t guarantee deadlocks won’t happen, we can instead try to detect a
deadlock just before it will happen and then intervene.

❖ Two big parts

▪ Detection algorithm. This is usually done with tracking metadata and graph theory

▪ The intervention/recovery. We typically want some sort of way to “recover” to a safe state
when we detect a deadlock is going to happen

63

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Detection Algorithms

❖ The common idea is to think of the threads and resources as a graph.

▪ If there is a cycle: deadlock

▪ If there is no cycle: no deadlock

❖ Finding cycles in a graph is a common algorithm problem with many solutions.

64

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Deadlock Detection Example

❖ Consider the following example with 5 threads and 5 resources that require
mutual exclusion is this a deadlock?

▪ Thread 1 has R2 but wants R1

▪ Thread 2 has R1 but wants R3, R4 and R5

▪ Thread 3 has R4 but wants R5

▪ Thread 4 has R5 but wants R2

▪ Thread 5 has R3

65

pollev.com/tqm

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Resource Allocation Graph

❖ We can represent this deadlock with a graph:

▪ Each resource and thread is a node

▪ If a thread has a resource, draw an arrow pointing at the thread form that resource

▪ If a thread wants to acquire a resource but can’t, draw an arrow pointing at the resource
from the thread trying to acquire it

66

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

67

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

68

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

69

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

70

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

71

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Resource Allocation Graph Example

▪ Thread 1 has R2
but wants R1

▪ Thread 2 has R1
but wants R3, R4 and R5

▪ Thread 3 has R4
but wants R5

▪ Thread 4 has R5
but wants R2

▪ Thread 5 has R3

72

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Alternate graph

❖ Instead of also representing resources as nodes, we can have a “wait for”
graph, showing how threads are waiting on each other

73

T1

T5

T2

T4

T3

Wait For Graph

T1 is waiting for a

resource held by T2

and T4 is waiting on T1

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Recovery after Detection

❖ Preemption:

▪ Force a thread to give up a resource

▪ Often is not safe to do or impossible

❖ Rollback:

▪ Occasionally checkpoint the state of the system, if a deadlock is detected then go back to
the checkpointed “Saved state”

▪ Used commonly in database systems

▪ Maintaining enough information to rollback and doing the rollback can be expensive

❖ Manual Killing:

▪ Kill a process/thread, check for deadlock, repeat till there is no deadlock

▪ Not safe, but it is simple

74

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Overall Costs

❖ Doing Deadlock Detection & Recovery solves deadlock issues, but there is a
cost to memory and CPU to store the necessary information and check for
deadlock

❖ This is why sometimes the ostrich algorithm is preferred

75

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Avoidance

❖ Instead of detecting a deadlock when it happens and having expensive
rollbacks, we may want to instead avoid deadlock cases earlier

❖ Idea:

▪ Before it does work, it submits a request for all the resources it will need.

▪ A deadlock detection algorithm is run

• If acquiring those resources would lead to a deadlock, deny the request. The calling thread can
try again later

• If there is no deadlock, then the thread can acquire the resources and complete its task

▪ The calling thread later releases resources as they are done with them

76

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Avoidance

❖ Pros:

▪ Avoids expensive rollbacks or recovery algorithms

❖ Cons:

▪ Can’t always know ahead of time all resources that are required

▪ Resources may spend more time being locked if all resources need to be acquired before
an action is taken by a thread, could hurt parallelizability

• Consider a thread that does a very expensive computation with many shared resources.

• Has one resources that is only updated at the end of the computation.

• That resources is locked for a long time and other threads that may need it cannot access it

77

CIS 4480/5480, Spring 2025L17: Threads & DeadlockUniversity of Pennsylvania

Aside: Bankers Algorithm

❖ This gets more complicated when there are multiple copies of resources, or a
finite number of people can access a resources.

❖ The Banker’s Algorithm handles these cases

▪ But I won’t go into detail about this

▪ There is a video linked on the website under this lecture you can watch if you want to
know more

78

	Default Section
	Slide 1: Threads & Deadlock Computer Operating Systems, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Lecture Outline
	Slide 6: pthreads and Locks
	Slide 7: pthread Mutex Examples
	Slide 8: Threads & Mutex
	Slide 10: Threads & Mutex
	Slide 12: Lecture Outline
	Slide 13: TSL
	Slide 14: TSL to implement Mutex
	Slide 15: Disabling Interrupts
	Slide 16: Disabling Interrupts
	Slide 17: Disabling Interrupts
	Slide 18: Software Synchronization
	Slide 19: Peterson’s Algorithm
	Slide 20: Peterson’s Algorithm
	Slide 21: Explanation
	Slide 22: Peterson’s Assumptions
	Slide 23: Atomicity
	Slide 24: Aside: Instruction & Memory Ordering
	Slide 26: Aside: Instruction & Memory Ordering
	Slide 27: Aside: Memory Barriers
	Slide 28: Lecture Outline
	Slide 29: Liveness
	Slide 30: Liveness Failure: Releasing locks
	Slide 31: Liveness Failure: Deadlocks
	Slide 32: Liveness Failure: Mutex Recursion
	Slide 33: Aside: Recursive Locks
	Slide 34: Deadlock Definition
	Slide 35: Preconditions for Deadlock
	Slide 36: Circular Wait Example
	Slide 37: Poll:
	Slide 38: Deadlock Prevention
	Slide 39: Deadlock Prevention: Mutual Exclusion
	Slide 40: Deadlock Prevention: Hold and Wait
	Slide 41: Deadlock Prevention: No Preemption
	Slide 42: Deadlock Prevention: Circular Wait
	Slide 43: Deadlock Prevention Summary
	Slide 44: Lecture Outline
	Slide 45: Dining Philosophers
	Slide 46: Dining Philosophers
	Slide 47: First Solution Attempt
	Slide 48: Producer Consumer Example
	Slide 50: Second Attempt: Round Robin
	Slide 52: Third Attempt: Global Mutex
	Slide 54: Fourth Attempt: More Human Approach
	Slide 56: Fifth Attempt: Break the Symmetry
	Slide 58: Lecture Outline
	Slide 59: Deadlock Handling: Ostrich Algorithm
	Slide 60: Deadlock Handling: Ostrich Algorithm
	Slide 61: Deadlock Handling: Ostrich Algorithm
	Slide 62: Deadlock Handling: Prevention
	Slide 63: Detection
	Slide 64: Detection Algorithms
	Slide 65: Deadlock Detection Example
	Slide 66: Resource Allocation Graph
	Slide 67: Resource Allocation Graph Example
	Slide 68: Resource Allocation Graph Example
	Slide 69: Resource Allocation Graph Example
	Slide 70: Resource Allocation Graph Example
	Slide 71: Resource Allocation Graph Example
	Slide 72: Resource Allocation Graph Example
	Slide 73: Alternate graph
	Slide 74: Recovery after Detection
	Slide 75: Overall Costs
	Slide 76: Avoidance
	Slide 77: Avoidance
	Slide 78: Aside: Bankers Algorithm

