
CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Page Replacement
Computer Operating Systems, Spring 2025

Instructors: Joel Ramirez Travis McGaha

Head TAs: Ash Fujiyama Emily Shen Maya Huizar

TAs:

Ahmed Abdellah Bo Sun Joy Liu Susan Zhang Zihao Zhou

Akash Kaukuntla Connor Cummings Khush Gupta Vedansh Goenka

Alexander Cho Eric Zou Kyrie Dowling Vivi Li

Alicia Sun Haoyun Qin Rafael Sakamoto Yousef AlRabiah

August Fu Jonathan Hong Sarah Zhang Yu Cao

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Poll: how are you?

❖ What’s your coffee order?

2

pollev.com/cis5480

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Administrivia

❖ PennOS Milestone 1 is due this week Apr 25

▪ You have the first milestone, which should be done by tomorrow

▪ Everyone should already have/had a meetup scheduled with your TAs.

▪ Have a plan (a REAL plan) for how to complete the rest

▪ Full Thing due ~Apr 25

• You can technically turn it in late, but by then you’re really just grasping at straws to finish it up…

3

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Administrivia

❖ Check-in Out Tomorrow: due at end of Friday

▪ Another one will be released this week, due sometime next week

4

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Lecture Outline

❖ Page Replacement: High Level

▪ FIFO

▪ Reference Strings

▪ Beladys

❖ LRU

❖ Thrashing

❖ FIFO w/ Reference bit

5

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Page Replacement

❖ The operating system will sometimes have to evict a page from physical
memory to make room for another page.

❖ If the evicted page is access again in the future, it will cause a page fault, and
the Operating System will have to go to Disk to load the page into memory
again

6

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Evicting a Page
❖ Physical Memory is limited in size. Not all pages can exist in Memory.

7

Virtual
Address Space

Physical Memory disk

Frame 1

Page 5

If we need page 5, we
need to evict a page

from memory!

Page 4

Frame 3Page 3

Page 2 Frame 2

Page 1

Unused

Process A

 Which Page do we evict?
1, 2 or 4

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Page Replacement

❖ Remember this? Disk access is very very slow (relatively speaking).

▪ How can we minimize disk accesses?

▪ How can we try to ensure the page we evict from memory is unlikely to be

▪ used again in the future?

8

We are at this Level:

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Page Replacement Scenario

9

Virtual
Address Space

Physical Memory disk

Process A

Previous Page Requests: Page 1, Page 4, Page 2

New Page Request: Page 5

Page 4

Page 5

Frame 1

Page 5

Page 4

Frame 3Page 3

Page 2 Frame 2

Page 1

Unused

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Page Replacement Scenario

10

Virtual
Address Space

Physical Memory disk

Process A

Previous Page Requests: Page 1, Page 4, Page 2

New Page Request: Page 5

Frame 1

Page 5

Page 4

Frame 3Page 3

Page 2 Frame 2

Page 1

Unused

Page 4

Frame 1

Page 5

Page 4

Frame 3Page 3

Page 2 Frame 2

Page 1

Unused

We just evicted page four!!

Because we didn’t choose a more
optimal page, we need to do write

another page to disk and swap.

Not good.

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Reference String

❖ A reference string is a string representing a sequence of virtual page accesses.
By a given process on some input.

▪ E.g., 0 1 2 3 4 1 2 9 5 3 2 2 …

▪ Page 0 is accessed, then 1, then 2, then 3 …

❖ Having the page access history, we can now optimize for which page to select
when evicting!

11

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Review: Fault vs Eviction

❖ Page Fault

▪ When a corresponding page is not in memory, we need to load the page from memory.

❖ Eviction
▪ When there are too many pages in memory, and we need to evict one to make space for

another.

▪ Just because there is a page fault does not mean there is an eviction.

12

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

FIFO Replacement

❖ One way to decide which pages can be evicted is to use FIFO (First in First Out)

❖ If a page needs to be evicted from physical memory, then the page that has
been in memory the longest can be evicted.

13

#define MAX_PAGES 4

typedef struct page_stack {
 short *stack; // array
 short size;
} page_stack;

short evict(page_stack *ps){
 // There's none to evict,
 // -1 page doesn't exist
 if(ps->size == 0) return -1;

 ps->size--;
 short page_num = (ps->stack)[0];
 memmove(ps->stack,
 ps->stack + 1, ps->size);
 return page_num;
}

*simplified code, doesn’t work for all edge cases.

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

FIFO Replacement

❖ One way to decide which pages can be evicted is to use FIFO (First in First Out)

❖ If a page needs to be evicted from physical memory, then the page that has
been in memory the longest can be evicted.

14

short evict(page_stack *ps){
 // There's none to evict,
 // -1 page doesn't exist
 if(ps->size == 0) return -1;

 ps->size--;
 short page_num = (ps->stack)[0];
 memmove(ps->stack,
 ps->stack + 1, ps->size);
 return page_num;
}

void add(page_stack *ps, short page_num){
for(int i = 0; i < ps->size; i++){

if(ps->stack[i] == page_num){
 return; // In Mem.
 // No page fault

 }
 }

if(ps->size == MAX_PAGES) evict(ps);
//page fault!
(ps->stack)[ps->size] = page_num;
ps->size++; //increment size

}
*simplified code, doesn’t work for all edge cases.

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

FIFO Replacement

❖ If we have 4 frames, and the reference string:
4 1 1 2 3 4 5

▪ Red numbers indicate that accessing the page caused a page fault. Accessing 5 also causes
4 to be evicted from physical memory

15

short page_str[] = {4, 1, 1, 2, 3, 4, 5};
page_stack ps = {0}; // No pages in memory at start.
ps.stack = (short *)malloc(MAX_PAGES * sizeof(short));

for(short x: page_str){ // for x in page_str
 add(&ps, x);
}

*simplified code, doesn’t work for all edge cases.

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

FIFO Replacement

❖ If we have 4 frames, and the reference string:
4 1 1 2 3 4 5

▪ Red numbers indicate that accessing the page caused a page fault. Accessing 5 also causes
4 to be evicted from physical memory

❖ For those who like tables ☺

16

Ref str: 4 1 1 2 3 4 5

Newest 4 1 1 2 3 3 5

4 4 1 2 2 3

4 1 1 2

Oldest 4 4 1

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

❖ Given the following reference string, how many page faults (not evictions)
occur when using a FIFO algorithm given no pages are in memory at the start.

❖ 1 2 3 4 1 2 5 1 2 3 4 5

❖ Part 2: If we didn’t have to follow a strict policy, what is the “optimal” # of
pages that could be evicted to minimize faults? How many less faults would we
have?

17

pollev.com/cis5480

#define MAX_PAGES 3

typedef struct page_stack {
 short *stack; // init empty
 short size;
} page_stack;

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

18

pollev.com/cis5480

Ref str: 1 2 3 4 1 2 5 1 2 3 4 5

Newest

Oldest

Evicted

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

❖ Given the following reference string, how many page faults occur when using a
FIFO algorithm

❖ 1 2 3 4 1 2 5 1 2 3 4 5

❖ FIFO

❖ 9 faults
19

Ref
str:

1 2 3 4 1 2 5 1 2 3 4 5

Newest 1 2 3 4 1 2 5 5 5 3 4 4

1 2 3 4 1 2 2 2 5 3 3

Oldest 1 2 3 4 1 1 1 2 5 5

Evicted 1 2 3 4 1 2

pollev.com/cis5480

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

❖ Given the following reference string, how many page faults occur when using a
FIFO algorithm

❖ 1 2 3 4 1 2 5 1 2 3 4 5

❖ Theoretical optimal?

❖ 7 faults
20

Ref
str:

1 2 3 4 1 2 5 1 2 3 4 5

1 2 3 4 4 4 5 5 5 3 4 4

1 2 2 2 2 2 2 2 5 3 3

1 1 1 1 1 1 1 2 5 5

Evicted 3 4 1 2

pollev.com/cis5480

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

“optimal” replacement

❖ If you knew the exact sequence of page accesses in advance, you could
optimize for smallest number of page faults

❖ Always replace the page that is furthest away from being used again in the
future

▪ How do we predict the future??????

▪ You can’t, but you can make a “best guess” (later in lecture)

❖ Optimal replacement is still a handy metric. Used for testing replacement
algorithms, see how an algorithm compares to various “optimal” possibilities.

21

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

❖ Given the following reference string, how many page faults occur when using a
FIFO algorithm:

❖ 3 2 1 0 3 2 4 3 2 1 0 4

❖ Part 2: What if we had 4 page frames, how many faults would we have?

22

pollev.com/cis5480

#define MAX_PAGES 3

typedef struct page_stack {
 short *stack; // init empty
 short size;
} page_stack;

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

23

pollev.com/cis5480

Ref str: 3 2 1 0 3 2 4 3 2 1 0 4

Newest

Oldest

Evicted

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

24

pollev.com/cis5480

Ref str: 3 2 1 0 3 2 4 3 2 1 0 4

Newest

Oldest

Evicted

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

❖ Given the following reference string, how many page faults occur when using a
FIFO algorithm

❖ 3 2 1 0 3 2 4 3 2 1 0 4

❖ Three page frames

❖ 9 faults
25

Ref
str:

3 2 1 0 3 2 4 3 2 1 0 4

Newest 3 2 1 0 3 2 4 4 4 1 0 0

3 2 1 0 3 2 2 2 4 1 1

Oldest 3 2 1 0 3 3 3 2 4 4

Victim 3 2 1 0 3 2

pollev.com/cis5480

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

❖ Given the following reference string, how many page faults occur when using a
FIFO algorithm

❖ 3 2 1 0 3 2 4 3 2 1 0 4

❖ Four page frames

❖ 10 faults
26

Ref
str:

3 2 1 0 3 2 4 3 2 1 0 4

Newest 3 2 1 0 0 0 4 3 2 1 0 4

3 2 1 1 1 0 4 3 2 1 0

3 2 2 2 1 0 4 3 2 1

Oldest 3 3 3 2 1 0 4 3 2

Victim 3 2 1 0 4 3

pollev.com/cis5480

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Bélády's anomaly

❖ Sometimes increasing the number of page frames in the data structure results
in an increase in the number of page faults

❖ This behavior is something that we want to avoid/minimize the possibility of.

❖ Some algorithms avoid this anomaly (LRU, LIFO, etc.)

27

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

28

Lecture Outline

❖ Page Replacement: High Level

▪ FIFO

▪ Reference Strings

▪ Beladys

❖ LRU

❖ Thrashing

❖ FIFO w/ Reference bit

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

LRU (Least Recently Used)

❖ Assumption:

▪ If a page is used recently, it is likely to be used again in the future

❖ Use prior knowledge to predict the future (update posterior)

❖ Replace the page that has had the longest time since it was last used

❖ Sorta Reminiscent of a Priority Queue, where smaller time since last access
indicates lower priority of eviction. (But too complicated)

29

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Small Example: 3 Pages of Space

30

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3

To Evict

1

0

4

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Small Example: 3 Pages of Space

31

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3

To Evict

1

0

4 To make space for Page 2 – we need to evict page 4.

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Small Example: 3 Pages of Space

32

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3

To Evict

2

1

0

As we access 0 again, we move it
to the top of the

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Small Example: 3 Pages of Space

33

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3

To Evict

0

2

1

Observation:
The ‘order’ of the values when using the LRU

is always a subsequence of page accesses.

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Small Example: 3 Pages of Space

34

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3

To Evict

0

2

1

Observation:
The ‘order’ of the values when using the LRU

is always a subsequence of page accesses.

Lots of ways to reason about this…try to
find a way that makes more sense to you.

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

❖ Now, using the same Reference String with LRU, let’s try to fill this table out…

❖ What if there are four frames instead of 3? How Many Page Faults?

35

LRU Ref
str:

4 0 1 2 0 3 0 4 2 3 0 3

Recent

To Evict

Evicted

pollev.com/cis5480

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

❖ What if there are four frames instead of 3? How Many Page Faults?

▪ 6 Faults

▪ 2 Evictions

36

LRU Ref
str:

4 0 1 2 0 3 0 4 2 3 0 3

Recent 4 0 1 2 0 3 0 4 2 3 0 3

4 0 1 2 0 3 0 4 2 3 0

4 0 1 2 2 3 0 4 2 2

To Evict 4 4 1 1 2 3 0 4 4

Evicted 4 1

pollev.com/cis5480

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

❖ What if there are four frames instead of 3? How Many Page Faults?

❖ Easier for me to think about this in terms of subsequences

37

pollev.com/cis5480

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3

Not included in sequence here as it is
already in the ‘stack’ at it’s start.

The newest page to add; we just
remove the last value in the sequence.
(Our first eviction!)

4 Page Faults as we start off empty.

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

❖ What if there are four frames instead of 3? How Many Page Faults?

❖ Easier for me to think about this in terms of subsequences

38

pollev.com/cis5480

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3

Evicted

Already have zero, so this is at it’s start
now while ignoring the other zero.

No eviction necessary.

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

❖ What if there are four frames instead of 3? How Many Page Faults?

❖ Easier for me to think about this in terms of subsequences

39

pollev.com/cis5480

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3

Evicted

The newest page to add; we just
remove the last value in the sequence.
(Our Second eviction!)

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

❖ What if there are four frames instead of 3? How Many Page Faults?

❖ Easier for me to think about this in terms of subsequences

40

pollev.com/cis5480

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3

Evicted Evicted

Already have 2, so this is at it’s start now
while ignoring the other 2.

No eviction necessary.

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

❖ What if there are four frames instead of 3? How Many Page Faults?

❖ Easier for me to think about this in terms of subsequences

41

pollev.com/cis5480

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3

Evicted Evicted

Already have 3, so this is at it’s start now
while ignoring the other 3.

No eviction necessary.

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

❖ What if there are four frames instead of 3? How Many Page Faults?

❖ Easier for me to think about this in terms of subsequences

42

pollev.com/cis5480

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3

Evicted Evicted Since the rest of the refence string contains
pages already in the stack, there’s no need to

keep going.

There will be no more page evictions! (yay!)

Easier for me to think about it in this way … but do what you gotta do!

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

LRU Implementation

❖ Couple of Possibilities

▪ we would need to timestamp each memory access and keep a sorted list of these pages

• High overhead, timestamps can be tricky to manage :/

▪ Keep a counter that is incremented for each memory access
Look through the table to find the lowest counter value on eviction

• Looking through the table can be slow

• Should you weigh time of access more when it’s more recent? (e.g. 3,3,3,3,3,3,3,3,3,1,1)

▪ Whenever a page is accessed find it in the stack of active pages and move it to the bottom

43

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

LRU Approximation: Reference Bit & Clock

❖ It is expensive to do bookkeeping every time a page is accessed. Minimize the
bookkeeping if possible

❖ When we access a page, we can update the reference bit for that PTE to show
that it was accessed recently

▪ This is done automatically by hardware, when accessing memory.

▪ Setting a bit to 1 is much quicker than managing time stamps and re-organizing a stack

❖ We could check the reference bit at some clock interval to see if the page was
used at all in the last interval period

44

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

LRU Approximation: Aging

❖ Each page gets an 8-bit “counter”.

❖ On clock interval and for every page:

▪ shift the counter to the right by 1 bit (>> 1)

▪ write the reference bit into the MSB of the counter.

▪ Current reference bit is reset to 0

❖ If we read the counter as an unsigned integer, then a larger value means the
counter was accessed more recently
▪ Right shifting allows us to take into consideration time since the last access as we

essentially divide the value by 2 if there were no accesses.

45

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 0

46

0 0 0 0 0 0 0 0

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 1

47

0 0 0 0 0 0 0 0

Page
access

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 0

48

1 0 0 0 0 0 0 0

Page
access

interval

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 0

49

1 0 0 0 0 0 0 0

Page
access

interval

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 1

50

1 0 0 0 0 0 0 0

Page
access

interval

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 1

51

1 0 0 0 0 0 0 0

Page
access

interval

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 1
52

1 0 0 0 0 0 0 0

Page
access

interval

counter = (uint8_t)counter >> 1
counter = counter | (ref << 7)

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 0

53

1 1 0 0 0 0 0 0

Page
access

interval

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 0

54

1 1 0 0 0 0 0 0

Page
access

interval

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Aging Illustration

❖ Timeline

❖ Counter:

❖ Ref bit: 0

55

0 1 1 0 0 0 0 0

No Page
access

interval

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Aging: Analysis

❖ Analysis

▪ Low overhead on clock tick and memory access

▪ Still must search page table for entry to remove/update

▪ Insufficient information to handle some ties

• Only one bit information per clock cycle

• Information past a certain clock cycle is lost

56

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

57

Lecture Outline

❖ Page Replacement: High Level

▪ FIFO

▪ Reference Strings

▪ Beladys

❖ LRU

❖ Thrashing

❖ FIFO w/ Reference bit

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Thrashing

❖ This is not specific to LRU, but it is easiest to demonstrate with LRU

❖ When the physical memory of a computer is overcommitted, causing almost
constant page faults (which are slow)

▪ Overcommitment most commonly happens when there are too many processes, and thus
too much memory needed

▪ Can also happen with a few processes, if the process needs too much memory

58

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Thrashing: LRU Example

❖ Consider the following example with three page frames and LRU

❖ Page fault on every memory access

59

LRU Ref str: 0 1 2 3 0 1 2 3 0 1 2 3

Recent 0 1 1 2 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2

To Evict 0 1 2 3 0 1 2 3 0 1

Evicted 0 1 2 3 0 1 2 3 0

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Thrashing: Multiprogramming

❖ It is good to have more processes running, then we can have better utilization
of CPU.

▪ While one process waits on something, another can run

▪ More on CPU Utilization later

❖ As we use more processes running at once, more memory is needed, can cause
thrashing

60

CPU
util.

Degree of multiprogramming

Perfect multithreading/multiprocessing
is a balance between

Memory Speed/Size vs CPU Speed

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Lecture Outline

❖ Page Replacement: High Level

▪ FIFO

▪ Reference Strings

▪ Beladys

❖ LRU

❖ Thrashing

❖ FIFO w/ Reference bit

61

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

FIFO Analysis

❖ Remember FIFO? The first page replacement algorithm we covered?

▪ Evict the page that has been in physical memory the longest

❖ Analysis:
▪ Low overhead. No need to do any work on each memory access, instead just need to do

something when loading a new page into memory & evicting an existing page

▪ Not the best at predicting which pages are used in the future

❖ Could we modify FIFO to better suit our needs?

62

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Second Chance

❖ Second chance algorithm is very similar to FIFO

▪ Still have a FIFO queue

▪ When we take the first page of the queue, instead of immediately evicting it, we instead
check to see if the reference bit is 1 (was used in the last time interval)

▪ If so, move it to the end of the queue

▪ Repeat until we find a value that does not have the reference bit set (if all pages have
reference bit as 1, then we eventually get back to the first page we looked at)

63

A
1

B
1

C
0

D
1

E
0

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Second Chance Example

❖ If we need to evict a page: start at the front

❖ Reference bit is 1, so set to 0 and move to end

64

A
1

B
1

C
0

D
1

E
0

head

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Second Chance Example

❖ If we need to evict a page: start at the front

❖ Reference bit is 1, so move to end

65

B
1

C
0

D
1

E
0

A
0

head

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Second Chance Example

❖ If we need to evict a page: start at the front

❖ Reference bit is 1, so move to end

C
0

66

D
1

E
0

A
0

B
0

head

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

FREE

Second Chance Example

❖ If we need to evict a page: start at the front

❖ Found a page with reference bit = 0, evict Page C!

67

D
1

E
0

A
0

B
0

head

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Clock

❖ Optimization on the second chance algorithm

❖ Have the queue be circular, thus the cost to moving something to the “end” is
minimal

68

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Clock Example

❖ If we need to evict a page: start at the front

❖ Reference bit is 1, so set to 0 and move to end

69

A
1

B
1

C
0

D
1

E
0

head

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Clock Example

❖ If we need to evict a page: start at the front

❖ Reference bit is 1, so set to 0 and move to end

70

A
0

B
1

C
0

D
1

E
0

head

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Clock Example

❖ If we need to evict a page: start at the front

❖ Reference bit is 1, so set to 0 and move to end

71

A
0

B
1

C
0

D
1

E
0

head

Can also be modified to

prefer to evict clean pages

instead of dirty pages

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Linux Two-List Clock Page Replacement Algorithm

❖ Maintains two lists: Active list and Inactive list

❖ Eviction Priority:

▪ Chose a page from the inactive list first

❖ Page Access Behavior:
▪ If a page has not been referenced recently, move it to the inactive list

❖ If a page is referenced:
▪ Set its reference flag to true

▪ It will be moved to the active list on the next access

▪ Two accesses are required for a page to become active

❖ Decay Mechanism:

▪ If the second access doesn’t happen, the reference flag is reset periodically

▪ After two timeouts without activity, the page is moved to the inactive list
72

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Linux diagram

73

PG_active = 0
PG_reference = 0

PG_active = 1
PG_reference = 0

PG_active = 0
PG_reference = 1

PG_active = 1
PG_reference = 1

Inactive Active

Used

Timeout Timeout UsedUsed

This is sort of like a 2-bit

counter for reference bits.

We keep pages in two clock lists.

Reality is more

complicated than this

CIS 4480, Spring 2025L21: Page replacementUniversity of Pennsylvania

Linux diagram

74

PG_active = 0
PG_reference = 0

PG_active = 1
PG_reference = 0

PG_active = 0
PG_reference = 1

PG_active = 1
PG_reference = 1

Inactive Active

Refill

Refill

Used

Timeout Timeout UsedUsed

Refill

Linux will want to keep a good ratio of
inactive to active, so that there are always
some pages that are considered “more ok”
to evict

Active should be ~2/3 of pages at most

	Default Section
	Slide 1: Page Replacement Computer Operating Systems, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Lecture Outline
	Slide 6: Page Replacement
	Slide 7: Evicting a Page
	Slide 8: Page Replacement
	Slide 9: Page Replacement Scenario
	Slide 10: Page Replacement Scenario
	Slide 11: Reference String
	Slide 12: Review: Fault vs Eviction
	Slide 13: FIFO Replacement
	Slide 14: FIFO Replacement
	Slide 15: FIFO Replacement
	Slide 16: FIFO Replacement
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: “optimal” replacement
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Bélády's anomaly
	Slide 28: Lecture Outline
	Slide 29: LRU (Least Recently Used)
	Slide 30: Small Example: 3 Pages of Space
	Slide 31: Small Example: 3 Pages of Space
	Slide 32: Small Example: 3 Pages of Space
	Slide 33: Small Example: 3 Pages of Space
	Slide 34: Small Example: 3 Pages of Space
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: LRU Implementation
	Slide 44: LRU Approximation: Reference Bit & Clock
	Slide 45: LRU Approximation: Aging
	Slide 46: Aging Illustration
	Slide 47: Aging Illustration
	Slide 48: Aging Illustration
	Slide 49: Aging Illustration
	Slide 50: Aging Illustration
	Slide 51: Aging Illustration
	Slide 52: Aging Illustration
	Slide 53: Aging Illustration
	Slide 54: Aging Illustration
	Slide 55: Aging Illustration
	Slide 56: Aging: Analysis
	Slide 57: Lecture Outline
	Slide 58: Thrashing
	Slide 59: Thrashing: LRU Example
	Slide 60: Thrashing: Multiprogramming
	Slide 61: Lecture Outline
	Slide 62: FIFO Analysis
	Slide 63: Second Chance
	Slide 64: Second Chance Example
	Slide 65: Second Chance Example
	Slide 66: Second Chance Example
	Slide 67: Second Chance Example
	Slide 68: Clock
	Slide 69: Clock Example
	Slide 70: Clock Example
	Slide 71: Clock Example
	Slide 72: Linux Two-List Clock Page Replacement Algorithm
	Slide 73: Linux diagram
	Slide 74: Linux diagram

