
CIS 5480
Recitation 1

Thursday, February 6 2025



2

Agenda

- Fork
- Exec
- File Descriptors
- Pipes



3

Fork

- pid_t fork(): duplicates the calling process
- New process : child 
- Calling process: parent

- Returns 
- PID of the child process to the parent process
- 0 in the child process

- Entire memory space is replicated in child process



4

Fork 



5

Fork - Basic Example 

Q: How many times is 
“Meow” printed? 



6

Fork - Tricky Example 

Q: What happens?



7

Exec

- execve(char *pathname, char *argv[], char *envp[]) 
- Pathname: executes program at this path
- Argv: arguments 
- Envp: Environment variables 

- You don’t really need to worry about these
- You can view exec as replacing the current 

program image with the new program 
- Does not return 



Exec



Execve 

- Execution steps 
- Find the path file
- Check that the file is actually executable, load
- Set up the new stack (argv stored in mem) 
- Transfer control to the new program 

- CPU registers are reset
- Instruction pointer set to start of new code

- Fds, pid preserved; signal handlers reset



Exec Example
int main() {

char *argv[] = { NULL, "-l", NULL };
char *envp[] = { NULL };
execve("/bin/ls", argv, envp);
perror("execve failed");
return 1;

}
- What is wrong here? 



Exec Fix
int main() {

char *argv[] = { "ls", "-l", NULL }; // was missing argv[0]
char *envp[] = { NULL };
execve("/bin/ls", argv, envp);
perror("execve failed");
return 1;

}
- What is wrong here? 



12

File Descriptors

File descriptors are process-unique identifiers to 
file-like objects:
- A regular txt file
- Terminal inputs/outputs
- Pipes



13

File Descriptors

Terminal inputs/outputs
- Standard input: stdin (default fd = 0 in Unix)
- Standard output: stdout (default fd = 1 in Unix)
- Standard error: stderr (default fd = 2 in Unix)



14

File Descriptors
In C, file descriptors are a type of int

The process of dealing with a file is generally:
- Open the file (generate the file descriptor) using open(2)
- Interact with the file using read(2) and write(2)
- Close the file (unassign the file descriptor) when the 

process is done with it using close(2)

https://man7.org/linux/man-pages/man2/open.2.html
https://man7.org/linux/man-pages/man2/read.2.html
https://man7.org/linux/man-pages/man2/write.2.html
https://man7.org/linux/man-pages/man2/close.2.html


15

File Descriptors

- Open File Table stores the information about all 
the files that are open while the OS is running.



16

File Descriptors

- As we open a file, we add to the reference count, 
for each file descriptor pointing to that file



17

File Descriptors

- Fork duplicates the File descriptor of its parent

fork()



18

File Descriptors

- New file descriptors are not shared!

fork()



19

Pipes

- int pipe(int pipefd[2])
- Creates a unidirectional data channel for IPC 
- Sets pipefd[0] to be an fd corresponding to the 

reading end of the pipe 
- pipefd[1]: fd corresponding to write end !

- Pipe “file” only exists as long as there are 
references to it and it is maintained by the OS



Pipes



Pipes

- When reading from a pipe, you read until a certain 
number of bytes, or until EOF is received

- EOF is read when all write end of the pipe are 
closed


