CIS 5480
Recitation |

Thursday, February 6 2025

oY Enoineerin
NIVERgSITY of PENNSYLVAI\%

Agenda

Fork
Exec
File Descriptors
Pipes

= m] o .
& Penn Engineering
o O

Fork

- pid_t fork(): duplicates the calling process
- New process : child
- Calling process: parent

- Returns
- PID of the child process to the parent process
- 0in the child process

- Entire memory space is replicated in child process

& Penn Engineering 3

Fork

« Fork causes the OS
to clone the Sp
address space

® The copies of the
memory segments are
(nearly) identical

®" The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

]

~ fork () y-
PARENT o7 SR CHILD

Fork - Basic Example

int main() {
pid t pid = fork();

| Q: How many times is
(id = 0) { ‘ TR,
printf("Meow"); Meow Prlnted?

exit();
h {
pid t pid = fork();

F (pid == 0) {
printf(“"Meow");

[mm] o .
& Penn Engineering 5
(- (=

Fork - Tricky Example

int global num = 1;

void function() {

global num++;

printf(“global num d\n", global num);
}

int main() {
printf(“"global num = %d\n", global num);

pid t id1 = fork();

(id1 == o) {

function();

pid_t id2 = fork();
(id2 == 0) {
function();

} {

global num

Q:What happens! Y

EXIT_SUCCESS;

}

global num

printf("g _num = %d\n", global num);

fork();
printf(“global num = %d\n", global num);

EXIT_SUCCESS;

m] . .
& Penn Engineering
O <O

Exec

- execve(char *pathname, char *argv[], char *envp[])
- Pathname: executes program at this path
- Argv:arguments
- Envp: Environment variables
- You don’t really need to worry about these
- You can view exec as replacing the current
program image with the new program
- Does not return

= m] o .
& Penn Engmccrmg

Exec

« Exec takes a process and discards or “resets” most of it

NOTE that the following
DO change

- The stack

- The heap

- Globals

- Loaded code

- Registers

NOTE that the following
do NOT change

- Process ID

- Open files

- The kernel

Execve

- Execution steps
- Find the path file
- Check that the file is actually executable, load
- Set up the new stack (argv stored in mem)
- Transfer control to the new program
- CPU registers are reset
- Instruction pointer set to start of new code
Fds, pid preserved; signal handlers reset

= m] o .
& Penn Engmccrmg

Exec Example

int main() {
char *argv[] = { NULL, "-I", NULL };
char *envp[] = { NULL };
execve("/bin/ls", argy, envp);
perror("execve failed");
return |;

- What is wrong here!

= m] o .
& Penn Engmccrmg

Exec Fix

int main() {
char *argv[] = { "Is", "-I", NULL }; // was missing argv[0]
char *envp[] = { NULL };
execve("/bin/ls", argy, envp);
perror("execve failed");
return |;

- What is wrong here!

= m] o .
& Penn Engmccrmg

File Descriptors

File descriptors are process-unique identifiers to
file-like objects:

- A regular txt file

- Terminal inputs/outputs

- Pipes | File Descriptor (C?:F:IZH)
©) E Ta@ble Structure
+—
File (1) _l_, @
Descriptor
(2) — @ File
: Structure

User space i Kernel space
1

= m] o .
& Penn Engmccrmg

File Descriptors

Terminal inputs/outputs

- Standard input: stdin (default fd = 0 in Unix)

- Standard output: stdout (default fd = | in Unix)
- Standard error: stderr (default fd = 2 in Unix)

& Penn Enginccring 13

File Descriptors

In C, file descriptors are a type of int

The process of dealing with a file is generally:
- Open the file (generate the file descriptor) using open(2)
- Interact with the file using read(2) and write(2)
- Close the file (unassign the file descriptor) when the
process is done with it using close(2)

= m] o .
& Penn Engineering 14
o O

https://man7.org/linux/man-pages/man2/open.2.html
https://man7.org/linux/man-pages/man2/read.2.html
https://man7.org/linux/man-pages/man2/write.2.html
https://man7.org/linux/man-pages/man2/close.2.html

File Descriptors

- Open File Table stores the information about all
the files that are open while the OS is running.

mode

cursor

ref count

file name

& Penn Engineering

mode

cursor

mode Write
cursor 0
ref count 1
file name | file_a.txt

ref count

file name

File Descriptors

- As we open a file, we add to the reference count,

for each file descriptor pointing to that file

Process 1
File Descriptor Table
0 1
ptr ptr

mode mode Read mode Write mode Write mode

cursor cursor 0 cursor 0 cursor 0 cursor
ref count ref count 1l ref count 1 ref count 0 ref count
file name file name | file_a.txt | file name | file_a.txt | file name | File_b.txt | file name

[mm] . .
& Penn Engineering
(- O

File Descriptors

- Fork duplicates the File descriptor of its parent

fork()

Process 1
File Descriptor Table
0 1
ptr ptr

N

Process 2
File Descriptor Table
0 1
ptr ptr

mode mode Read mode Write mode Write mode

cursor cursor 0 cursor 0 cursor 0 cursor
ref count ref count 2 ref count 2 ref count 0 ref count
file name file name | file_a.txt | file name | file_a.txt | file name | File_b.txt | file name

m o m] . .
N Pcn n Engmccrmg
(- O

File Descriptors

- New file descriptors are not shared!

Process 1
File Descriptor Table
0 1
ptr ptr

fork()

N

Process 2
File Descriptor Table
0 1 2
ptr ptr ptr

mode mode Read mode Write mode Write mode

cursor cursor 0 cursor 0 cursor 0 cursor
ref count ref count 2 ref count 2 ref count 1 ref count
file name file name | file_a.txt | file name | file_a.txt | file name | File_b.txt | file name

m o m] . .
N Pcn n Engmccrmg
(- O

Pipes

- int pipe(int pipefd[2])
- Creates a unidirectional data channel for |[PC
- Sets pipefd[0] to be an fd corresponding to the

reading end

- pipefd[1]: fc

of the pipe
corresponding to write end !

- Pipe “file” only exists as long as there are
references to it and it is maintained by the OS

= m] o .
& Penn Engmccrmg

Pipes

+ Creating a pipe initializes two file descriptors in the process FD Table.

« Makes two entries in the system wide file table!

Process 100
File Descriptor Table int plpE'Fd[Z] :

o | 1] 2 3 4 int pipe(pipefd);

in | out | err | rpipe | wpipe

AN

v
mode mode Read mode Write mode |
cursor cursor 0 cursor 0 cursor

reference count .. reference count 1 reference count 1 reference count
File Name File Name pipe File Name pipe File Name

note: the buffer has limited st
If it is full, you can not write t
read (consume) what is there

Kernal ©

\

buffer
m] . .
& Penn Engineering
O <O

Pipes

- When reading from a pipe, you read until a certain
number of bytes, or until EOF is received

- EOF is read when all write end of the pipe are
closed

& Penn Engineering

