
CIS 5480
Recitation 2

Thursday, February 13 2025

2

Agenda

- Job Control
- Signal Handling

3

Job Control

We group processes together in a process group to
send on signal across all processes.

Processes in a pipeline form a process group.

fork() creates a process group to which the parent
and child belong to.

4

Job Control

Processes have a group id (PGID) and is usually the
PID of the process that creates the group.

That PID is reserved, even after that process is
terminated, until the whole group is terminated.

5

Job Control

Bash Demo

6

Job Control
int setpgid(pid_t pid, pid_t pgid)
setpgid(2) sets the pgid of process pid to pgid.

What happens if pid is zero?

What happens if pgid is zero?

https://www.man7.org/linux/man-pages/man2/setpgid.2.html

7

Job Control
int setpgid(pid_t pid, pid_t pgid)
setpgid(2) sets the PGID of process pid to pgid.

What happens if pid is zero?
pid is set to the PID of the calling process (i.e the process
changes its PGID to pgid).
What happens if pgid is zero?
pgid is set to the PGID of the process pid.

https://www.man7.org/linux/man-pages/man2/setpgid.2.html

8

Job Control

pgid = 101
pid = 101

pid = 102

9

Job Control

pgid = 101
pid = 101

pid = 102

setpgid(0, 103)

10

Job Control

pgid = 101
pid = 102

pgid = 103
pid = 101

11

Job Control

pgid = 101
pid = 102

pgid = 103
pid = 101

setpgid(101, 0)

12

Job Control

pgid = 101
pid = 102

pid = 101

13

Job Control
int setpgid(pid_t pid, pid_t pgid)
setpgid(2) sets the PGID of process pid to pgid.

What does setpgid(0, 0) do?

https://www.man7.org/linux/man-pages/man2/setpgid.2.html

14

Job Control
int setpgid(pid_t pid, pid_t pgid)
setpgid(2) sets the pgid of process pid to pgid.

What does setpgid(0, 0) do?
Sets the PGID of the calling process to its PID.

https://www.man7.org/linux/man-pages/man2/setpgid.2.html

15

Job Control

pgid = 101
pid = 101

pid = 102

16

Job Control

pgid = 101
pid = 101

pid = 102
setpgid(0, 0)

17

Job Control

pgid = 101
pid = 101

pgid = 102
pid = 102

18

Job Control
pid_t getpgid(pid_t pid)
getpgid(3p) returns the PGID of process pid. It returns -1 if
it fails.

What happens if pid is zero?

https://man7.org/linux/man-pages/man3/getpgid.3p.html

19

Job Control
pid_t getpgid(pid_t pid)
getpgid(3p) returns the pgid of process pid. It returns -1 if it
fails.

What happens if pid is zero?
pid is set to the PID of the calling process (i.e. returns the
PGID of the calling process).

https://man7.org/linux/man-pages/man3/getpgid.3p.html

20

Job Control

With all functions that use pid, you can use pgid.

However, you must use the negative of the pgid!

Bash Demo

21

Signal Handling

● Signals are software-generated interrupts that
notify processes of events.

● Similar to hardware interrupts but handled at the
process level.

● Used for inter-process communication and
exception handling.

22

Signal Handling
● Common Signals:

○ SIGINT (Interrupt from keyboard (CTRL-C) , default: terminate)
○ SIGKILL (Forcefully terminate process, cannot be ignored)
○ SIGTERM (Terminate process gracefully)
○ SIGCHLD (Child process status change)
○ SIGSEGV (Segmentation fault, default: core dump)
○ SIGALRM (Alarm signal, triggers after a timer expires)

● Default Actions:
○ Terminate (SIGINT, SIGKILL, SIGTERM)
○ Ignore (SIGCHLD, SIGALRM by default in some cases)
○ Core dump (SIGSEGV)

23

Writing a Signal Handler
● sigaction() allows defining custom handlers.

Syntax:
struct sigaction sa;
sa.sa_handler = my_handler;
sa.sa_flags = SA_RESTART;

● sigaction(SIGINT, &sa, NULL);
● Special values:

○ SIG_IGN (Ignore signal)
○ SIG_DFL (Restore default behavior)
○

24

Writing a Signal Handler
● A signal handler is a function that takes an integer signal number as a parameter.

Example:
void my_handler(int signum) {
 printf("Caught signal %d\n", signum);

}

● Important:
○ Keep handlers simple.
○ Avoid non-reentrant functions (e.g., printf, malloc).
○ Why?

25

Q1
Question:
Consider the following pseudocode for handling SIGINT. What will happen when the user presses Ctrl+C three times?

void handler(int signum) {
 printf("SIGINT received! Ignoring...\n");
}

int main() {
 set_signal_handler(SIGINT, handler);
 while (1) {
 sleep(1);
 }
 return 0;
}

26

Q1
How can we modify the program to exit after receiving SIGINT three times?

void handler(int signum) {
 printf("SIGINT received! Ignoring...\n");
}

int main() {
 set_signal_handler(SIGINT, handler);
 while (1) {
 sleep(1);
 }
 return 0;
}

27

Signal Sets
● A signal set (sigset_t) represents a collection of signals.
● Functions for managing signal sets:

○ sigemptyset(&set); → Initializes an empty set.
○ sigfillset(&set); → Initializes a set with all signals.
○ sigaddset(&set, SIGINT); → Adds SIGINT to the set.
○ sigdelset(&set, SIGTERM); → Removes SIGTERM from the set.
○ sigismember(&set, SIGKILL); → Checks if SIGKILL is in the

set.
● Used in functions like sigprocmask() and sigsuspend() to control

signal behavior.

28

Blocking and Ignoring Signals
● Signals can be blocked using sigprocmask().

Example:
sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGINT);

● sigprocmask(SIG_BLOCK, &set, NULL);
● Difference between ignoring (SIG_IGN) and blocking:

○ Ignored signals are discarded.
○ Blocked signals are deferred until unblocked.

29

Blocking and Ignoring Signals
Consider the following pseudocode where a process installs a signal handler for SIGINT and blocks SIGTERM for the first 5
seconds.

void handler(int signum) {
 printf("Received signal: %d\n", signum);
}

int main() {
 block_signal(SIGTERM);
 set_signal_handler(SIGINT, handler);

 sleep(5);

 unblock_signal(SIGTERM);
 while (1);
}

1. What happens if SIGINT is sent before 5 seconds?
2. What happens if SIGTERM is sent before 5 seconds?
3. What happens if SIGTERM is sent after 5 seconds?

30

Signals: Summary
● Signals provide a mechanism for process communication and exception

handling.
● Use sigaction() to define custom handlers.
● Use sigset_t to manage multiple signals.
● kill() sends signals to processes.
● waitpid() helps manage child processes without blocking.
● alarm(n) sends SIGALRM after n seconds
● Block and ignore signals strategically to avoid unintended behavior.

