
CIS 5480 Midterm Review
 February 27, 2025

Jeopardy template made by Eric Curts

JEOPARDY BOARD
Process

Management Signals
File

Descriptors
& I/O

File
Systems

Concurrency &
Synchronization

CPU
Scheduling

$100 $100 $100 $100 $100 $100

$200 $200 $200 $200 $200 $200

$300 $300 $300 $300 $300 $300

$400 $400 $400 $400 $400 $400

$500 $500 $500 $500 $500 $500

FINAL JEOPARDY

What does the wait() system
call do in a parent process?

Why is calling wait()
important after forking a

child process?

Process Management - $100 Question

Click to see answer

wait() makes the parent process
pause execution until one of its
child processes terminates. It

allows the parent to retrieve the
child's exit status and prevents

the creation of zombie processes.

Process Management - $100 Answer

Click to return to Jeopardy Board

What are the usual return
values of fork() in the parent

and child processes upon
execution?

Process Management - $200 Question

Click to see answer

The child process returns 0.
The parent process returns

the pid of the child.
On failure, it returns -1.

Process Management - $200 Answer

Click to return to Jeopardy Board

How does the exec() family
of functions differ from
fork(), and why are they

often used together?

Process Management - $300 Question

Click to see answer

fork() creates a new process by
duplicating the current one.

exec() replaces the current process
with a new program.

They are commonly used together so
that the child process created by fork()

can immediately load and run a
different program using exec().

Process Management - $300 Answer

Click to return to Jeopardy Board

Process Management - $400 Question

Click to see answer

A simple shell spawns a child process
to run a foreground job using fork().

However, the user notices that
pressing Ctrl+C does not terminate

the child process but instead affects
the shell itself. What mistake in

terminal control is likely causing this
issue, and how can it be fixed?

The shell likely failed to call
tcsetpgrp() to assign the child

process’s group as the terminal’s
foreground process group.

To fix the issue, we would need to
run:

tcsetpgrp(STDIN_FILENO, child_pgid);
After forking.

Process Management - $400 Answer

Click to return to Jeopardy Board

Process Management - $500 Question

Click to see answer

pgid = 101
pid = 101

pid = 102

pgid = 104
pid = 103

pgid = 106
pid = 106

pid = 107

What are the resulting process
groups and process

assignments after executing
the following code? Assume
that the operating system
assigns process IDs (PIDs)

based on the first available
integer greater than 100.

Process Management - $500 Answer

Click to return to Jeopardy Board

pgid = 103
pid = 102

pid = 101

pgid = 104
pid = 103

pgid = 105
pid = 105

pgid = 107
pid = 107

What does the alarm()
system call do, and how can
it be used to implement a

timeout mechanism?

Signals - $100 Question

Click to see answer

Alarm schedules a SIGALRM
to be delivered to the

process after a given number
of seconds. To implement a
timeout, we call alarm(s)

Signals - $100 Answer

Click to return to Jeopardy Board

Signals - $200 Question

Click to see answer

Describe the difference
between signals and

interrupts; say a user enters
CTRL+C. How is SIGINT
actually sent/handled?

Signals - $200 Answer

Click to return to Jeopardy Board

Interrupts originate from
hardware, whereas signals are

higher-level (software). SIGINT is
sent by the OS, which checks the
foreground process’ PCB for the
signal disposition (term, ign, …)

or a handler if one is set.

Type question here

Signals - $300 Question

Click to see answer

Type answer here

Signals - $300 Answer

Click to return to Jeopardy Board

Signals - $400 Question

Click to see answer

A process sets a signal handler
for SIGUSR with sigaction().
Inside the handler, a global

variable is modified. What are
some potential issues if the

handler is preempted by another
signal

Signals - $400 Answer

Click to return to Jeopardy Board

Race condition: concurrent
access to the global variable,

inconsistent state of the
global var

Explain what this
example does; if

CTRL+C is pressed
once every second
for 6 seconds, how

many times is
“Caught SIGINT!”

printed?

Signals - $500 Question

Click to see answer

Four times.
While SIGINT is blocked, the OS does
not queue standard signals. So only
one of the three SIGINTs during the

first three seconds will be handled. In
the remaining three seconds, the
SIGINTs will be handled correctly.

Signals - $500 Answer

Click to return to Jeopardy Board

How does the file descriptor
table function in a Unix-like
operating system? What is

stored in it?

File Descriptors & I/O - $100 Question

Click to see answer

Each process maintains its own
file descriptor table, which maps
these integers to the underlying
open files or devices, including
associated metadata like file

offsets and access modes.

File Descriptors & I/O - $100 Answer

Click to return to Jeopardy Board

What roles do the open() and
close() system calls play in
managing file descriptors?

File Descriptors & I/O - $200 Question

Click to see answer

The open() system call opens a file
or device, returning a file

descriptor that references it, while
close() terminates the association
with that file descriptor, freeing

the resource for future use.

File Descriptors & I/O - $200 Answer

Click to return to Jeopardy Board

How does file descriptor
inheritance work when a
process calls fork(), and

what impact does it have on
I/O redirection?

File Descriptors & I/O - $300 Question

Click to see answer

When a process forks, the child
process inherits a copy of the

parent's file descriptor table. This
inheritance means both processes
can access the same open files,
which facilitates I/O redirection

and inter-process communication.

File Descriptors & I/O - $300 Answer

Click to return to Jeopardy Board

What is the difference
between using dup() and
dup2() for file descriptor
duplication, and how are

they typically used in shell
redirection?

File Descriptors & I/O - $400 Question

Click to see answer

dup(fd) returns the lowest available
new file descriptor referencing the
same resource, while dup2(oldfd,
newfd) forces duplication into a
specific file descriptor number

(closing it first if open). Shells use
dup2() to redirect standard I/O

streams to files or pipes.

File Descriptors & I/O - $400 Answer

Click to return to Jeopardy Board

How do Unix-like shells
implement a multi-stage pipeline
(cmd1 | cmd2 | cmd3) using file
descriptors, and what role do the

pipe ends play?

File Descriptors & I/O - $500 Question

Click to see answer

For each pipeline stage, the shell uses
pipe() to create a pipe with read and
write file descriptors. It then forks

each command, connecting the write
end of one pipe to the read end of the

next using dup2().

File Descriptors & I/O - $500 Answer

Click to return to Jeopardy Board

What is the smallest unit of
work for a file system (R/W)?

a. A bit
b. A byte
c. A block
d. A page

File Systems - $100 Question

Click to see answer

C. A block

Even if you want to change just
one byte in a file, you must write

an entire block of that file.

File Systems - $100 Answer

Click to return to Jeopardy Board

File Systems - $200 Question

Click to see answer

In an implicit linked list
architecture of the file system…

File Systems - $200 Answer

Click to return to Jeopardy Board

File Systems - $300 Question

Click to see answer

Block # File X Block Y

0 FAT

1 Root directory

2 File A Block 1

3 ?

4 File B Block 1

5 Empty

6 ?

7 File C Block 1

8 ?

9 ?

10 File D Block 1

File Systems - $300 Answer

Click to return to Jeopardy Board

Block # File X Block Y

0 FAT

1 Root directory

2 File A Block 1

3 File A Block 3

4 File B Block 1

5 Empty

6 File A Block 2

7 File C Block 1

8 File D Block 2

9 File A Block 4

10 File D Block 1

With an Inode struct like below, what’s the
largest file size possible if...

● Each block is 512 bytes
● Each block_no_t is 4 bytes?

(Express your answer as an equation)

File Systems - $400 Question

Click to see answer

● Each block is 512 bytes
● Each block_no_t is 4 bytes

Direct blocks: 12 * 512 = 6,144 bytes
Single indirect: 512/4 = 128 pointers, 128 * 512 =
65,536 bytes
Double indirect: 128 * 128 * 512 = 8,388,608 bytes
Triple indirect: 128^3 * 512 = 1,073,741,824 bytes

Total: 6144 + 65536 + 8388608 + 1073741824 ≈ 1.01GB

File Systems - $400 Answer

Click to return to Jeopardy Board

Assume…
● A block is 1,024 bytes

● Each inode is 128 bytes
● There are 12 directory entries (dirents) in

each inode

File Systems - $500 Question

Click to see answer

maximum

worst-case 😈
(assume file.txt does exist in this path)

5 inodes
48 direntsFile Systems - $500 Answer

Click to return to Jeopardy Board

root inode
block w/ dirent

dir_one

dir_one inode

block w/ dirent
dir_two

dir_two inode
block w/ dirent

dir_three

dir_three inode
block w/ dirent

file.txt

file.txt
inode

What is the unit of scheduling
in most modern OS?

a. A process
b. A thread

c. A Procedure

Concurrency & Synchronization - $100 Question

Click to see answer

b. A thread

Concurrency & Synchronization - $100 Answer

Click to return to Jeopardy Board

Concurrency & Synchronization - $200 Question

Click to see answer

With a 4-core machine, what’s
the most amount of

performance boost I can get
when executing a task with

multiple threads? Using
parallelism or concurrency?

4x with parallelism

Physical parallelism is limited by the
number of available cores. With 4

cores, only 4 threads can truly execute
instructions simultaneously.

Concurrency & Synchronization - $200 Answer

Click to return to Jeopardy Board

Concurrency & Synchronization - $300 Question

Click to see answer

Which of the following are shared
(1) between processes

(2) between threads but not processes
(3) by neither of the two?

a. Stack
b. Heap

c. Registers
d. Stack pointer

e. Program counter
f. Pipes via pipe()

a. Stack
b. Heap

c. Registers
d. Stack pointer

e. Program counter
f. Pipes via pipe()

(1). Between processes: f
(2) Between threads but not processes: b

(3) Neither: acde

Concurrency & Synchronization - $300 Answer

Click to return to Jeopardy Board

Describe a scenario where
using processes would be

preferable to threads despite
their higher overhead.

Concurrency & Synchronization - $400 Question

Click to see answer

Concurrency & Synchronization - $400 Answer

Click to return to Jeopardy Board

One advantage for using processes is the
isolation: if one process crashes, others

can keep working.

Scenario: web server handling multiple
client requests with separate processes.

In a multithreaded program where one
thread attempts to increment a global

counter variable 1000 times and another
thread attempts to decrement it 1000

times.

Why might the final value not be 0?

Concurrency & Synchronization - $500 Question

Click to see answer

Race condition!

An example scenario:
● Thread A reads the counter value as 10
● Thread B reads the counter value as 10

● Thread A adds 1 and writes back 11
● Thread B subtracts 1 and writes back 9

Concurrency & Synchronization - $500 Answer

Click to return to Jeopardy Board

Which scheduling
algorithm(s) runs the risk of

“starving” its jobs?

Scheduling - $100 Question

Click to see answer

Shortest Job First (SJF)
Priority Round Robin

Scheduling - $100 Answer

Click to return to Jeopardy Board

If you’re guaranteed that all incoming jobs
take approximately the same amount of time

to complete, which scheduling algorithm
makes the most sense to implement and why?

Scheduling - $200 Question

Click to see answer

First Come First Served (FCFS):
- Easiest to implement
- Consistent duration of jobs negates any

positive benefits of other scheduling
algorithms.

- Any preemptive scheduling algorithms
will cost more time with the extra
context-switching

Scheduling - $200 Answer

Click to return to Jeopardy Board

Given the following jobs and their estimated
lengths, what time quantum would you choose

for a Round Robin Scheduler?

Job A: 2-10ns Job F: 1-2ns
Job B: 4-6ns Job G: 3-14ns
Job C: 1-17ns Job H: 15-18ns
Job D: 6-7ns Job I: 5-11ns
Job E: 8-13ns Job J: 6-9ns

Scheduling - $300 Question

Click to see answer

If you want 80-90% of jobs to finish
within 1 attempt: need to use upper

estimate

80% of jobs finish within 14ns
90% of jobs finish within 17ns

So 14ns <= TQ <= 17n

Scheduling - $300 Answer

Click to return to Jeopardy Board

Rank the following in order of
preference in priority round-robin and

explain your reasoning:

1. Involving little to no I/O
2. Involving a lot of I/O, but split into smaller chunks
3. One long sequence of I/O accesses at the first half

of the job, but no I/O in the last half

Ties are allowed!

Scheduling - $400 Question

Click to see answer

Small I/O bursts >= One long
sequence of I/O > No I/O

Want to make most utilization of I/O devices when needed -
scheduler can context-switch to another thread that needs
CPU while I/O is accessed, and switch back quickly if I/O

access is relatively short. If no I/O bursts are needed, then
nothing useful is happening while the thread is in queue!

Scheduling - $400 Answer

Click to return to Jeopardy Board

Using a Round Robin scheduling algorithm and a time quantum of 8…
1. what is the finishing time for each job?
2. What is the average waiting time?
3. Is 8 the best time quantum to use given the current info?

Scheduling - $500 Question

Click to see answer

Job Name Arrival Time Running Time

Swellow 2 11

Pidove 0 8

Fletchling 12 20

Starly 7 15

Doduo 10 4

Average wait time: 18

No, this time quantum is quite short - only 40% of known
jobs can finish within 1 attempt. A better time quantum
would be between 15 and 19, inclusive.

Scheduling - $500 Answer

Click to return to Jeopardy Board

Job Name Finishing Time Wait Time

Swellow 39 39 - 2 - 11 = 26

Pidove 8 8 - 0 - 8 = 0

Fletchling 58 58 - 12 - 20 = 26

Starly 46 46 - 7 - 15 = 24

Doduo 28 28 - 10 - 4 = 14

Q: what scheduling algorithm can be
implemented using an array of linked lists?
A: priority round robin (~200 pts)

Other questions you can add
about scheduling:

Topic: Type topic here

FINAL

Click to see question

Type question here

Final Jeopardy Question

Click to see answer

Type answer here

Final Jeopardy Answer

Click to return to Jeopardy Board

