
CIS 5520
Advanced Programming

Fall 2024

Today: Wed Oct 9th
• HW #3 due one week from Thursday (Sat, Queue & AVL)
• Today: discussion on RedBlack module & Hughes video

• Next week: GADTs discussion (Monday) and demo
(Wed)
–Code in github repo (07-GADTs), notes on website, don't

forget about the quiz

Project Proposal

• Due: Thursday, October 24th

• Be creative! This is just a rough draft
– See write up for project topics to avoid
– Happy to talk about project ideas after class/during OH

• Teams of two
– If you propose a more significant project, you may form a group of

three, but your proposal should describe how to divide the work

Discussion plan

• Quiz discussion
• Hughes' video
[5 min break]
• Persistent Data Structures
• Red/Black Trees

Where do properties come from?

• Hughes' talk gives several kinds of properties that we can
define for QuickCheck
– Validity – make sure that representation invariants are maintained
– Postcondition – make sure that operations do what they should
– Metamorphic – think about all combinations of operations
– Model-based – compare this implementation with a less buggy one

• All code is a source of potential bugs, including testing code
– Buggy test: finds a bug that doesn't exist
– Buggy test: misses a bug that it should catch

Model-based testing

• Where do we get another implementation?
– Existing implementations: Data.Set for RBTs
– Simpler implementations: ordered lists w/o duplicates for RBTs
– Other examples? Really depends on the situation…

• When is model-based testing not appropriate
– No model available, or existing models are buggy
– Model over-specifies desired properties

• Model-based testing is not always practical, that's why other
kinds of properties are important

Persistent Data structures

• What do you mean by a 'persistent' data structure?
• How efficient is this implementation compared to a mutable

data structure?
• How do RedBlack trees really work?

Persistent Binary-Search Tree

• insertion returns new tree
• Recreates the path from new

leaf to root
• In a balanced tree, this path has

at most length O(log n)
• Rule of thumb: persistent

structures cost at most O(log n)
more than mutable structures

3

2 7

5 9

4

3

7

9

10

t = insert 10 t =

RED BLACK TREES

Insertion
data Color = R | B
data T a = E | N Color (T a) a (T a)
newtype RBT a = Root (T a)

insert :: Ord a => a -> RBT a -> RBT a
insert s (Root x) = Root (ins s))
 where ins E = N R E x E
 ins s@(N color a y b)
 | x < y = balanc N color (ins a) y b
 | x > y = balanc N color a y (ins b)
 | otherwise = s
 blacken (T _ a x b) = T B a x b

Temporarily suspend invariant:
Result of ins may create a red root
or a red node with a red child.

data Color = R | B

data Tree = E | T Tree A Tree

insert :: Tree -> A -> Tree

insert s x = blacken (ins s)

 where ins E = T R E x E

 ins s@(T color a y b)

 | x < y = balance color (ins a) y b

 | x > y = balance color a y (ins b)

 | otherwise = s

 blacken (T _ a x b) = T B a x b

Insertion
data Color = R | B
data T a = E | N Color (T a) a (T a)
newtype RBT a = Root (T a)

insert :: Ord a => a -> RBT a -> RBT a
insert s (Root x) = blacken (ins s)
 where ins E = N R E x E
 ins s@(N color a y b)
 | x < y = balance (N color (ins a) y b)
 | x > y = balance (N color a y (ins b))
 | otherwise = s
 blacken (N _ a x b) = Root (N B a x b) Two fixes:

- blacken if root is red at
the end
- rebalance two internal
reds

Temporarily suspend invariant:
Result of ins may create a red root
or a red node with a red child.

balance

data Color = R | B

data Tree = E | T Tree A Tree

insert :: Tree -> A -> Tree

insert s x = blacken (ins s)

 where ins E = T R E x E

 ins s@(T color a y b)

 | x < y = balance color (ins a) y b

 | x > y = balance color a y (ins b)

 | otherwise = s

 blacken (T _ a x b) = T B a x b

balance
balance :: T a -> T a
balance (N B (N R (N R a x b) y c) z d) =

N R (N B a x b) y (N B c z d)
balance (N B (N R a x (N R b y c)) z d) =

N R (N B a x b) y (N B c z d)
balance (N B a x (N R (N R b y c) z d)) =

N R (N B a x b) y (N B c z d)
balance (N B a x (N R b y (N R c z d))) =

N R (N B a x b) y (N B c z d)
balance (N color a x b) = N color a x b

